Деятельность коры больших полушарий головного мозга называется. Двигательные функции коры больших полушарий

Современным ученым доподлинно известно, что благодаря функционированию головного мозга возможны такие способности, как осознание сигналов, которые получены из внешней среды, мыслительная деятельность, запоминание мышления.

Способность личности осознавать собственные отношения с другими людьми непосредственно связано с процессом возбуждения нейронных сетей. Причем речь идет именно о тех нейронных сетях, которые расположены в коре. Она представляет собой структурную основу сознания и интеллекта.

В данной статье рассмотрим, как устроена кора головного мозга, зоны коры головного мозга будут подробно описаны.

Неокортекс

Кора включает в себя около четырнадцати миллиардов нейронов. Именно благодаря им осуществляется функционирование основных зон. Подавляющая часть нейронов, до девяноста процентов, формирует неокортекс. Он является частью соматической НС и ее высшим интегративным отделом. Важнейшими функциями коры головного мозга выступают восприятие, переработка, интерпретация информации, которую человек получает при помощи всевозможных органов чувств.

Помимо этого, неокортекс управляет сложными движениями системы мышц человеческого тела. В нем расположены центры, принимающие участие в процессе речи, хранении памяти, абстрактном мышлении. Большая часть процессов, которые в нем происходят, формирует нейрофизическую основу человеческого сознания.

Из каких отделов еще состоит кора головного мозга? Зоны коры головного мозга рассмотрим ниже.

Палеокортекс

Является еще одним большим и важным отделом коры. В сравнении с неокортексом у палеокортекса более простая структура. Процессы, которые здесь протекают, редко отражаются в сознании. В этом отделе коры высшие вегетативные центры локализуются.

Связь коркового слоя с другими отделами мозга

Немаловажно рассмотреть связь, которая имеется между нижележащими отделами мозга и корой больших полушарий, например, с таламусом, мостом, средним мостом, базальными ядрами. Осуществляется эта связь при помощи крупных пучков волокон, которые внутреннюю капсулу формируют. Пучки волокон представлены широкими пластами, которые сложены из белого вещества. В них расположено огромное количество нервных волокон. Некоторая часть этих волокон обеспечивает передачу нервных сигналов к коре. Остальная часть пучков передает нервные импульсы к расположенным ниже нервным центрам.

Как устроена кора головного мозга? Зоны коры головного мозга будут представлены далее.

Строение коры

Самым большим отделом мозга является его кора. Причем зоны коры являются лишь одним типом частей, выделяемых в коре. Помимо этого кора разделена на два полушария - правое и левое. Между собой полушария соединены пучками белого вещества, формирующими мозолистое тело. Его функция - обеспечивать координацию деятельности обоих полушарий.

Классификация зон коры головного мозга по их расположению

Несмотря на то что кора имеет огромное количество складок, в общем расположение ее отдельных извилин и борозд постоянно. Главные их них являются ориентиром при выделении областей коры. К таким зонам (долям) относятся - затылочная, височная, лобная, теменная. Несмотря на то что они классифицируются по месту расположения, каждая из них имеет свои собственные специфические функции.

Слуховая зона коры головного мозга

К примеру, височная зона является центром, в котором расположен корковый отдел анализатора слуха. Если происходит повреждение этого отдела коры, может возникнуть глухота. Помимо этого в слуховой зоне расположен центр речи Вернике. Если повреждению подвергается он, то человек теряется способность к восприятию устной речи. Человек воспринимает ее как простой шум. Также в височной доле есть нейронные центры, которые относятся к вестибулярному аппарату. Если повреждаются они, нарушается чувство равновесия.

Речевые зоны коры головного мозга

В лобной доле коры сосредоточены речевые зоны. Речедвигательный центр расположен тоже здесь. Если происходит его повреждение в правом полушарии, то человек теряет способность изменять тембр и интонацию собственной речи, которая становится монотонной. Если же повреждение речевого центра произошло в левом полушарии, то пропадает артикуляция, способность к членораздельной речи и пению. Из чего еще состоит кора головного мозга? Зоны коры головного мозга имеют различные функции.

Зрительные зоны

В затылочной доле располагается зрительная зона, в которой находится центр, отвечающий на наше зрение как таковое. Восприятие окружающего мира происходит именно этой частью мозга, а не глазами. Именно затылочная зона коры ответственна за зрение, и ее повреждение может привести к частичной или полной потере зрения. Зрительная зона коры головного мозга рассмотрена. Что дальше?

Для теменной доли тоже характерны свои собственные специфические функции. Именно эта зона отвечает за способность анализировать информацию, которая касается тактильной, температурной и болевой чувствительности. Если происходит повреждение теменной области, рефлексы головного мозга нарушаются. Человек не может на ощупь распознавать предметы.

Двигательная зона

Поговорим о двигательной зоне отдельно. Следует отметить, что эта зона коры никак не соотносится с долями, рассмотренными выше. Она является частью коры, содержащей прямые связи с мотонейронами в спинном мозге. Такое название носят нейроны, непосредственно управляющие деятельностью мышц тела.

Основная двигательная зона коры больших полушарий располагается в извилине, которая называется прецентральной. Эта извилина представляет собой зеркальное отображение сенсорной зоны по многим аспектам. Между ними имеется контралатеральная иннервация. Если сказать иными совами, то иннервация направлена на мышцы, которые расположены на другой стороне тела. Исключение - лицевая область, для которой характерен контроль мышц двусторонний, расположенных на челюсти, нижней части лица.

Немного ниже основной двигательной зоны расположена дополнительная зона. Ученые полагают, что она имеет независимые функции, которые связаны с процессом вывода двигательных импульсов. Дополнительная двигательная зона также изучалась специалистами. Эксперименты, которые ставились над животными, показывают, что стимуляция этой зоны провоцирует возникновение двигательных реакций. Особенностью является то, что подобные реакции возникают даже в том случае, если основная двигательная зона была изолирована или разрушена полностью. Она также вовлечена в планирование движений и в мотивацию речи в полушарии, которое является доминантным. Ученые полагают, что при повреждении дополнительной двигательной может возникнуть динамическая афазия. Рефлексы головного мозга страдают.

Классификация по строению и функциям коры головного мозга

Физиологические эксперименты и клинические испытыния, которые проводились еще в конце девятнадцатого века, позволили установить границы между областями, на которые проецируются разные рецепторные поверхности. Среди них выделяют органы чувств, которые направлены на внешний мир (кожная чувствительность, слух, зрение), рецепторы, заложенные непосредствен в органах движения (двигательный или кинетический анализаторы).

Зоны коры, в которых располагаются разнообразные анализаторы, могут быть классифицированы по строению и функциям. Так, их выделяют три. К ним относятся: первичная, вторичная, третичная зоны коры головного мозга. Развитие эмбриона предполагает закладывание только первичных зон, характеризующихся простой цитоархитектоникой. Далее происходит развитие вторичных, третичные развиваются в самую последнюю очередь. Для третичных зон характерно самое сложное строение. Рассмотрим каждую из них немного подробнее.

Центральные поля

За долгие годы клинических исследований ученым удалось накопить значительный опыт. Наблюдения позволили установить, например, что повреждения различных полей, в составе корковых отделов разных анализаторов, могут отразиться далеко не равнозначно на общей клинической картине. Если рассматривать все эти поля, то среди них можно выделить одно, которое занимает центральное положение в ядерной зоне. Такое поле носит название центрального или первичного. Находится оно одновременно в зрительной зоне, в кинестетической, в слуховой. Повреждение первичного поля влечет за собой весьма серьезные последствия. Человек не может воспринимать и осуществлять самые тонкие дифференцировки раздражителей, влияющих на соответствующие анализаторы. Как еще классифицируются участки коры головного мозга?

Первичные зоны

В первичных зонах расположен комплекс нейронов, который наиболее предрасположен к обеспечению двусторонних связей между корковыми и подкорковыми зонами. Именно этот комплекс наиболее прямым и коротким путем соединяет кору больших полушарий с разнообразными органами чувств. В связи с этим данные зоны обладают способностью очень подробной идентификации раздражителей.

Важной общей чертой функциональной и структурной организации первичных областей является то, все они имеют четкую соматическую проекцию. Это означает, что отдельные периферические точки, например, кожные поверхности, сетчатка глаза, скелетная мускулатура, улитки внутреннего уха, имеют собственную проекцию в строго ограниченные, соответствующие точки, которые находятся в первичных зонах коры соответствующих анализаторов. В связи с этим им было дано название проекционных зон коры головного мозга.

Вторичные зоны

По-другому эти зоны называются периферическими. Такое название дано им совсем не случайно. Они находятся в периферических отделах участков коры. От центральных (первичных) вторичные зоны отличаются нейронной организацией, физиологическими проявлениями и особенностями архитектоники.

Попробуем разобраться, какие эффекты возникают, если на вторичные зоны воздействует электрический раздражитель или происходит их повреждение. Главным образом возникающие эффекты касаются наиболее сложных видов процессов в психике. В том случае, если происходит повреждение вторичных зон, то элементарные ощущения остаются в относительной сохранности. В основном наблюдаются нарушения в способности правильного отражения взаимных соотношений и целых комплексов элементов, из которых состоят различные объекты, которые мы воспринимаем. К примеру, если повреждению подверглись вторичные зоны зрительной и слуховой коры, то можно наблюдать возникновение слуховых и зрительных галлюцинаций, которые разворачиваются в определенной временной и пространственной последовательности.

Вторичные области имеют значительную важность в реализации взаимных связей раздражителей, которые выделяются при помощи первичных зон коры. Помимо этого, значительную роль они играют в интеграции функций, которые осуществляют ядерные поля разных анализаторов в результате объединения в сложные комплексы рецепций.

Таким образом, вторичные зоны представляют особую важность для реализации психических процессов в более сложных формах, которые требуют координации и которые связаны с подробным анализом соотношений между предметными раздражителями. В ходе этого процесса устанавливаются специфические связи, которые носят название ассоциативных. Афферентные импульсы, поступающие в кору от рецепторов разных внешних органов чувств, достигают вторичных полей посредством множества дополнительных переключений в ассоциативном ядре таламуса, который также называется зрительным бугром. Афферентные импульсы, следующие в первичные зоны, в отличие от импульсов, следуют во вторичные зоны, достигают их путем, который короче. Он реализован посредством реле-ядра, в зрительном бугре.

Мы разобрались, за что отвечает кора головного мозга.

Что такое таламус?

От таламических ядер к каждой доле мозговых полушарий подходят волокна. Таламус является зрительным бугром, расположенным в центральной части переднего отдела мозга, состоит из большого количества ядер, каждое из которых осуществляет передачу импульса в определенные участки коры.

Все сигналы, которые поступают к коре (исключение составляют только обонятельные), проходят через релейные и интегративные ядра зрительного бугра. От ядер таламуса волокна направляются к сенсорным зонам. Вкусовая и соматосенсорная зоны расположены в теменной доле, слуховая сенсорная зона - в височной доле, зрительная - в затылочной.

Импульсы к ним поступают, соответственно, от вентро-базальных комплексов, медиальных и латеральных ядер. Моторные зоны связаны с вентеральным и вентролатеральным ядрами таламуса.

Десинхронизация ЭЭГ

Что произойдет, если на человека, находящегося в состоянии полного покоя, подействует очень сильный раздражитель? Естественно, что человек полностью сконцентрируется на данном раздражителе. Переход умственной деятельности, который осуществляется от состояния покоя к состоянию активности, отражается на ЭЭГ бета-ритмом, который замещает альфа-ритм. Колебания становятся более частыми. Такой переход называют десинхронизацией ЭЭГ, появляется он в результате поступления сенсорного возбуждения в кору от неспецифических ядер, расположенных в таламусе.

Активирующая ретикулярная система

Диффузную нервную сесть составляют неспецифические ядра. Находится эта система в медиальных отделах таламуса. Он является передним отделом активирующей ретикулярной системы, регулирующей возбудимость коры. Разнообразные сенсорные сигналы способны активировать данную систему. Сенсорные сигналы могут быть как зрительными, так и обонятельными, соматосенсорными, вестибулярными, слуховыми. Активизирующая ретикулярная система представляет собой канал, который передает к поверхностному слою коры данные сигналов через расположенные в таламусе неспецифические ядра. Возбуждение АРС необходимо для того, чтобы человек был способен поддерживать состояние бодрствования. Если в данной системе возникают нарушения, то могут наблюдаться коматозные сноподобные состояния.

Третичные зоны

Между анализаторами коры головного мозга имеются функциональные отношения, которые имеют еще более сложную структуру, чем та, что была описана выше. В процессе роста происходит взаимное перекрытие полей анализаторов. Такие зоны перекрытия, которые образуются у концов анализаторов, носят название третичных зон. Они являются самыми сложными типами объединения деятельности слухового, зрительного, кожно-кинестетического анализаторов. Расположены третичные зоны за границами собственных зон анализаторов. В связи с этим повреждение их не оказывает выраженного эффекта.

