Максимальная интенсивность света. Интенсивность, давление и импульс электромагнитной волны

Интенсивность света, связь интенсивности света с амплитудой светового вектора.

Интенсивностью света называют электромагнитную энергию , проходящую в единицу времени через единицу площади поверхности, перпендикулярной направлению распространения света. Частоты видимых световых волн лежат в пределах

= (,39 4-0,75)-10 15 Гц.

Ни глаз, ни какой-либо иной приемник световой энергии не может уследить за столь частыми изменениями потока энергии, вследствие чего они регистрируют усредненный по времени поток . Поэтому правильнее определить интенсивность как модуль среднего по времени значения плотности потока энергии, переносимой световой волной. Плотность потока электромагнитной энергии определяется выражением

Поскольку световая волна- это электромагнитная волна, то складывается из энергии магнитного и электрического полей

(4.5)

где V- объем, занимаемый волновым полем.

Из уравнений Максвелла следует, что векторы напряженности электрического и магнитного полей в электромагнитной волне связаны соотношением

(4.6)

Поэтому выражение (4.5) можно записать следующим образом

Из уравнений Максвелла скорость распространения электромагнитных волн

Выделим некоторый объем волнового поля в форме параллелепипеда (рис.4.5)

Рис.4.5

Тогда , по определению интенсивности

Используя выражение (4,6) и полагая, что в прозрачной среде m=1 получим

где n- показатель преломления среды, в которой распространяется волна. Таким образом, напряженность магнитного поля Н пропорционально напряженности электрического поля Е и n:

Тогда интенсивность волны будет определяться выражением

(4.7)

(коэффициент пропорциональности равен )- Следовательно, интенсивность света пропорциональна показателю преломления среды и квадрату амплитуды вектора напряженности электрического поля световой волны. Заметим, что при рассмотрении распространения света в однородной среде можно считать, что интенсивность пропорциональна квадрату амплитуды вектора напряженности электрического поля () световой волны:

Однако в случае прохождения света через границу раздела сред выражение для интенсивности, не учитывающее множитель n, приводит к не сохранению светового потока.

Рассмотрим сферическую световую волну. Площадь сферического фронта волны , где R- радиус фронта волны. Согласно уравнению (4,4) находим интенсивность

Эти выражения показывают, что амплитуда сферической волны уменьшается пропорционально расстоянию от источника световых волн. Если R достаточно велико, т.е. источник находится очень далеко от области наблюдения, то фронт волны представляется частью сферической поверхности очень большого радиуса. Ее можно считать плоскостью. Волна, фронт волны которой представляется плоскостью, называется плоской, так как энергия волны во всех плоскостях, представляющих фронты волны в различные моменты времени остается постоянной, то амплитуда у такой волны постоянна.

.Понятие интерференции, наложение гармонических волн, условия когерентности.

Свет является электромагнитной волной. Сложение волн, распространяющихся в среде, определяется сложением соответствующих колебаний. Рассмотрим наиболее простой случай сложения электромагнитных волн (колебаний):

1) частоты их одинаковы,

В этом случае для каждой точки среды, в которой происходит сложение волн, амплитуда результирующей волны для напряженности электрического поля определяется векторной диаграммой (рис.4.6)

Из диаграммы следует, что результирующая амплитуда определится следующим образом:

где d- разность фаз слагаемых волн (колебаний).

Результат сложения волн зависит от особенностей источников света и может быть различен.

Освещение требуется человеку не только для ориентации и совершения каких-либо действий в темноте, но и для поддержания психологического здоровья, комфорта. Кроме того, искусственное освещение позволяет работникам продолжать выполнять свои обязанности в вечернее и ночное время. Однако выбирать светильники и лампы следует, учитывая их характеристики, наиболее важной из которых является световая отдача, которая измеряется в люменах на ватты (лм/Вт). В самом помещении также необходимо контролировать уровень освещенности, и с учетом этого подбирать ее источники.

Виды света

Самым полезным и безопасным освещением является, конечно, природное. Оно обладает теплым оттенком и не наносит вреда глазам.

Обратите внимание! По своим параметрам ближе всего к данному типу находились лампы накаливания, которые характеризовались красноватым свечением. Они не вызывали раздражения глаз и по излучаемому спектру были практически идентичными естественному освещению от солнца, попадающему через окна в помещения.

Развитие технологий привело к появлению множества вариантов приборов освещения, поэтому при покупке следует обращать внимание на характеристики, которые указываются на упаковке лампы.

Дополнительная информация. Так, теплый свет рекомендуется размещать в квартирах или жилых домах, нейтральный – для освещения офисов и производственных цехов. Холодный – эффективно применяется в помещениях, где осуществляется работа с мелкими деталями. Также его часто применяют в субтропическом климате, где благодаря такому оттенку создается ощущение прохлады.

Таким образом, выбор лампочки влияет не только на освещенность пространства, но и на морально-психологическое состояние сотрудника на производстве или человека в квартире.

Характеристики светового потока

Приобретая лампочки, покупатели часто не знают или не задумываются над ответом на вопрос, в чем измеряется свет, а между тем таких показателей довольно много:

  • Светоотдача;
  • Сила света;
  • Интенсивность;
  • Яркость.

Все это физические свойства светового потока, которые могут быть измерены специальными приборами, их следует учитывать в обязательном порядке при планировании освещения помещения (осуществляя расчет необходимого количества приборов освещения в каждой комнате или кабинете), ведь это влияет на здоровье глаз и нервной системы.