Третичные зоны представляют собой особые корковые области, в которых собраны рассеянные элементы разных анализаторов. Они занимают весьма обширную территорию, которая разделена на области.

Верхняя теменная область интегрирует движения всего тела с анализатором зрительным, формирует схему тел. Нижняя теменная область объединяет обобщенные формы сигнализации, которые связаны с дифференцированными предметными и речевыми действиями.

Не менее важной является височно-теменно-затылочная область. Отвечает она за усложненные интеграции слухового и зрительного анализаторов с устной и письменной речью.

Стоит отметить, что по сравнению с двумя первыми зонами, для третичных характерны наиболее сложные цепи взаимодействия.

Если опираться на весь изложенный выше материал, то можно сделать вывод о том, что первичные, вторичные, третичные зоны коры у человека носят высокую специализацию. Отдельно стоит подчеркнуть тот факт, что все три корковые зоны, которые мы рассматривали, в нормально функционирующем мозге совместно с системами связей и образованиями подкоркового расположения функционируют как единое дифференцированное целое.

Мы подробно рассмотрели зоны и отделы коры головного мозга.

Деятельность коры полушарий головного мозга

Деятельность коры больших полушарий головного мозга осуществляется при взаимодействии двух основных нервных процессов - возбуждения и торможения, которые лежат в основе образования, и усвоения условных рефлексов. Эти процессы под влиянием внешних или внутренних воздействий могут усиливаться или ослабляться, охватывать большие или меньшие участки коры головного мозга.

Распространение в коре головного мозга процессов возбуждения или торможения называется иррадиацией.

Охват этими процессами все меньшего количества нервных центров коры носит название концентрации.

Возбуждение или торможение в одном участке коры сопровождается возникновением обратного процесса в другом участке, что называется отрицательной индукцией.

Возбудимость одного и того же участка коры головного мозга понижается, после возбуждения и повышается после процессов торможения. Это явление называется последовательной индукцией.

В основе учения И. П. Павлова о рефлекторной природе деятельно­сти центральной нервной системы лежат три основных принципа: принцип детерминизма, принцип единства анализа и синтеза и принцип структурности.

Принцип детерминизма. В природе, в том числе в живом организме, ничто не совершается без причины. Любой рефлекторный акт имеет причину. Это одно из основных положений диалектического материализма.

Принцип единства анализа и синтеза. Нервная система в процесс? всей деятельности непрерывно расчленяет сложные раздражители, действующие на органы чувств человека, на более простые составные элементы (анализ) и тут же объединяет их в соответствующие обстановке системы (синтез).

Принцип структурности. Любой рефлекторный акт связан с опре­деленной областью коры головного мозга. Все процессы, протекающие в головном мозге, как и во всем организме, материальны, в их основе лежат материальные процессы, протекающие в определенных частях нервной системы.

Всю информацию, которая необходима водителю для надежного управления автомобилем, он получает с помощью анализаторов. Каждый анализатор состоит из трех отделов. Первый отдел - наружный, воспринимающий аппарат, в котором происходит превращение энергии воздействующего раздражителя в нервный процесс. Это наружные анатомические образования, или органы чувств (глаз, ухо, нос и др.). Второй от дел - это чувствительные нервы, по которым воздействующее раздраже­ние передается в соответствующий центр головного мозга. Третий отдел и есть такой центр, который представляет собой специализированный участок коры головного мозга, превращающий нервные раздражения в соответствующее ощущение (зрительное, звуковое, вкусовое, тепловое и т. д.). Так, например, в зрительном анализаторе первым, наружным отделом является внутренняя оболочка глазного яблока (сетчатка), состоящая из светочувствительных клеток - колбочек и палочек. Раздражение этих клеток, передаваемое по зрительному нерву в центр зрительного анализатора, дает ощущение света, цвета и зрительное восприятие предметов внешнего мира. Аналогично устроены и другие анализаторы: слуховой, кожный, обонятельный, вестибулярный и двигательный. Центральные отделы анализаторов расположены в различных областях коры головного мозга. Так, например, центр зрительного анализатора находится в затылочной области, слухового - в височной, двигательного - в центральной извилине мозга и т. д.

Кроме специфических свойств анализаторы имеют и общие свойства. Общим свойством анализаторов является их высокая возбудимость, которая выражается в возникновении очага возбуждения в коре головного мозга даже при небольшой силе раздражителя. Всем анализаторам присуща иррадиация возбуждения, когда возбуждение из центра анализатора распространяется на соседние участки коры головного мозга. Следующей общей особенностью анализаторов является адаптация, т. е. способность в большом диапазоне воспринимать раздражители различной силы. Например, при входе в темный зал человек вначале ничего не видит, а затем довольно хорошо различает не только очертания предметов, но и лица. Вода кажется горячей только в первый момент погружения в ванну, неприятный запах быстро перестает ощущаться и т. д. Приспособление анализаторов к раздражителям выражается как в повышении чувствительности (темновая адаптация), так и в понижении (световая адаптация). Анализаторы обладают способностью некоторое время сохранять процесс возбуждения и восприятия после прекращения действия раздражителя. Если быстро перемещать в темноте светящийся уголек, то вместо движущейся точки будет видна сплошная светящаяся полоса. Кроме того, всем анализаторам свойственна своя специфическая память.

Анализаторы

Различают внешние и внутренние анализаторы. Внешние анализаторы воспринимают информацию из окружающей среды. К ним относятся: зрительный, слуховой, обонятельный, вкусовой, осязательный, или тактильный, реагирующий на прикосновение или давление. Внутренние анализаторы воспринимают раздражение со стороны внутренней среды организма. К ним относятся: мыгиечно-двигательный, оценивающий положение тела в пространстве, взаимное расположение частей тела, воспринимающий напряжение и сокращение мышц; баростезический, реагирующий на изменение кровяного давления, и др. Температурный, болевой и вестибулярный анализаторы могут возбуждаться при действии раздражителей внешней и внутренней среды.

Наибольшее значение в деятельности водителя имеют зрительным, слуховой, вестибулярный, мышечно-двигательный и кожный анализаторы.

Установлено, что от 80 до 90 % информации от окружающего мира поступает в мозг через зрительный анализатор. Стенка глаза состоит из трех оболочек. Наружная оболочка называется белковой, или склерой. В передней части глазного яблока она переходит в прозрачную роговицу, через которую в глаз проникают лучи света. Позади роговицы находится радужная оболочка, играющая роль диафрагмы. В центре радужной обо­лочки имеется отверстие - зрачок. Позади зрачка расположен хрусталик, имеющий форму двояковыпуклой линзы. За хрусталиком находится же­леобразное стекловидное тело, заполняющее всю полость глаза.

Лучи света, проникая через прозрачные, преломляющие среды глаза (роговицу, хрусталик, стекловидное тело), попадают на внутреннюю обо­лочку глаза - сетчатку, которая является аппаратом, воспринимающим световые лучи. К сетчатке подходят окончания зрительного нерва, передающего зрительные импульсы в головной мозг. В сетчатке имеется два типа клеток, воспринимающих световые раздражения: палочки и колбочки. Дневное зрение осуществляется в основном клетками малой чувствительности - колбочками, палочки при этом не возбуждаются. В темное время суток начинают функционировать палочки, которые обеспечивают зрительное восприятие в условиях низкой освещенности.



У животных, ведущих дневной образ жизни, в сетчатке преобладают колбочки, а у ночных животных (совы, летучие мыши) - палочки. В состав палочек входит особое химическое вещество - зрительный пурпур, или родопсин. Слабый свет вызывает распад родопсина. Продукты этого распада возбуждают палочки, а затем возбуждение по зрительному нерву передается в кору больших полушарий. Так возникает ощущение света. В состав родопсина входит витамин А. При его недостатке зрительный пурпур не синтезируется, и человек с наступлением сумерек перестает видеть. Такое состояние называется куриной слепотой, которая особенно опасна для водителя при управлении автомобилем в темное время суток. Смешивая в разных сочетаниях три основных цвета: красный, зеленый и синий, можно получить разнообразие цветов. Это явление и легло в основу теории цветового зрения, согласно которой в сетчатке имеются колбочки трех видов. Одни возбуждаются красным цветом, другие зеленым, третьи синим. Комбинация же различной степени возбуждения в трех видах колбочек дает все остальные цвета. При равномерном раздражении всех колбочек возникает ощущение белого цвета

Слуховой анализатор воспринимает звуки различной высоты, силы и продолжительности. Орган слуха состоит из трех частей: наружного, среднего и внутреннего уха. Наружное ухо представлено ушной раковиной и наружным слуховым проходом длиной 2,5 см. Между слуховым проходом и полостью среднего уха расположена барабанная перепонка толщиной 0,1 мм. Благодаря своей упругости барабанная перепонка способна без искажений повторить колебания воздуха. В полости среднего уха находятся три слуховые косточки: молоточек, наковальня и стремечко. Косточки передают колебания барабанной перепонки улитке (так называемся узкий изогнутый костный канал). Полость среднего уха специальным каналом - евстахиевой трубой - соединена с носоглоткой. При помощи евстахиевой трубы в среднем ухе поддерживается давление, равное атмосферному, что обеспечивает неискаженное колебание барабанной перепонки. Эти колебания передаются в кортиев орган внутреннего уха, который расположен в улитке. Кортиев орган имеет основную мембрану, на которой натянуты тончайшие волокна. Таких волокон около 24 тысяч. Звуковые волны вызывают колебания волокон, возбуждающие окончания слухового нерва. Это возбуждение передается в височную область коры головного мозга и воспринимается как ощущение звука. Согласно теории слуха, волокна широкой частью улитки в области вершины натянуты слабо и воспринимают низкие тона. Короткие и сильно натяну­тые волокна у основания улитки реагируют колебанием на высокие тона. Вестибулярный анализатор принимает участие в восприятии дви­жения и положения тела. Периферическую часть вестибулярного анализатора составляют преддверие и полукружные каналы, которые расположены тоже во внутреннем ухе. Преддверие представляет собой небольшую полость, по обеим сторонам которой находятся улитка и три полукружных канала. Полукружные каналы располагаются в трех взаимно перпендикулярных плоскостях и своими концами открываются в полости преддверия. В этой части каждого канала находятся чувствительные окончания (рецепторы) вестибулярного нерва. При движении или изменении положения тела эти окончания раздражаются перемещением находящейся в канале жидкости, которая называется эндолимфой. Возбуждение передается в кору головного мозга и воспринимается как движение или изменение положения тела в пространстве. Значительное раздражение вестибулярного аппарата происходит при качке на море, болтанке в воздухе и при езде на автомобиле. В результате такого укачивания развивается морская или воздушная болезнь, при которой появляется головная боль, головокружение, общая слабость, потливость, тошнота и рвота. Такое состояние чаще возникает у пассажиров и очень редко у водителей автомобилей.

Мышечно-двигательный анализатор имеет исключительно большое значение в деятельности водителя автомобиля, так как он осуществляет контроль за правильностью и точностью выполняемых движений. В мышцах и суставах имеются чувствительные нервные клетки, которые называются проприорецепторами. При сокращении мышц, изменении положения тела эти клетки посылают в кору головного мозга импульсы, сигнализирующие о сокращении или расслаблении мышц, о малейших изменениях положения любой части тела в пространстве.

Благодаря такой информации можно с закрытыми глазами опреде­лить, в каком положении находятся конечности и корпус. Что касается водителя, то с помощью двигательного анализатора он мгновенно получает информацию о малейшем отклонении автомобиля, а также о положении органов управления. Эта информация имеет огромное значение для своевременных управляющих действий водителя в опасных дорожных ситуациях. Двигательный анализатор играет ведущую роль в образовании новых движений, в формировании и совершенствовании двигательных водительских навыков. Под влиянием профессиональной тренировки повышается возбудимость, а следовательно, и чувствительность двигательного анализатора, что позволяет получать от него все более точную информацию, необходимую для надежного управления автомобилем. Автоматизация двигательных навыков позволяет разгрузить внимание водителя, что очень важно для безопасности дорожного движения.

Кожный анализатор реагирует на болевые, температурные и тактильные раздражители. Тактильные раздражители дают водителю дополнительную информацию об изменении скорости или направления движения автомобиля.

Все анализаторы играют важную роль в деятельности водителя, и нарушение их функций может резко снизить их надежность.

Контрольные вопросы

1. Расскажите о роли анатомии и физиологии человека в инженерной " психологии.

2. На какие виды делится нервная система человека?

3. Что называется рефлексом?

4. Что такое иррадиация?

5.Расскажите о значении в деятельности водителя зрительного, слухового, вестибулярного, мышечно-двигательного и кожного анализаторов

Ощущение и восприятие водителя автомобиля

Цель – дать понятие ощущения и восприятия.

1. Психические процессы получения информации.

2. Зрительное восприятие водителя.

3. Восприятие времени.

4. Двигательное восприятие.

5. Восприятие звуков.

6. Иллюзии и галлюцинации.

Значение коры больших полушарий. Высшая нервная деятельность (ВНД) - это деятельность коры больших полушарий головного мозга и ближайших к ней подкорковых образований, обеспечивающая наиболее совершенное приспособление (поведение) высокоорганизованных животных и человека к окружающей среде. В работе русского физиолога И. М. Сеченова «Рефлексы головного мозга» (1863) впервые была высказана мысль о связи сознания и мышления человека с рефлекторной деятельностью головного мозга. Эта идея была экспериментально подтверждена и развита академиком И. П. Павловым, который по праву является создателем учения о высшей нервной деятельности. Ее основой являются условные рефлексы.

Безусловные и условные рефлексы. Все рефлекторные реакции организма на различные раздражители И. П. Павлов подразделил на две группы: безусловные и условные.

Безусловные рефлексы - это врожденные рефлексы, передаваемые по наследству от родителей. Они являются видовыми, относительно постоянными и осуществляются низшими отделами ЦНС - спинным мозгом, стволом н подкорковыми ядрами головного мозга. Безусловные рефлексы (например, сосательный, глотательный, зрачковый рефлексы, кашель, чихание и др.) сохраняются у животных, лишенных больших полушарий. Они образуются в ответ на действие определенных раздражителей. Так, рефлекс слюноотделения возникает при раздражении пищей вкусовых сосочков языка. Возникшее возбуждение в виде нервного импульса проводится по чувствительным нервам в продолговатый мозг, где находится центр слюноотделения, откуда оно по двигательным нервам передается слюнным железам, вызывая слюноотделение. На основе безусловных рефлексов осуществляются регуляция и согласованная деятельность разных органов и их систем, поддерживается само существование организма.

В изменчивых условиях окружающей среды сохранение жизнедеятельности организма и приспособительное поведение осуществляется благодаря образованию условных рефлексов с обязательным участием коры больших полушарий головного мозга. Они не являются врожденными, а образуются в течение жизни на базе безусловных рефлексов под воздействием определенных факторов внешней среды. Условные рефлексы строго индивидуальны, т. е. у одних особей вида тот или иной рефлекс может присутствовать, у других - отсутствовать.

Образование и биологическое значение условных рефлексов. Условные рефлексы образуются в результате сочетания безусловного рефлекса с действием условного раздражителя. Для этого необходимо соблюдение двух условий: 1) действие условного раздражителя должно обязательно несколько предшествовать действию безусловного раздражителя (для образования у собаки условного слюноотделительного рефлекса на звонок нужно, чтобы он начал звонить за 5-30 с до подачи корма и некоторое время сопровождал процесс еды); 2) условный раздражитель должен неоднократно подкрепляться действием безусловного раздражителя. Так, после нескольких сочетаний звонка с приемом пищи у собаки будет наблюдаться слюноотделение при одном звуке звонка без пищевого подкрепления.

Механизм образования условного рефлекса состоит в установлении временной связи (замыкания) между двумя очагами возбуждения в мэре головного мозга. Для рассмотренного примера такими очагами являются центры слюноотделения и слуха. Дуга условного рефлекса в отличие от таковой безусловного значительно усложнена и включает рецепторы, воспринимающие условное раздражение, чувствительный нерв, проводящий возбуждение в головной мозг, участок коры, связанный с центром безусловного рефлекса, двигательный нерв и рабочий орган.

Биологическое значение условных рефлексов в жизни человека и животных огромно, так как они обеспечивают их приспособительное поведение - позволяют точно ориентироваться в пространстве и времени, находить пищу (по виду, запаху), избегать опасности, устранять вредные для организма воздействия. С возрастом число условных рефлексов возрастает, приобретается опыт поведения, благодаря которому взрослый организм оказывается лучше приспособленным к окружающей среде, чем детский. Выработка условных рефлексов лежит в основе дрессировки животных, когда тот или иной условный рефлекс образуется в результате сочетания с безусловным (дача лакомства и др.).

Торможение условных рефлексов. При изменении условий существования в организме образуются новые условные рефлексы, а выработанные ранее ослабляются или вовсе исчезают благодаря процессу торможения. И. П. Павлов опытным путем выявил два вида торможения условных рефлексов - внешнее и внутреннее.

Внешнее торможение происходит в случае образования в коре больших полушарий мозга нового очага возбуждения под действием более сильного раздражителя, не связанного с данным условным рефлексом. Например, боль приводит к торможению пищевого условного рефлекса. Или выработанный у животных условный пищевой рефлекс на свет, не проявляется при внезапном действии шума. Чем сильнее посторонний раздражитель, тем больше его ослабляющее действие.

Внутреннее торможение условного рефлекса развивается постепенно в случае многократного подкрепления условного раздражителя безусловным. Благодаря внутреннему торможению в ЦНС происходит угасание биологически нецелесообразных для организма реакций, утративших свое значение в измененных условиях среды. Например, при пересыхании водоема, из которого животные пили воду, условный раздражитель (вид ручья) не будет подкрепляться безусловным (питье воды), условный рефлекс начнет угасать и животные перестанут ходить на водопой. Они найдут новый источник воды, и возникнет новый условный рефлекс взамен утраченного. Образование новых условных рефлексов и исчезновение старых позволяет организму менять свое поведение, всякий раз приспосабливаясь к особенностям среды обитания. Внутреннее торможение дает организму возможность сводить к минимуму биологически нецелесообразные, лишние реакции в ответ на различные раздражители, переставшие подкрепляться безусловными рефлексами.

Наиболее сложные формы приспособительного поведения свойственны человеку. Так же как у животных, они связаны с образованием условных рефлексов и их торможением. Однако у человека деятельность коры больших полушарий головного мозга обладает наиболее развитой способностью к анализу и синтезу сигналов, поступающих из окружающей и внутренней среды организма. Аналитическая деятельность коры заключается в тонком различении (дифференцировке) по характеру и интенсивности действия множества раздражений, действующих на организм и доходящих в форме нервных импульсов до мозговой коры. За счет внутреннего торможения в коре осуществляется дифференцировка раздражителей по степени их биологической значимости. Синтетическая деятельность коры проявляется в связывании, объединении возбуждений, возникающих в разных зонах коры, что формирует сложные формы поведения человека.

Первая и вторая сигнальные системы. Сигнальной системой называют совокупность процессов в нервной системе, которые осуществляют восприятие, анализ информации и ответную реакцию организма. Академик И. П. Павлов разработал учение о первой и второй сигнальных системах.

Первой сигнальной системой он назвал деятельность коры больших полушарий мозга, которая связана с восприятием через рецепторы непосредственных раздражителей (сигналов) внешней среды, например световых, тепловых, болевых и т. д. Она является основой для выработки условных рефлексов, присущих как животным, так и человеку.

В отличие от животных человеку как социальному существу свойственна еще к вторая сигнальная система, связанная с функцией речи, со словом, слышимым или видимым (письменная речь). Слово, по И. П. Павлову, является сигналом для работы первой сигнальной системы («сигналы сигналов»). Например, действия человека (его поведение) будут одинаковыми как при произнесении слова «пожар!», так и при действительно наблюдаемом (зрительное раздражение) им пожаре. Образование условного рефлекса на основе речи является качественной особенностью высшей нервной деятельности человека.

Вторая сигнальная система сформировалась у человека вследствие общественного образа жизни и коллективного труда и выступала средством общения. Слово, речь, письмо являются не только слуховым и зрительным раздражителями, они несут также определенную информацию о предмете или явлении, т. е. определенную смысловую нагрузку. В процессе обучения речи у человека возникают временные связи между нейронами коры, воспринимающими сигналы от разных предметов, явлений, событий, и центрами, воспринимающими словесное обозначение этих предметов, явлений и событий, их смысловое значение. Вот почему у человека условно образованный рефлекс на какой-либо раздражитель легко воспроизводится без подкрепления, если этот раздражитель выразить словесно. Например, на словосочетание «утюг горячий!», человек отдернет руку и не коснется его. У собаки тоже можно выработать условный рефлекс на слово, но оно будет восприниматься ею как определенное звукосочетание без понимания смысла. Так, дрессированная собака, поднимающаяся на задние лапы при слове «служи», никак не будет реагировать на одинаковый по смыслу приказ «стань вертикально».

Развитие у человека речи повысило его способность отражать явления внешней среды, накапливать и использовать опыт предыдущих поколений. В результате сформировалась свойственная только человеку форма отражения действительности, называемая сознанием. Человек с помощью слов, математических символов, образов художественных произведений может передавать другим людям знания об окружающем мире, в том числе и о самом себе. Благодаря слову (словесной сигнализации) у человека появилась возможность отвлеченно и обобщенно воспринимать явления, находящие свое выражение в понятиях, суждениях, умозаключениях. Например, слово «деревья» обобщает многочисленные породы деревьев и отвлекает от конкретных признаков дерева каждой породы.

Способность к обобщению и отвлечению служит основой мышления человека, являясь результатом функции всей коры мозга и в особенности ее лобных долей. Благодаря отвлеченному логическому мышлению человек познает окружающий мир и его законы. Способность к мышлению используется человеком в его практической деятельности, когда он ставит определенные цели, намечает пути реализации и достигает их. В ходе исторического развития человечества благодаря мышлению накоплены огромные знания о внешнем мире.

Таким образом, благодаря первой сигнальной системе достигается конкретное чувственное восприятие окружающего мира и познается состояние самого организма. С развитием у человека второй сигнальной системы достигает чрезвычайной сложности абстрактная аналитическая и синтетическая деятельность коры, проявляющаяся в способности делать широкие обобщения, создавать понятия, открывать действующие в природе законы. Поэтому поведение человека, контролируемое второй сигнальной системой, состоит из целенаправленных действий. Две сигнальные системы тесно взаимодействуют между собой, так как вторая сигнальная система возникла на базе первой и функционирует в связи с ней. У человека вторая сигнальная система преобладает над первой вследствие общественного образа жизни и развития мышления.

Сон, его значение. Сон - специфическое состояние нервной системы, проявляющееся в выключении сознания, угнетении двигательной активности, снижении обменных процессов и всех видов чувствительности. Сон рассматривают как охранительное торможение, которое охватывает кору больших полушарий и позволяет нервным центрам восстановить свою работоспособность. И действительно, каждый человек после сна чувствует, что у него улучшилось самочувствие, восстановилась работоспособность, повысилось внимание. Однако сон - это сложный физиологический процесс, а не просто покой. Регистрация электрических потенциалов мозга - электроэнцефалограмм - позволила выявить две фазы сна: медленный и быстрый сон, характеризующиеся разными частотой и амплитудой колебаний электрической активности мозга. Фазы сна циклично сменяют друг друга. Один цикл длится примерно 1,5 ч, когда медленный сон на непродолжительное время (около 20 мин) сменяется быстрым сном. За ночь у взрослого человека цикл повторяется 4-6 раз. Именно во время медленного сна замедляются и значительно снижаются обменные процессы. Быстрый сон, как правило, сопровождается повышением уровня обменных процессов, быстрыми движениями глаз, сновидениями. Стадии медленного сна отсутствуют у животных, они свойственны только человеку. Ученые связывают это с безопасностью ночлега человека, т. е. отсутствием опасности нападения.

Новая кора (неокортекс) представляет собой слой серого вещества общей площадью 1500-2200 квадратных сантиметров, покрывающий большие полушария. Новая кора составляет около 72% всей площади коры и около 40% массы головного мозга. В новой коре имеется 14 млр. Нейронов, а количество глиальных клеток приблизительно в 10 раз больше.

Кора головного мозга в филогенетическом плане является наиболее молодой нервной структурой. У человека она осуществляет высшую регуляцию функций организма и психофизиологические процессы, обеспечивающие различные формы поведения.

В направлении с поверхности новой коры вглубь различают шесть горизонтальных слоев.

    Молекулярный слой. Имеет очень мало клеток, но большое количество ветвящихся дендриов пирамидных клеток, формирующих сплетение, расположенное параллельно поверхности. На этих дендритах образуют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

    Наружный зернистый слой. Составлен в основном звездчатыми и частично пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, образуя кортикокортикальные связи.

    Наружный пирамидный слой. Состоит преимущественно из пирамидных клеток средней величины. Аксоны этих клеток как и зернистые клетки 2-го слоя, образуют кортикокортикальные ассоциативные связи.

    Вгутренний зернистый слой. По характеру клеток (звездчатые клетки) и расположению их волокон аналогичен наружному зернистому слою. В этом слое афферентные волокна имеют синаптические окончания, идущие от нейронов специфических ядер таламуса и, следовательно, от рецепторов сенсорных систем.

    Внутренний пирамидный слой. Образован средними и крупными пирамидными клетками. Причем, гигантские пирамидные клетки Беца расположены в двигательной коре. Аксоны этих клеток образуют афферентные кортикоспинальные и кортикобульбарный двигательные пути.

    Слой полиморфных клеток. Образован преимущественно веретенообразными клетками, аксоны которых образуют кортикоталамические пути.

Оценивая в целом афферентные и эфферентные связи новой коры, необходимо отметить, что в слоях 1 и 4 происходят восприятие и обработка поступающих в кору сигналов. Нейроны 2 и 3 слоев осуществляют кортикокортикальные ассоциативные связи. Покидающие кору эфферентные пути формируются преимущественно в 5 и 6 слоях.

Гистологические данные показывают, что элементарные нейронные цепи, участвующие в обработке информации, расположены перпендикулярно поверхности коры. При этом они расположены таким образом, что захватывают все слои коры. Такие объединения нейронов были названы учеными нейронными колонками . Соседние нейронные колонки могут частично перекрываться, а также взаимодействовать друг с другом.

Возрастание в филогенезе роли коры большого мозга, анализ и регуляция функций организма и подчинение себе нижележащих отделов центральной нервной системы учеными определено как кортикализация функций (объединение).

Наряду с кортикализацией функций новой коры, принято выделять и локализацию ее функций. Наиболее часто используемым подходом к функциональному разделению коры головного мозга является выделение в ней сенсорной, ассоциативной и двигательной областей.

Сенсорные области коры – зоны, в которые проецируются сенсорные раздражители. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса (центральных, задних латерального и медиального). Сенсорная кора имеет хорошо выраженные 2 и 4 слои и называется гранулярной.

Зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма, называются первичными сенсорными областями (ядерными частями анализаторов, как полагал И.П.Павлов). Они состоят преимущественно из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное (топографическое) представительство частей тела, их рецепторных полей.

Вокруг первичных сенсорных зон находятся менее локализованные вторичные сенсорные зоны , полимодальные нейроны которых отвечают на действие нескольких раздражителей.

Важнейшей сенсорной областью является теменная кора постцентральной извилины и соответствующая ей часть постцентральной дольки на медиальной поверхности полушарий (поля 1 – 3), которую обозначают как соматосенсорную область . Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-мышечного аппарата от мышечных, суставных, сухожильных рецепторов. Проекция участков тела в этой области характеризуется тем, что проекция головы и верхних отделов туловища расположена в нижнелатеральных участках постцентральной извилины, проекция нижней половины туловища и ног – в верхнемедиальных зонах извилины, а проекция нижней части голени и стоп – в коре постцентральной дольки на медиальной поверхности полушарий (Рис. 12).

При этом проекция наиболее чувствительных участков (язык, гортань, пальцы рук и т.д.) имеет относительно большие зоны по сравнению с другими частями тела.

Рис. 12. Проекция частей тела человека на область коркового конца анализатора общей чувствительности

(разрез мозга во фронтальной плоскости)

В глубине латеральной борозды располагается слуховая кора (кора поперечных височных извилин Гешля). В этой зоне в ответ на раздражение слуховых рецепторов кортиева органа формируются звуковые ощущения, изменяющиеся по громкости, тону и другим качествам. Здесь имеется четкая топическая проекция: в разный участках коры представлены различные участки кортиева органа. К проекционной коре височной доли относится также, как предполагают ученые, центр вестибулярного анализатора в верхней и средней височных извилинах. Обработанная сенсорная информация используется для формирования «схемы тела» и регуляции функций мозжечка (височно-мосто-мозжечковый путь).

Еще одна область новой коры расположена в затылочной коре. Это первичная зрительная область . Здесь имеется топическое представительство рецепторов сетчатки. При этом каждой точке сетчатки соответствует свой участок зрительной коры. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения. Раздражение коры мозга в этой области приводит к возникновению световых ощущений. Около первичной зрительной области располагается вторичная зрительная область . Нейроны этой области полимодальны и отвечают не только на световые, но и на тактильные, а также на слуховые раздражители. Не случайно именно в этой зрительной области происходит синтез различных видов чувствительности и возникают более сложные зрительные образы и их опознание. Раздражение этой области коры вызывает зрительные галлюцинации, навязчивые ощущения, движения глаз.

Основная часть информации об окружающем мире и внутренней среде организма, поступившая в сенсорную кору, передается для дальнейшей обработки в ассоциативную кору.

Ассоциативные области коры (межсенсорная, межанализаторная), включает участки новой коры большого мозга, которые расположены рядом с сенсорными и двигательными зонами, но не выполняют непосредственно чувствительных или двигательных функций. Границы этих областей обозначены недостаточно четко, что связано со вторичными проекционными зонами, функциональные свойства которых являются переходными между свойствами первичных проекционных и ассоциативных зон. Ассоциативная коры является филогенетически наиболее молодой областью новой коры, получившей наибольшее развитие у приматов и человека. У человека она составляет около 50% всей коры или 70% неокортекса.

Основной физиологической особенностью нейронов ассоциативной коры, отличающей их от нейронов первичных зон, является полисенсорность (полимодальность). Они отвечают с практически одинаковым порогом не на один, а на несколько раздражителей – зрительные, слуховые, кожные и пр. Полисенсорность нейронов ассоциативной коры создается как ее кортикокортикальными связями с разными проекционными зонами, так и главным ее афферентным входом от ассоциативных ядер таламуса, в которых уже произошла сложная обработка информации от различных чувствительных путей. В результате этого ассоциативная кора представляет собой мощный аппарат конвергенции различных сенсорных возбуждений, позволяющий произвести сложную обработку информации о внешней и внутренней среде организма и использовать ее для осуществления высших психических функций.

По таламокортикальным проекциям выделяют две ассоциативные системы мозга:

    таламотеменную;

    таломовисочную.

Таламотеменная система представлена ассоциативными зонами теменной коры, получающими основные афферентные входы от задней группы ассоциативных ядер таламуса (латеральное заднее ядро и подушка). Теменная ассоциативная кора имеет афферентные выходы на ядра таламуса и гипоталамуса, моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис, формирование «схемы тела» и праксис.

Гнозис – это различные виды узнавания: формы, величины, значения предметов, понимание речи и пр. К гностическим функциям относится оценка пространственных отношений, например взаимного расположения предметов. В теменной коре выделяют центр стереогнозиса (расположен сзади от средних отделов постцентральной извилины). Он обеспечивает способность узнавания предметов на ощупь. Вариантом гностической функции является также и формирование в сознании трехмерной модели тела («схемы тела»).

Под праксисом понимают целенаправленное действие. Центр праксиса находится в надкраевой извилине и обеспечивает хранение и реализацию программы двигательных автоматизированных актов (например, причесывание, рукопожатие и пр.).

Таламолобная система . Представлена ассоциативными зонами лобной коры, имеющими основной афферентный вход от медиодорсального ядра таламуса. Главной функцией лобной ассоциативной коры является формирование программ целенаправленного поведения, особенно в новой для человека обстановке. Реализация данной функции основывается на других функциях таломолобной системы, таких как:

    формирование доминирующей мотивации, обеспечивающей направление поведения человека. Эта функция основана на тесных двусторонних связях лобной коры и лимбической системы и ролью последней в регуляции высших эмоций человека, связанных с его социальной деятельностью и творчеством;

    обеспечение вероятностного прогнозирования, что выражается в изменении поведения в ответ на изменения обстановки окружающей среды и доминирующей мотивации;

    самоконтроль действий путем постоянного сравнения результата действия с исходными намерениями, что связано с созданием аппарата предвидения (согласно теории функциональной системы П.К.Анохина, акцептор результата действия).

В результате проведения по медицинским показаниям префронтальной лоботомии, при которой пересекаются связи между лобной долей и таламусам, наблюдается развитие «эмоциональной тупости», отсутствие мотивации, твердых намерений и планов, основанных на прогнозировании. Такие люди становятся грубыми, нетактичными, у них появляется тенденция к повторению каких-либо двигательных актов, хотя изменившаяся обстановка требует выполнения совсем других действий.

Наряду с таламотеменной и таламолобной системами, некоторые ученые предлагают выделять и таламовисочную систему. Однако концепция таламовисочной системы до настоящего времени не получает подтверждения и достаточной научной проработки. Ученые отмечают определенную роль височной коры. Так, некоторые ассоциативные центры (например, стереогнозиса и праксиса) включают в себя и участки височной коры. В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины. Именно данный центр обеспечивает речевой гнозис – распознавание и хранение устной речи, как собственной, так и чужой. В средней части верхней височной извилины находится центр распознания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей находится центр чтения письменной речи, обеспечивающий распознание и хранение образов письменной речи.

Также необходимо отметить, что психофизиологические функции, осуществляемые ассоциативной корой, инициируют поведение, обязательным компонентом которого являются произвольные и целенаправленные движения, осуществляемые при обязательном участии двигательной коры.

Двигательные области коры . Понятие о двигательной коре больших полушарий начало формироваться с 80-х годов Х1Х в., когда было показано, что электрическое раздражение некоторых корковых зон у животных вызывает движение конечностей противоположной стороны. На основании современных исследований в двигательной коре принято выделять две моторные области: первичную и вторичную.

В первичной моторной коре (прецентральная извилина) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топография проекций мышц тела. При этом проекции мышц нижних конечностей и туловища расположены в верхних участках прецентральной извилины и занимают сравнительно небольшую площадь, а проекция мышц верхних конечностей, лица и языка расположены в нижних участках извилины и занимают большую площадь. Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Двигательные реакции на раздражение первичной моторной коры осуществляется с минимальным порогом, что говорит о ее высокой возбудимости. Они (эти двигательные реакции) представлены элементарными сокращениями противоположной стороны тела. При поражении этой корковой области утрачивается способность к тонким координированным движениям конечностей, особенно пальцев рук.

Вторичная двигательная кора . Расположена на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора). Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Премоторная кора получает основную часть эфферентной импульсации базальных ганглиев и мозжечка и участвует в перекодировании информации о плане сложных движений. Раздражение данной области коры вызывает сложные координированные движения (например, поворот головы, глаз и туловища в противоположные стороны). В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: в заднем отделе средней лобной извилины располагается центр письменной речи, в заднем отделе нижней лобной извилины располагается центр моторной речи (центр Брока), а также музыкальный моторный центр, определяющий тональность речи и способность петь.

Моторную кору часто называют агранулярной корой, поскольку в ней плохо выражены зернистые слои, но более ярко выражен слой, содержащий гигантские пирамидные клетки Беца. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ганглиев и мозжечка. Основной эфферентный выход двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки. Пирамидные и сопряженные с ними вставочные нейроны расположены вертикально по отношению к поверхности коры. Такие рядом лежащие нейронные комплексы, выполняющие сходные функции, называют функциональными двигательными колонками . Пирамидные нейроны двигательной колонки могут возбуждать или тормозить мотонейроны стволовых и спинальных центров. Соседние колонки в функциональном плане перекрываются, а пирамидные нейроны, регулирующие деятельность одной мышцы, расположены, как правило, в нескольких колонках.

Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути, начинающиеся от гигантских пирамидных клеток Беца и менее крупных пирамидных клеток коры прецентральной извилины, премоторной коры и постцентральной извилины.

Пирамидный путь состоит из 1 млн волокон кортикоспинальньного пути, начинающихся от коры верхней и средней трети перцентральной извилины, и 20 млн волокон кортикобульбарного пути, начинающегося от коры нижней трети прецентральной извилины. Через двигательную кору и пирамидные пути осуществляются произвольные простые и сложные целенаправленные двигательные программы (например, профессиональные навыки, формирование которых начинается в базальных ганглиях и заканчивается во вторичной моторной коре). Большинство волокон пирамидных путей осуществляет перекрест. Но небольшая их часть остается неперекрещенными, что способствует компенсации нарушенных функций движения при односторонних поражениях. Через пирамидные пути осуществляет свои функции и премоторная кора (двигательные навыки письма, поворот головы и глаз в противоположную сторону и пр.).

К корковым экстрапирамидным путям относятся кортикобульбарные и кортикоретикулярные пути, начинающиеся приблизительно в той же области, что и пирамидные пути. Волокна кортикобульбарного пути оканчиваются на нейронах красных ядер среднего мозга, от которых далее идут руброспинальные пути. Волокна кортикоретикулярных путей оканчиваются на нейронах медиальных ядер ретикулярной формации моста (от них идут медиальные ретикулоспинальные пути) и на нейронах ретикулярных гигантоклеточных ядер продолговатого мозга, от которых начинаются латеральные ретикулоспинальные пути. Через эти пути осуществляется регуляция тонуса и позы, обеспечивающих точные целенаправленные движения. Корковые экстрапирамидные пути являются компонентом экстрапирамидной системы головного мозга, к которой относятся мозжечок, базальные ганглии, моторные центры ствола. Данная система осуществляет регуляцию тонуса, позы, координацию и коррекцию движений.

Оценивая в общем роль различных структур головного и спинного мозга в регуляции сложных направленных движений, можно отметить, что побуждение (мотивация) к движению создается в лобной системе, замысел движения – в ассоциативной коре больших полушарий, программа движений – в базальных ганглиях, мозжечке и премоторной коре, а выполнение сложных движений происходит через двигательную кору, моторные центры ствола и спинного мозга.

Межполушарные взаимоотношения Межполушарные взаимоотношения проявляются у человека в двух главных формах:

    функциональной асимметрии больших полушарий:

    совместной деятельности больших полушарий.

Функциональная асимметрия полушарий является важнейшим психофизиологическим свойством головного мозга человека. Исследование функциональной асиммертии полушарий началось в середине Х1Х в., когда французские медики М.Дакс и П.Брока показали, что нарушение речи человека возникает при поражении коры нижней лобной извилины, как правило левого полушария. Некоторое время спустя немецкий психиатр К.Вернике обнаружил в коре заднего отдела верхней височной извилины левого полушария слуховой центр речи, поражение которого приводит к нарушению понимания устной речи. Эти данные и наличие моторной асимметрии (праворукости) способствовало формированию концепции, согласно которой для человека характерно левополушарное доминирование, образовавшееся эволюционно в результате трудовой деятельности и являющееся специфическим свойством его мозга. В ХХ столетии в результате применения различных клинических методик (особенно при исследовании больных с расщепленным мозгом – осуществлялась перерезка мозолистого тела), было показано, что по ряду психофизиологических функций у человека доминирует не левое, а правое полушарие. Таким образом возникла концепция частичного доминирования полушарий (ее автором является Р.Сперри).

Принято выделять психическую , сенсорную и моторную межполушарную асимметрии мозга. Опять же, при исследовании речи было показано, что словесный информационный канал контролируется левым полушарием, а несловесный канал (голос, интонация) – правым. Абстрактное мышление и сознание связаны преимущественно с левым полушарием. При выработке условного рефлекса в начальной фазе доминирует правое полушарие, а во время упражнений, то есть упрочения рефлекса – левое. Правое полушарие осуществляет обработку информации одновременно статически, по принципу дедукции, лучше воспринимаются пространственные и относительные признаки предметов. Левое полушарие производит обработку информации последовательно, аналитически, по принципу индукции, лучше воспринимает абсолютные признаки предметов и временные отношения. В эмоциональной сфере правое полушарие обусловливает преимущественно более древние, отрицательные эмоции, контролирует проявление сильных эмоций. В целом правое полушарие «эмоционально». Левое полушарие обусловливает в основном положительные эмоции, контролирует проявление более слабых эмоций.

В сенсорной сфере роль правого и левого полушарий лучше всего проявляется при зрительном восприятии. Правое полушарие воспринимает зрительный образ целостно, сразу во всех подробностях, легче решает задачу различения предметов и опознания визуальных образов предметов, которые трудно описать словами, создает предпосылки конкретно-чувственного мышления. Левое полушарие оценивает зрительный образ расчленено. Легче опознаются знакомые предметы и решаются задачи сходства предметов, зрительные образы лишены конкретных подробностей и имеют высокую степень абстракции, создаются предпосылки логического мышления.

Моторная асимметрия связана с тем, что мышцы полушарий, обеспечивая новый, более высокий уровень регуляции сложных функций мозга, одновременно повышает требования к совмещению деятельности двух полушарий.

Совместная деятельность больших полушарий обеспечивается наличием комиссуральной системы (мозолистого тела, передней и задней, гиппокампальной и хабенулярной комиссур, межталамического сращения), которые анатомически соединяют два полушария головного мозга.

Клинические исследования показали, что помимо поперечных комиссуральных волокон, обеспечивающих взаимосвязь полушарий мозга, также и продольных, а также вертикальных комиссуральных волокон.пе

Вопросы для самоконтроля:

    Общая характеристика новой коры.

    Функции новой коры.

    Строение новой коры.

    Что такое нейронные колонки?

    Какие области коры выделяются учеными?

    Характеристика сенсорной коры.

    Что такое первичные сенсорные области? Их характеристика.

    Что такое вторичные сенсорные зоны? Их функциональное назначение.

    Что такое соматосенсорная область коры и где она располагается?

    Характеристика слуховой области коры.

    Первичная и вторичные зрительные области. Их общая характеристика.

    Характеристика ассоциативной области коры.

    Характеристика ассоциативных систем мозга.

    Что собой представляет таламотеменная система. Ее функции.

    Что собой представляет таламолобная система. Ее функции.

    Общая характеристика двигательной коры.

    Первичная моторная кора; ее характеристика.

    Вторичная моторная кора; ее характеристика.

    Что такое функциональные двигательные колонки.

    Характеристика корковых пирамидных и экстрапирамидных путей.

Большие полушария — это филогенетически наиболее молодой отдел ЦНС, развивающийся из конечного мозга. Кора — это поверхностный слой серого вещества больших полушарий, который состоит из нервных клеток с их отростками и промежуточной ткани (нейроглия, кровеносные и лимфатические сосуды).

Кора больших полушарий делится на три типа:

  1. архикортекс (древняя кора гиппокампа),
  2. палеокортекс (старая кора грушевидной доли),
  3. неокортекс.

Функции коры БП.

1. сенсорная — отвечает за восприятие сигналов из окружающей среды и внутренней среды, их обработка, ибо каждый анализатор имеет корковую часть.

2. условно-рефлекторная — отвечает за осуществление условных рефлексов.

3. психическая — отвечает за возникновение ощущений, восприятий, за способность к мыслительной деятельности, абстрактное мышление и запоминание, осознание сигналов из окружающей среды, осознание личностью взаимоотношения с окружением, является структурной основой осознания и интеллекта, за психические свойства личности: интересы, темперамент, характер и т. д.

Структурное развитие коры идет с увеличением нервных элементов и возникновение многослойного строения коры (у амфибий — 1 слой, у птиц — 3 слоя, у селовека — 6 слоев).

Параллельно происходит усовершенствование связей как в пределах самой коры, так и её связь с другими отделами ЦНС:

  1. коллатеральные пути , образованные отростками нервных клеток, идущих параллельно поверхности коры и обеспечивающих взаимодействие и связь между клетками разных слоёв одного полушария.

2. ассоциативные пути , связывают разные области одного полушария.

3. комисуральные пути , связывают разные области обоих полушарий, обеспечивая их согласованную деятельность,

4. проекционные пути , связывают кору БП с нижележащими отделами ЦНС и с рецепторами.

В процессе эволюции происходит увеличение площади поверхности коры за счет образования борозд и извилин и теперь она (S пов.) составляет примерно 2,5 м 2 .

В коре ядерный тип строения нижележащих отделов ЦНС сменяется экранным типом, а именно в коре клетки лежат в одной плоскости, а также увеличивается количество чувствительных нервных клеток по сравнению с двигательными (в спинном мозге соотношение чувствительных и двигательных нейронов составляет 15: 1, а в коре — 20: 1).

в процессе эволюции увеличивается ёмкость черепа, нарастает масса мозга, что не определяет умственных способностей, а имеет отношение к изменению массы тела(у слона m = 5 кг, отношение к массе тела составляет 1/500, у обезьян — 1/50, у человека — 1/40). Вес мозга у людей широко варьирует, но как уже отмечалось, умственные способности не зависят от массы мозга. Так были проведены измерения массы мозга у гениальных людей в разные периоды истории: Тургенев — 2012 г (самый большой мозг), Байрон — 1807 г, Бехтерев — 1720 г, Павлов — 1653 г, А. Франс — 1017 г.

Важным является соотношение между отдельными долями больших полушарий: затылочная доля у обезьян составляет 30-40%, у человека — 12%, нижние теменные доли 0,7% и 0,8%, лобные доли 10% и 20%.

В ходе эволюции происходит специализация центров и кортиколизация функций.

Методы изучения функций КБП:

1. экстирпация — частичное или полное удаление коры, сопровождаемое наблюдениями за изменениями функций.

2. раздражение определенных зон коры, ответственных за реализацию данной функции.

3. метод условных рефлексов.

4. электроэнцефалография — регистрация биопотенциалов.

5. клинико-анатомические исследования позволяют сопоставить прижизненные изменения функций в связи с заболеваниями и последующим морфологическим обследованием после смерти.

6. компьютерная томография использует рентгеновское излучение для получения изображения структур мозга, суть метода заключается в том, что поглощение рентгеновских лучей разными структурами мозга определяется специальными детекторами, расположенными под разными углами при движении источника излучения, данный метод позволяет получить прижизненное изображение мозга.

7. ядерно-магнитный резонанс определяет радиоволны, которые испускают ядра атомов водорода при помещении обследуемого в сильное магнитное поле, компьютер выдает прижизненное изображение структур мозга.

8. позитронно-эмисионная томография позволяет определить степень метаболической активности в разных отделах мозга, при этом исследуемый получает радионуклиды, глюкозу, которые испускают поток позитронов и вступают в обменные процессы в мозге. Получение объекта Ɣ- лучами и их взаимоотношение с потоками позитронов позволяет получить изображение изменений обменных процессов.

Последствия удаления КБП:

û у рыб и амфибий удаление не вызывает изменения реакций на окружающую среду, нарушается лишь обонятельная рецепция,

û удаление у рептилий приводит к нарушению обоняния и способности к самостоятельному поиску пищи,

û удаление у птиц приводит к пребыванию подопытного объекта после операции в состояние сонливости, условные рефлексы пропадают. Функция полета осуществляется лишь при подбрасывании, т.е. при внешнем воздействии,

û удаление у собак приводит к резкому нарушению поведения, условные рефлексы при этом утрачиваются, новые не образуются, безусловные рефлексы сохраняются лишь на сильные раздражители, утрачивается стремление к поиску пищи, нарушаются ориентировочные рефлексы, подопытные могут перемещаться, но при этом будет наблюдаться неправильная шаткая походка — атаксия,

û удаление у обезьян приводит к полной утрате способности передвигаться, что обозначается как паралич, а также к резкому нарушению обменных процессов в организме.

Нарушение внутриутробного развития человека может приводить к появлению на свет анэнцефалов, у которых наблюдается отсутствие коры, имеются резкие нарушения двигательной активности, нарушение восприятия дистантных раздражителей, условные рефлексы не образуются, сохраняется уровень новорожденности независимо от возраста.

Клеточное строение коры.

Кора имеет толщину от 1,5 до 3 мм, количество клеток составляет 14 -15 млрд. Клетки классифицируются по морфологическим признакам на основные типы: пирамидные, веретенообразные, звездчатые, зернистые. Функционально нейроны подразделяются на сенсорные, моторные и промежуточные (вставочные). Пирамидные и веретенообразные клетки выполняют эфферентную функцию, а звездчатые — афферентную. Связи между клетками образуются с помощью аксосоматических, аксодендритых синапсов, среди которых последние преобладают.

Клетки располагаются послойно, в 6 слоев (лишь кора гиппокампа имеет 3 слоя) :

  1. самый наружный — молекулярный , имеет немного горизонтальных клеток — зерен в своем составе, в основном образован волокнами восходящих аксонов, коллатералями нисходящих аксонов, концевыми ветвями апикальных (восходящих) дендритов.
  2. Наружный зернистый — представлен мелкими пирамидными и звездчатыми клетками, аксоны которых заканчиваются в 3, 5 и 6 слоях.
  3. Наружный пирамидный — представлен мелкими и средними пирамидными клетками, аксоны которых могут заканчиваться в более глубоких слоях коры, либо уходить в белое вещество полушарий и образовывать ассоциативные пути.
  4. Внутренний зернистый — состоит из клеток-зерен и малых пирамидных клеток. Апикальные дендриты этих клеток достигают первого слоя, а а базальные дендриты заканчиваются в этом же слое. Аксоны также могут уходить в белое вещество или поднимаются в верхние слои.
  5. Внутренний пирамидный — это большие пирамидные клетки, аксоны которых уходят в белое вещество и участвуют в образовании ассоциативных, проекционных и коммисуральных путей.
  6. Слой полиморфных клеток — содержит разнообразные по форме и размеру клетки. Их аксоны либо поднимаются в верхние слои, либо участвуют в образовании коротких и длинных путей.

2 и 4 слои выполняют чувствительную функцию, 5 и 6 слои — двигательную эфферентную, 3 слой важен для внутрикорковых связей ассоциативных путей. Выраженность слоев в разных отделах КБП различна. На основании этого Бродман выделил 11 зон и 52 поля. Функциональной единицей коры является колонка клеток, которая ограничена в вертикальном направлении и воспринимает определенный вид раздражителя. Диаметр колонки равен примерно 500 мкм. Работа происходит по вероятностно-статистическому принципу. Вероятностный принцип говорит об участии определенного количества нейронов, а количество участвующих нейронов необходимо для выполнения определенной функции (статистический принцип).

Есть клетки глии (в 10 раз больше, чем нейронов), которые выполняют следующие функции: участие в процессах обмена веществ в коре, регуляция кровотока внутри мозга, регуляция возбуждений нейронов за счет нейросекреции, участие в хранении информации, участие в реакциях мозга на возбуждение вредных факторов.

Теория локализации функций в коре.

Имеют значение для определения очага поражения и диагностическое значение заболеваний.

1. теория эквипотенциальности (равнозначности) коры (Флуренс). Он удалял кору у голубей и чем больше удалял, тем сильнее были нарушения.

2. теория узкой локализации (Галль). Австрийские физиологи считали, что развитие мозга влияет на форму черепа.

1861 г. - ученый Брока обнаружил в нижней трети лобной извилины левого полушария двигательный центр речи, поражение которого приводит к утрате способности говорить.

1870 г. - Фрис обнаружил в лобной доле локализацию двигательной функции передней центральной доле, поражение которой вызывает паралич.

1874 г. - психиатр Верьшке показал, что поражения задней трети височной извилины левого полушария происходит нарушение понимания речи, однако сохраняется способность говорить.

3. теория динамической локализации функций в коре (Павлов) на основе учений об анализаторах Павлов показал, что периферические зоны анализаторов не имеют четких границ. Наибольшее выпадение функции наступает при поражении ядра. Роль компенсации могут взять на себя другие образования мозга.

4. современные представления локализации функций в коре.

а) первичные (проекционные) зоны.

б) вторичные зоны (обработка сигналов)

в) ассоциативные (третичные) зоны (зоны перекрытия первичных зон).

Первичная зона представляет собой зону проекционных чувствительных путей в КБП. Идет по 3-м нейронам (1 — в спинном ганглии, 2 — ствол мозга, 3 — зрительный бугор). Здесь и формируется ощущение в соответствии с той модальностью раздражителя, который воспринимаем. Оно формируется в форме образа.

Вторичные зоны окружают первичную зону и здесь происходит опознание раздражителя на основе сопоставления со следами прошлого опыта (храниться в памяти).

Третичная зона образована зонами перекрытия вторичных зон, относящихся к разным анализаторам или сенсорных систем. Наибольшего развития в этих зонах достигли 2 и 3 слои КБП. Для этих зон характерно наличие полисенсорных нейронов, реагирующих на разные раздражители. Эти зоны устанавливают межанализаторные связи, которые позволяют оценивать всю совокупность свойств предметов. Этим зонам принадлежат следующие свойства : тозия — способность узнавать предметы (патология — агнозия ), праксия — приобретенный заученный двигательный навык. Поражение ассоциативных зон сопровождается утратой способности выполнить заученные движения — апраксия .

Функции конечного мозга.

Конечный мозг делится на лобную, затылочную, теменную и височную доли. Каждая доля делится на мелкие участки. Выделяют лимбическую долю: это участки лобной, теменной и височной долей, окружающих промежуточный мозг. В глубине сильвиевой борозы, в глубине полушария лежит островок и он прикрывается краями лобной, височной и теменной долей. Он связан с инервацией внутренних органов. Лобная доля связана с выполнением произвольных движений, с координацией двигательных механизмов речи, языковым общением, творческим или критическим мышлением.

Двигательные функции регуляции произвольных движений заложены в передней центральной извилине (4 поле по Бродмену). В этой извилине имеется представительство частей тела (гомункумос). Именно для этой извилины характерно развитие 5-го слоя, где находятся большие пирамидные клетки. Они дают начало к нисходящим пирамидным путям, которые идут к моторным нейронам серого вещества СМ. Пути перекрещиваются, двигательные команды коры передаются на передние рога (моторные нейроны). Каждое полушарие отвечают за движение противоположной стороны тела. Поражение первого нейрона сопровождается центральным параличом на противоположной стороне тела, но тонус мыщц сохраняется. Поражение второго нейрона также ведет к параличу, но будет наблюдаться атрофия мышц и отсутствие спинальных рефлексов.

Премоторная зона расположена в 4 поле. Она связана с экстрапирамидной системой. 8 зона отвечает за глазодвигательные реакции. Передняя часть лобной доли связана с творческим мышлением. Поражение этого отдела вызывают резкие изменения личности (нет инициативы, желания добиваться поставленных целей, они находятся в состоянии детской удовлетворенности, нет никаких проблем, интересуются только повседневными мелочами и не могут составить планы на будущее, они утрачивают критическую самооценку, допускают глупые шутки, у таких людей нарушаются процессы поведения при удалении лобной доли).

В лобной доле 44 поля находится речедвигательный центр. При раздражении зоны возникает произношение звуков, но не слов.

Теменная доля связана с соматической чувствительностью, с памятью, относящейся к речи, обучению и простой ориентации. Чувствительные функции представлены в задней центральной извилине (1, 2, 3 поля). Перерезка жтой зоны приводит к выпадению разных видов чувствительности.

Дальше выделяют 5 и 7 поля. Они дают возможность провести оценку веса, свойств поверхности, размеров и форм предмета. Нижняя теменная доля связана с пониманием речи (центр Вернике). Теменная доля передает чувство 3-х мерного пространства и восприятия схемы тела. Поражение сопровождается агнозией. Больные утрачивают способность понимать буквы и цифры, нарушается восприятие схемы тела. При полном нарушении схемы тела больные полностью отрицают принадлежность одной половины тела к другой.

Височная доля связан с восприятием слуховых ощущений и участвует в звуковом контроле речи. Ей принадлежит роль в оценке пространства и она участвует в памяти. Первичная зона — это 41поле, 42 поле - вторичная зона, где происходит оценка воспринимаемых звуков, а 22 поле участвует в функции понимания слов и при его поражении возникает утрата способности понимать слова. Височная доля определяет вестибулярную чувствительность, раздражение задних отделов височной доли вызывает головокружение. При раздражении других отделов височной доли больные слышат голоса, которые были в прошлом, возникают акустические и зрительные галлюцинации. При повреждении височной доли возникает неправильное толкование мира. Височная доля отвечает за сновидения.

Затылочная доля связана со зрительной функцией. Вдоль шпорной борозды располагается первичная зрительная зона (17 поле). Опознание предмета осуществляется 18 полем, окружающим 17 поле. 19 поле, граничащее с теменной долей, принимает участие в оценке значения увиденного. Зрительная кора, организованная по колоночному типу, состоит из вертикальных колонок. В них обнаруживаются простые клетки, реагирующие на точечные световые раздражения, и сложные клетки, воспринимающие вертикаль, горизонталь и треугольные образы. Внутренний зернистый слой содержит простые клетки, а сложные клетки — в наружном зернистом слое. Сложные клетки сосредоточены в 18-19 полях.

Лимбическая доля включает подмозолистую область, поясная извилина, перешеек, парагиппокампальную извилину, кусочек гиппкампа и миндалину. В неё идет информация от обоняния (анализатор в 34 поле), вкусовой анализатор в 43 поле. В целом эта доля отвечает за поведенческие реакции организма в ответ на раздражение внешней среды, но в соответствии с состоянием внутренней среды. Эти реакции направлены на сохранение особи. Миндалина отвечает за сохранение особи, перегородка и гиппокамп — за сохранение вида. Раздражение миндалины вызывает жевание, глотание и т. д. Поражение миндалин - животное делается послушным... Раздражение перегородки вызывает половое (родительское) поведение. Перерезка гиппокампа сопровождается приступами ярости.

Представления Павлова о высшей нервной деятельности

Высшая нервная деятельность - совокупность сложных форм деятельности КБП и ближайших отделов ЦНС, которая обеспечивает наиболее тонкое приспособление человека и животных к условиям окружающей среды.

Данное понятие было введено Павловым против низшей нервной деятельности , формами которой он считал рефлексы и инстинкты. ВНД же Павлов связывал с осуществлением условных рефлексов. Таким образом, приспособительная деятельность человека и животных складывается из инстинктов, безусловных и условных рефлексов.

Безусловный рефлекс - постоянная врожденная реакция организма на определенные раздражители, которая осуществляется при участии ЦНС, не требует специальных условий для осуществления (кашель, чихание, моргание, сосание).

Осуществляются и более сложные реакции приспособительной деятельности.

Инстинкт - побуждение, сложная форма поведения животного, которая является типичной для особей данного вида.

Виды инстинктов:

  • Витальный инстинкт - неудовлетворение потребности ведет к гибели особи, при этом реализация не требует участия другой особи;
  • Ролевые или зоосоциальные инстинкты направлены на выживание вида, эффективное существование группы, здесь действует принцип: «Что хорошо виду, то хорошо и тебе»;
  • Инстинкт саморазвития направлен на совершенствование психической деятельности человека.

Витальные инстинкты:

  • Пищевой;
  • Питьевой;
  • Оборонительный, при этом выделяется активная (ястреб) и пассивная (кролик) стороны;
  • Регулирование цикла «сон-бодрствование»;
  • Инстинкт экономии энергии и сил, подразумевает, что в случае истощения энергетических запасов организма не происходит реализация каких-либо видов деятельности.

Ролевые инстинкты:

  • Половой инстинкт - выбор партнера;
  • Родительский инстинкт - разделение ролей матери и отца;
  • Территориальный инстинкт - охрана зоны обитания с целью сохранения ресурсов;
  • Эмоциональный резонанс - ускорение социализации, предполагает возникновение сопереживания, сочувствия, в конце концов, формирование сознания;
  • Групповая иерархия - альтруистический эгоизм, направленный на сохранение группы.

Инстинкты саморазвития (направлены на совершенствование психической деятельности человека):

  • Исследовательский;
  • Новизны;
  • Свободы;
  • Имитационный (подражательный);
  • Игровой.

В отличие от безусловных рефлексов инстинкт - ряд последовательных безусловных рефлексов, когда выполнение предыдущего рефлекса стимулирует выполнение следующего.

Инстинкт направлен на приспособление организма к условиям окружающей среды, как и безусловные рефлексы. В инстинкте отражается опыт предшествующих поколений данного вида. Реакции могут быть весьма сложными, например, такие явления, как сезонные перелеты птиц, постройка плотины бобрами, постройка сот пчелами, новорожденные цыплята следует по пятам за первым объектом, попавшим в поле зрения.

Инстинкты обуславливают приспособленность к конкретным условиям среды, если же условия имеют динамический характер и изменяются со временем, то инстинкты становятся бесполезными. Таким образом, инстинкты не способны приспособить организм к меняющимся условиям.

Инстинкты отличаются врожденностью, однако всегда развертываются по стереотипному типу.

Для проявления того или иного инстинкта необходим определенный сигнал, так сигналом для осуществления полового инстинкта служат удлинение светового дня, резкие скачки температуры, изменение ландшафта, появление зеленой травы и другое.

У человека менее выражены инстинкты, ибо его деятельность находится под контролем сознания, однако при ослаблении сознания, что возможно при чрезмерном употреблении алкоголя, они могут проявляться, что выражается в разных весьма неприличных формах поведения.

В ходе эволюции возникает новая форма рефлекса - условный рефлекс, обеспечивающий приспособление организма к меняющимся условиям среды. Открытие условных рефлексов - заслуга И.П. Павлова.

Отличия условных и безусловных рефлексов

Причина и обусловленность анализа и синтеза, структурность (своя рефлекторная дуга) - принципы, характерны для всех рефлексов.

Принципы выработки условных рефлексов (данные принципы специфичны и принадлежат ль условным рефлексам):

  • Принцип сигнальности;
  • Принцип подкрепления.

Условные рефлексы возникают на действие условного сигнала, который предшествует действию безусловного. Условные сигналы сами по себе не имеют какой-либо биологической значимости, ибо включение света, звук звонка не несут значения. Однако если сигнал будет предшествовать действию безусловного рефлекса, то приобретет биологическую значимость. Так свет и звук могут стать сигналами пищевых реакций.

Был установлен закон временных отношений действия условных и безусловных рефлексов: «Условный рефлекс всегда должен опережать безусловный, при этом разница не должна быть менее 0,1 с». Лишь в этом случае условный рефлекс будет значим.

На основании восприятия условных сигналов можно заглянуть в будущее.

Сигнальное значение - отличительная черта условного сигнала, но он должен подкрепляться, чтобы стать биологически значимым, то есть имеет место и второй принцип - принцип подкрепления, при этом биологическая значимость условного рефлекса будет проявляться подкрепляющим сигналом. Так, если на свет дали пищевое раздражение, то получим осуществление пищеварительного рефлекса, на подачу кожного раздражителя получим отдергивание, возникает оборонительный рефлекс, таким образом, изменив подкрепляющий сигнал, получаем изменение и характера рефлекса.

При действии условных рефлексов соблюдается закон силовых отношений: «Сила безусловного раздражителя всегда должна быть больше силы условного сигнала». При этом условный сигнал должен иметь оптимальную силу, противном случае рефлекс не осуществиться, а очень сильные раздражители могут вызвать тормозную реакцию.

При выработке условных рефлексов условный раздражитель должен быть индифферентным для организма, при этом процесс выработки должен иметь мотивацию к этому рефлексу. Так, если хотим получить пищевые реакции, то подопытное животное должно быть голодным, ибо сытое будет весьма безразлично к действию пищевых раздражителей.

ЦНС, в частности КБП при выработке условных рефлексов не должны быть загружены посторонними раздражителями, должны быть нацелены на восприятие тех сигналов, которые подаются.

Условные рефлексы - индивидуальные системные приспособительные реакции организма животного и человека, возникающие на основе появления в ЦНС временной связи между условным (сигнальный раздражитель) и безусловным рефлекторным актом, другими словами между ними возникает ассоциация.

Экспериментально выработка условных рефлексов производится в специальных камерах, где имеется отделение, в котором находится подопытное животное, а также существуют пути подачи условных и безусловных раздражителей. При этом экспериментатор находится за стеклом, может наблюдать за происходящим. Животных готовят, проводя на них различные операции, например, наложение фистул, для наблюдения за реализацией данного процесса, в данном случае слюноотделения. Далее приступают к выработке словных рефлексов.

В ходе выработки условного рефлекса первым подается условный раздражитель, при этом на первое его включение животное реагирует ориентировочным рефлексом. Данный рефлекс может наблюдаться и у человека, при столкновении с неизвестной дотоле ситуацией, появляется вопрос: «Что такое?», таким образом, на лицо безусловный ориентировочный рефлекс.

Ориентировочный рефлекс включает две фазы :

  • Фаза неспецифической тревоги проявляется в движении глаз, головы, в неспецифических реакциях. На электроэнцефалограмме наблюдается депрессия альфа ритма;
  • Фаза исследовательского поведения, в ходе которой подопытный пытается определить, не нанесет ли данный раздражитель вреда. Если угрожающих последствий нет, то организм быстро привыкает к действию условного сигнала.

После осуществления ориентировочного рефлекса подаем подкрепляющий сигнал.

Звук звонка воспринимается слуховым анализатором, в КБП при этом возникает очаг возбуждения от действия условного сигнала.

Пища выступает в качестве безусловного раздражителя, действует на слизистую оболочку полости рта, сто вызывает безусловный слюноотделительный рефлекс, ибо от раздраженных рецепторов импульс направляется в слюноотделительный центр, возбуждает его, что приводит к посылу сигнала к слюнным железам, происходит секреция слюны. Безусловный рефлекс осуществляется на подкорковом уровне, но кора контролирует его осуществление, ибо сигналы направляются и в корковый пищевой центр, что вызывает его возбуждение.

Таким образом, в КБП появляются два очага возбуждения: один связан с действием условного сигнала, а другой с осуществлением безусловной рефлекторной деятельности. Данные очаги взаимодействуют между собой на уровне КБП, что осуществляется на основе принципа доминанты, ибо безусловный раздражитель имеет большую силу, следовательно, и возбуждение в коре от действия безусловного раздражителя будет более сильным, этот очаг возбуждения станет доминантным. Доминантный очаг обладает способностью притягивать возбуждение от других центров.

Между двумя корковыми центрами установится взаимодействие - временная связь , что психологами именуется ассоциацией.

В результате взаимодействия происходит замыкание между этими двумя центрами.

Электрофизические исследования показали, что в осуществлении условных рефлексов принимают участие ретикулярная формация, лимбическая система, ибо электрические ответы раньше возникают в таламусе, в стриопаллидарной системе, в мозжечке, гиппокампе, которые являются подкорковыми центрами. Позднее электрическая реакция возникает в КБП. В нейронах при возбуждении возникают биохимические изменения, связанные с ионной проницаемостью.

Взаимодействие двух корковых центров может осуществляться по принципу «кора-кора», но преимущественно взаимодействие по принципу «кора-подкорка-кора», то есть с включением подкорковых центров.

Для установления временной связи большое значение имеют полисенсорные нейроны, способные реагировать на раздражители разной модальности (~30-40 % от общего количества).

Выработка условного рефлекса осуществляется через три стадии:

  1. первая стадия - стадия генерализации условного возбуждения, что дает возможность возникновения условного рефлекса не только на сам условный сигнал, но и на действие сходных раздражителей, на элементы обстановки. Так, можем наблюдать процессы слюноотделения у собаки без включения раздражителя, когда она находится в помещении, где осуществлялся раннее данный эксперимент по слюноотделению;
  2. По мере повторения действия условного сигнала и его сочетания с безусловным рефлексом наступит стадия концентрации, при этом в коре будут происходить процессы по ограничению возбуждения;
  3. Заключительным этапом является стадия специализации условного рефлекса, когда он возникает лишь на конкретный словный сигнал и не возникает на иные раздражители.

Учение Павлова о ВНД

Условные рефлексы лежат в основе осуществления различных форм высшей нервной деятельности. Учение Павлова о ВНД основывалось на предшествующий опыт:

  • Сеченов написал работу «Рефлексы головного мозга»;
  • Материалистические представления Герцена, Добролюбова, Чернышевского дали толчок;
  • Боткин - основатель русской клинической школы, развивал идеи нервизма, подчеркивал значимость НС в развитии патологических процессов.

Павлов работал определенное время клинике под руководством Боткина, разработал условно-рефлекторный метод изучения деятельности КБП. Учение Павлова имеет непосредственное значение для физиологии и биологии, где показывает, как совершенствовались приспособительные формы в процессе эволюции, для психологии и педагогики, ибо обучение - процесс формирования условных рефлексов, для медицины в плане диагностики, прогноза возможности возникновения приспособительной реакции. Существует даже область медицины - условно-рефлекторная терапия, цель которой избавление человека от вредных привычек.

Классификация условных рефлексов :

  • По способу возникновения рефлекс бывает натуральным и искусственным. Натуральный рефлекс формируется на условный сигнал, являющийся неотъемлимым признаком безусловного раздражителя - цвет, запах. Искусственный рефлекс формируется на условные сигналы, которые сочетаются с безусловными искусственно - звук звонка, свет;
  • По биологическому значению рефлексы бывают пищевыми, оборонительными, половыми;
  • По рецепторам, воспринимающим действие сигнала, подразделяются на экстеро- и интероцептивные. Например, рефлекс с внутренних органов: раздражение электрическим током лапы подопытного животного, приводит к отдергиванию лапы, осуществляется оборонительный рефлекс, при сочетании раздражения и орошения слизистой желудка через фистулу приводит к тому, что через некоторое время происходит отдергивание лапы в ответ на орошение;
  • Двигательный, секреторный, сосудодвигательный;
  • Световой, звуковой;
  • По системе анализаторов, воспринимающей сигнал, рефлексы делятся на зрительный, слуховой, тактильный, вкусовой, обонятельный;
  • Рефлекс первого, второго, третьего и так далее порядка. Если условный раздражитель подкрепляется безусловным раздражителем, то формируется условный рефлекс первого порядка. У собак удается сформировать условный рефлекс до третьего порядка, у обезьян до шестого, у человека до двенадцатого. Так, совместно с БР в качестве пищи подаем УР в виде звука звонка, при этом в формировании условного рефлекса будет иметь значение БР. Далее включаем свет и звонок, при этом БР не подается, подкрепление осуществляется за счет условного сигнала, вызвавшего формирование условного рефлекса первого порядка, таким образом, формируется условный рефлекс второго порядка. В возникновении рефлекса первого порядка имеет значение БР, а при формировании условных рефлексов последующих порядков в качестве подкрепления будет использоваться условный сигнал предыдущего порядка.
  • Совпадающие, запаздывающие, следовые рефлексы. Совпадающие осуществляются после включения условного сигнала, при этом ответная реакция на сигнал проявляется сразу же. Если же будем отодвигать подкрепление, то реакция будет отодвигаться, фаза сигнала не будет давать ответа, лишь подкрепление сможет вызвать ответную реакцию. Подкрепление следа действия условного сигнала - следовой рефлекс;
  • «+» рефлекс направлен на стимуляцию деятельности, «-» рефлекс направлен на торможение, условный сигнал в данном случае будет вызывать подавление деятельности;
  • Инструментальный рефлекс - животное обучается нажимать на рычаг или педаль для получения награждения или же с целью избежания наказания в качестве подачи электрического тока на пол. Это получило название оперантное обучение - обучение с помощью проб и ошибок, формирование последовательных реакций, подражание и икарное научение - приобретение навыков в результате наблюдения за другими особями.

При выработке условных рефлексов большое значение в коре имеют не только процессы возбуждения, но и торможения, направленные на подавление условных рефлексов.

Виды торможения в КБП

С внешним торможением Павлов столкнулся при выработке условных рефлексов при появлении нового сигнала, с которым подопытное животное ранее не сталкивалось. Новый раздражитель приводил к осуществлению ориентировачного рефлекса, а выработанный условный рефлекс отсутствовал в этот момент. С появлением новых раздражителей люди становятся скованными, ибо мы не знаем, какие будут последствия. Это внешнее торможение, ибо возникает оно в результате дополнительного возбуждения в коре, что выключает временную связь.

Виды внешнего торможения:

  • Если за действием раздражителя нет последствий, то осуществляется привыкание к его действию, что обозначается как гаснущий тормоз ;
  • Если за действием раздражителя наступают последствия, например, болевые ощущения, то возбуждаются болевые рецепторы, импульсы направляются в ЦНС, формируется представление об опасности, ибо к боли привыкнуть нельзя - постоянный тормоз ;
  • Запредельное торможение связано с действием чрезмерно сильных или очень длительных раздражителей, в основе данного вида торможения лежит стойка деполяризация постсинаптической мембраны, что получило название «пессимальное торможение».

В отличие от внешнего раздражения, где не требуется предварительных условий, внутренне торможение является приобретенным свойством, которое вырабатывается в течение всей жизни. Все виды внутреннего торможения формируются в результате не подкрепления условного сигнала безусловным.

Виды внутреннего торможения:

  • Угасательное торможение осуществляется при последовательном прекращении подкрепления условного сигнала безусловным. Условный сигнал - звонок. Рефлекс затормозится, но не исчезнет, ибо закреплен, если через некоторое время включим звонок, то вновь произойдет осуществление рефлекса. Рефлекс осуществляется при подкреплении, в данном случае торможение наблюдаться не будет.;
  • Дифференцировачное торможение возникает на действие сходных раздражителей. Осуществляем подкрепление сигнала, дающего положительную реакцию, при этом не подкрепляем сходный сигнал. На первой стадии будет осуществляться генерализация, но со временем развивается тормозная реакция, что позволяет дифференцировать сходные раздражители, происходит осуществление рефлекса на тот сигнал, который дает положительный результат;
  • Условный тормоз - в данном случае не происходит подкрепления комплекса условных сигналов, то есть единичный сигнал подкрепляется, а в сочетании с каким-либо еще сигналом подкрепление не дается. Так, осуществляем подкрепление условного сигнала «свет», а сочетание «свет + звонок» оставляем без подкрепления. Условным тормозом будет являться «звонок». После выработки условного рефлекса подкрепляем звонок к другому положительному сигналу, что приводит к торможению;
  • Запаздывательное торможение вырабатывается при не подкреплении первой фазы, на нее возникает торможение. Так, действие условного раздражителя не подкрепляем первые две минуты действия, а затем осуществляем подкрепление в течение следующих двух минут, то есть приурочиваем наши реакции к подкреплению.

Все виды внутреннего торможения подвержены тренеровке, вследствие этого можем усиливать тормозные реакции.

Процессы воспитания основаны на выработке торможения.

Процессы возбуждения и торможения в КДП взаимодействуют между собой:

  • Иррадиация (распространение);
  • Концентрация в одном центре;
  • Взаимная индукция…

В основе торможения лежит процесс гиперполяризации или стойкой деполяризации, торможение - местная реакция, не может передаваться соседним нейронам. Внешне процессы торможения проявляются по-разному, что связана с разным количеством активированных тормозных нейронов, чем больше активировано, тем более сильное торможение происходит. Таким образом, степень выраженности процессов торможения в коре зависит от количества активированных тормозных нейронов.

Процесс возбуждения вокруг себя рождает торможение - отрицательная индукция , если же торможение сменяется возбуждением, то развивается положительная индукция .

Аналитико-синтетическая деятельность коры и динамический стереотип.

Принцип анализа и синтеза. Все отделы ЦНС, в том числе и кора осуществляют аналитико-синтетическую работу. Кора способна выделять наиболее важные и значимые сигналы. На основе этой работы в дальнейшем происходит формирование ответной реакции. В основе этой деятельности лежит постоянное взаимодействие между процессами возбуждения и торможения.

Выработка условного рефлекса показывает нам работу по ализу и синтезу. На первом этапе преобладают процессы синтеза. В ответ на многочисленные раздражители формируется ответная реакция.

По мере выработки условного рефлекса проявляется анализ-дифференцировка, выделение главного сигнал, на который в последующем формируется ответная реакция, когда происходит специализация условно рефлекса.

При повседневном восприятии мы также пользуемся элементами синтеза и анализа. При встрече нового человека мы воспринимаем его, как единое целое. Если мы общаемся с ним дальше. Мы начинаем анализировать его особенность, черты характера и тд, на основе которого у нас может слоить совсем другое впечатление.

Степень аналитико-синтетической деятельности не одинакова у разных животных и человека. Например собаки способны дифференцировать звуковые раздражители, отличающиеся на 1/8 тона, орлиный глаз различает объекты на земле с высоты 2 км.

Это более простые формы анализа.

Сложные формы больше присущи человеку. «Орлиный глаз видит дальше человеческого, но человеческий замечает в вещах гораздо больше, чем орлиный»

Динамический стереотип - последовательная система условных рефлексов, выработанная на определенную последовательность условных сигналов.

Если раздражители следуют строго в определенном порядке, через определенные интервалы времени, то на этот комплекс раздражителей формируется комплекс условных рефлекса.

Условный сигнал Подкрепление

1. Звонок + пища

2. Свет + болевое раздражение

3. Метроном + мигательный рефлекс

Затем можно дать один из этих сигналов и сработают все 3 рефлекса. Кора работает системно. Выполнение одного рефлекса облегчает выполнение последующих.

У человеком примером динамического стереотипа является режим дня. Если мы каждый день придерживаемся режима дня, то наша жизнь значительно облегчается.

Школьный, детсадовский, институтский стереотип силен и очень сложно перейти из школы в институт. В армии все идет по строгому стереотипу, поэтому они могут выполнять такую работу.

Отклонения от стереотипа не должны быть системными. В тоже время они закаляют организм.

Проявление рефлексов и стереотипов зависит от типов высшей нервной деятельности.

Иван Петрович Павлов выделил типы высшей нервной деятельности - совокупность основных свойств высших отделов ЦНС, который характеризуют врожденные индивидуальные особенности высшей нервной деятельности(ВНД) животных и человека. Эти свойства определяются процессами возбуждения и торможения.

Павлов оценивал три показателя этих процессов

  1. Сила.
  2. Уравновешенность - соотношение возбуждения и торможения в биологических реакциях
  3. Подвижность - скорость возникновения и быстрота взаимопереходов возбуждения и торможения

Сила нервных процессов определяется работоспособностью нервных клеток и выраженностью физиологически сдвигов в организме в момент возбуждения и торможения

На основе комбинаций этих свойств Павлов выделил 4 типа ВНД

  • Сильный, уравновешенный, подвижный
  • Сильный, уравновешенный, инертный
  • Сильный, неуравновешенный(безудержный)
  • Слабый

1 тип характеризуется сильными процессами возбуждения и торможения. Они уравновешены между собой и обладают высокой подвижностью. У таких животных быстрая выработка + и - условных рефлексов, которые легко переделываются из одно в другой. Эти животные адекватно реагируют на условные сигналы, на их быструю смену, легко выдерживают переделку стереотипа, характерно - активны, общительны, легко поддаются дрессировке.

2 тип характеризуется сильными процессами возбуждения и торможения. Эти процессы уравновешены между собой, но протекают медленно. Условные рефлексы таких животных вырабатываются медленно, переделываются с трудом. Выработанные условные рефлексы отличаются стойкостью. Разрушение выработанных словных рефлексов и стереотипов, сопровождается сильным эмоциональным напряжением, сами животные медлительны

3 тип характеризуется сильными процессами возбуждения и торможения, но процессы возбуждения преобладают над торможением. У таких животных быстро вырабатываются положительные условные рефлекс, и медленнее отрицательные. Эти животные отличаются суетливостью, низким порогом ориентировочно исследовательской реакции, часто они агрессивны и трудно подаются дрессировке. Переделка словных рефлексов и стереотипов приводит к невротическому состоянию. Возникает экспериментальный невроз.

4 тип характеризуется слабыми процессами возбуждения и торможения. У них плохо вырабатываются как + так и - условные рефлексы. А выработанные условные рефлексы характеризуются неустойчивостью. Под влиянием незначительных воздействий внешней среды, положительные рефлексы угнетаются, а отрицательные растормаживаются. Эти животные крайне тяжело переносят переделки рефлексов и стереотипов. Поведения таких животных трусливое, они впадают в состояние запредельного торможения и также легко у такого типа возникают невротические состояния.

В тесной связи с типами нервной деятельности стоит темперамент - комплексная характеристика психики человека, которая включает в себя эмоциональность, и общую активность - двигательную и речевую.

Первая классификация темперамента была дана еще Гиппократом. Он выделил 4 темперамента

  • Сангвиник
  • Флегматик
  • Холерик
  • Меланхолик.

Эмоциональность характеризует силу чувств и настроений. Насколько человек радостен, печален. Общая активность оценивается по отношению человека с окружающей средой и другими людьми, с точки зрения темпа, ритма, интенсивности, выносливости

Сангвиниками называют людей подвижных, с разнообразной мимикой, легко переживающих неудачи и стремящихся к смене впечатлений. Этот темперамент близок к Павловскому 1 типу .

Флегматик - медлительный, трудно переключающиеся с одно вида деятельности ан другой, характеризуются постоянством и глубиной чувств и настроений. Им хорошо, когда их не дергают. Они обладают высокой работоспособностью. Они следуют «7 раз отмерь, один отрежь» Совпадает с 2 типом.

Холерик - импульсивный, вспыльчивый, стремительные и страстные в своих поступках, подвержены резкой смене настроения. Это люди с темными волосами, худощавые и их увлеченность длится недолго, поэтому холерик хорош «для начала дела», но этого лидера надо быстро поменять или он будет искать новое приключение. Часто возникают при неврозе истеричные реакции, когда внешние проявления эмоциональности повышены.

Меланхолик - сдержаны, склоны к глубоким переживаниям даже самых малых событий. Они застенчивы, им тяжело быть в обществе, поскольку общение с людьми вызывает повышенную напряженность. Меланхолик избегает общество, любит уединения, безмолвие и самосозерцание.

Классификация темпераментов по Айзенку.

Тип темперамента - сочетание 2х характеристик психической деятельности - степень общительности и активности(экстраверсии, интроверсия) и эмоциональными(эмоциональная стабильность, эмоциональная неустойчивость- невротизм).

Экстраверты - тяга к рисковым формам поведения, новым впечатлениям, повышенная двигательная и речевая активность, общительность и преобладание радостного настроения.

Интроверт - заторможенность движений и речи, замкнутость, слабя тяга к новым впечатлениям и преобладание негативного настроения.

Люди с эмоциональной устойчивостью отличаются постоянством настроений, уверенностью в себе и высокой эмоциональной резистентностью к негативным воздействия.

Люди с эмоциональной неустойчивостью характеризуются резкой сменой настроения, обидчивостью и раздражительностью

Сангвиник обладает экстраверсией и эмоциональная устойчивость.

Флегматик - интроверсия и эмоциональная устойчивость

Холерик - экстраверсия и эмоциональная лабильность(неустойчивость)

Меланхолик - интроверсия с эмоциональной неустойчивостью

Эти свойства определяются как генотипом, так и фенотипом

Учение Пвлова о 1 и 2 сигнальной системе.

Высшая нервная деятельность животных обусловлена совокупностью условных рефлексов, возникающие на конкретны сигналы внешней среды.

Первая сигнальная система - совокупность условных рефлексов на конкретны сигналы окружающей среды.

К этим сигналам у человека добавляется комплекс условных сигналов, которые вырабатываются на словесные раздражители, т.к. для человека окружающая среда сигнализируется не только в форме конкретных сигналов, но и в словесном обозначении этих сигналов. Условные рефлексы, выработанные на слово, Павлов и обозначил для человека 2ой сигнальной системой .

ВНД и складывается из этих 2х систем. Для животных слово является конкретным звуковым сигналом.

Для человека - специфический сигнал и оно облает следующими 5ю особенностями, которые отличают слово.

  1. Слово является сигналом сигнала. В этой особенности заключена замена словом конкретного сигнала окружающей среды.
  2. Отвлеченный сигнал. Это позволяет абстрагироваться от конкретной действительности и в слове имеет место обобщение, которое обозначает всю совокупность предметов, к которому слово относится.
  3. Обобщающий сигнал. В словах заключаются понятия, которые мы не можем наблюдать в нашей повседневной жизни(например скорость света).
  4. Слово является социально детерминированным сигналом. Оно формируется только при общении ребенка с окружающими людьми. Если изолировать ребенка от социальной среды, у него не будет формироваться условно сигнала.
  5. Смысловой сигнал - человек воспринимая слово реагирует на его смысловое значение. Синонимы дают одинаковую реакцию у человека(доктор, врач). У животных же идет восприятие конкретных звуковых сигналов - словосочетаний.

Формирование слова происходит на основе условного рефлекса, а предмет является подкреплением(обучение ребенка слову «Яблоко» - оно воспринимается ребенком при даче подкрепляющего сигнала - яблока). Слово с подкреплением формируют понятие слова.

Во второй сигнальной системе существуют те же законы, что и для 1ой системы - возбуждение, торможение, процессы могут переходить из одной системы в другую.(если в транспорте кто то толкнул, то идет первая реакция - толчок в ответ - 1ая сигнальная система, либо вторая система - словесная перепалка).

На основе второй сигнальной системы возникает речь. Речь - это форма общения между людьми и основа абстрактного мышления. Речь, а вместе с ней и язык возникли в процессе трудового общения людей, т.е. коллективная деятельность человека потребовала создание форм общения друг с другом. На первых порах речь состояла из возгласов, включенных в систему жестов - жестовая речь. Звуковые комплексы не имели постоянного значения на этом этапе и зависели от практической ситуации.

Наиболее яркая форма жестовой речи - на стройке.

В ходе длительно эволюции появляются слова, которые обозначают признаки предметов, сами предметы и абстрактные понятия. Чем выше развито общество, чем больше уровень обобщения.

В речи современного человека выделяют импрессивную и эксперссивную речь.

Импрессивная речь - процесс понимании речи

Экспрессивная - процесс высказывания.

Импрессиная речь протекает в 3 этапа

  • Первичное восприятие речевого сообщения - восприятие слово слышимого или видимого. Этот процесс связан с зрительной и слуховой системой
  • Анализ слухового и буквенного состава речи.
  • Идет сопоставление сообщения с категориями прошлого опыта, которые хранятся в памяти. Осуществляется процесс понимания речи - задняя треть верхней височной извилины на границе затылочной, теменной и височной областей

Экспрессивная речь - процесс высказывания включает в себя устную речь и письмо. Начинается с мотива или замыла высказывания.

Затем происходит стадия внутренней речи, когда мы формируем модель высказывания. Рече - двигательный центр в нижней лобной извилины. Мы должны осознать и понять о чем мы будем говорить и обе зоны тесно связано между собой. Сама речь будет реализовываться при передаче сигналов на мышцы, обеспечивающие артикуляцию. В этом процессе участвуют подкорковые образования, мозжечок и нисходящие двигательные пути, которые должны обеспечить координированное сокращение мышц, для воспроизведения речи.

Речь - высокоскоростное движение. В ходе высказывания нам очень сложно внести коррекцию, но человек осуществляет постоянный контроль - по принципу обратной связи. Человек слышит, что говорит и если слышится отклонение, мы вносим коррекцию.

Нарушения речи

  • Сенсорная афазия Вернике - отсутствует способность понимания слов, как произнесенных самим человеком, так и обращенных к нему
  • Моторная афазия Брока - неспособность двигательной функции
  • Глобальная афазия - нет ни понимания, ни способности говорить
  • Дизартрия, связанная с нарушением функции иннервации мышц, участвующих в воспроизведении речи. Нарушение функций мозжечка, продолговатого мозга.

1ая и 2ая сигнальная система обеспечивают отражение мыслящим мозгом окружающей действительности. На основе отражательной деятельности формируется мышление и сознание.

Формы отражения подразделяются на

  • конкретно чувственные и проявляются в форме ощущения, восприятие, представления и воображения
  • Абстрактно - обощенное- понятие, суждение, умозаключение

Суждение - субъективное отражение отдельных свойств, предметов и явления, которые непосредственно действуют на наши органы чувств. Это элементарный психический процесс, в котором энергия внешнего раздражения преобразуется в акт сознания

Основным свойством ощущений будет его модальность, она определяется какие свойства отображаются в ощущении - механические, химические. По своим качествам каждая модальность может быть разнообразна. Качествами слухового ощущения будут являться громкость, высота, тембр, длительность звука и локализация его в пространстве.

На основе ощущения более сложная форма - восприятие - отражение предметов в целом, как совокупности всех его свойств. Восприятие - это чувственное познание, которое возникает при воздействии предмета или явления, но на более высоком уровне. Здесь происходит отражение всех свойств в совокупности.

Восприятие тесно связано с мышлением. Возникает в форме чувственного образа, которое может переходит в чувственное мышление.

Представление - конкретно чувственный наглядный образ предмета или явлений, который может возникнуть у человека в отсутствии предмета, на основе индивидуального опыта. Не требует воздействия на органы чувств.

Воображение - психический процесс создания человека новых образована основе имеющихся путем из преобразования. Это творчество.

Абстрактно обобщенное - форма мышления, где отражаются общие свойства отношения вещей и явлений окружающего мира.

Понятия возникают в процессе обобщения и входят в логическое познание. Понятия связываются в суждения и умозаключения.

Суждение - форма логического мышления, которая представляет собой мысль, глее что то либо утверждается, либо отрицается.

Грамматический строй понятен только человеку.

Умозаключения - рассуждения, где из 1 или нескольких суждений выводится новое. Выделяют

  • Дедуктивное - от более общих к отдельным фактам
  • Индуктивное - от частных к общим выводам.

На основе этого формируются наши мысли.