Светоотдача

Световая отдача является самым важным параметром. Она отражает соотношение светового потока, который излучается лампочкой или другим прибором, к потребляемой им мощности. Соответственно, его единицами измерения являются люмены на ватт (лм/Вт). Данный параметр позволяет оценить экономическую эффективность способа освещения.

Чем выше световая отдача, тем более эффективно расходуется энергия, а значит, оптимизируются расходы на коммунальные услуги, что приобретает особую актуальность в условиях постоянного роста тарифов. По этой причине высокой популярностью пользуются энергосберегающие лампы, которые обеспечивают одно из самых высоких соотношений лм/Вт.

Сила света

Характеристикой излучения является не только световая отдача, но и сила, с которой его энергия перемещается из одной точки пространства в другую в течение определенного временного промежутка. Необходимо учитывать, что сила света может изменять направление движения в зависимости от условий, задаваемых прибором, формирующим поток.

Измерить данный параметр можно в канделах.

Важно! Выбирая лампу, на описываемый параметр следует также обращать внимание, только зависимость не настолько прямая, как в случае со световой отдачей. Уровень силы следует подбирать, исходя из нормативного значения, которое должна иметь единица яркости светящейся поверхности. Данный показатель можно найти в различных стандартах, а также строительных нормах и правилах. Он изменяется в зависимости от назначения помещения, его конфигурации и так далее.

Интенсивность освещения

Данная характеристика часто называется освещенностью или насыщенностью. Она представляет собой соотношение светового потока к площади объекта, на который он падает. Данная единица яркости светящейся поверхности измеряется в люксах.

Яркость

Сила света, деленная на единицу площади, называется яркостью. Измеряется она в канделах на квадратный метр. Источник распространяет излучение, которое освещает определенную площадь. Чем выше такая площадь, тем, соответственно, больше яркость света. Данный параметр также характеризует эффективность источника освещения, а ее измерение требуется, чтобы посчитать необходимое количество световых приборов в помещении и, соответственно, спроектировать их расположение и проводку.

Таким образом, у светового потока есть несколько параметров, и не всегда понятно, на какие из них обращать внимание в процессе приобретения приборов освещения. Рядовому потребителю сложно разобраться, что такое световая отдача, чем отличается насыщенность от яркости и так далее. Более того, единицы измерения, которые указаны на коробках, тоже являются малоинформативными для непосвященного человека: лм/Вт, кд, кд/кв.м, все это похоже на иероглифы, из которых не понятно, сколько лампочек и с какими характеристиками необходимо приобрести. Поэтому, чтобы рассчитать количество приборов освещения, рекомендуется либо воспользоваться услугами профессионалов, либо специальным калькулятором, который можно найти в сети Интернет.

Видео

Заменить растению солнце очень трудно. Попробуйте в солнечный день включить в комнате лампу, и вы поймете, насколько мало света она способна дать растениям.

Для человеческого глаза свет - это энергетические волны длиной от 380 нанометров (нм) (фиолетовый) до 780 нм (красный). Важные для фотосинтеза волны лежат между 700 нм (красный) и 450 нм (синий). Это особенно важно знать при использовании искусственного освещения, ведь в этом случае не происходит равномерного распределения волн разной длины, как при солнечном свете. Более того, из-за конструкции лампы отдельные части спектра могут оказаться более интенсивными, другие менее. К тому же, человеческий глаз лучше воспринимает как раз волны такой длины, которые не слишком пригодны для растений. В результате может получиться, что какое-то освещение покажется нам приятным и ярким, а для растений оно будет неподходящим и слабым.

Интенсивность освещения внутри и вне помещения

Интенсивность света, падающего на определенную плоскость, измеряется в единице «люкс». Летом в солнечный полдень интенсивность света в наших широтах достигает 100 000 люкс. Во второй половине дня яркость света снижается до 25000 люкс. В это же время в тени, в зависимости от ее густоты, она составит только десятую часть этого значения или даже меньше.

В домах интенсивность освещения еще меньше, так как свет падает туда не прямо, а ослабляется другими домами или деревьями. Летом на южном окне, прямо за стеклами (то есть на подоконнике), интенсивность света достигает в лучшем случае от 3000 до 5000 люкс, а к середине комнаты быстро снижается. На расстоянии 2-3 метров от окна она составит около 500 люкс.

Минимальное количество света, которое требуется для выживания каждому растению, составляет приблизительно 500 люкс. При более слабом освещении оно неизбежно погибнет. Для нормальной жизни и роста даже неприхотливым растениям с небольшой потребностью в свете необходимо как минимум 800 люкс.

Как измерить освещенность?

Человеческий глаз не в состоянии определить абсолютную интенсивность света, поскольку он наделен способностью приспосабливаться к освещению. К тому же, глаз человека лучше воспринимает как раз волны такой длины, которые не слишком пригодны для растений.

Что же делать? Помочь может специальный прибор - люксметр. При его покупке очень важно обращать внимание на то, какой диапазон светового спектра (длину волны) он в состоянии измерить. Иначе может случиться так, что при измерении вы попадете на непригодную для растений длину волны. Помните - люксметр, хоть и точнее человеческого глаза, но тоже воспринимает ограниченный диапазон световых волн.

Для оценки интенсивности освещения подойдет фотоаппарат или фотоэкспонометр. Но поскольку при фотографировании освещенность измеряется не в «люксах», придется провести соответствующий пересчет.

Измерение проводят так:

1.Установите светочувствительность на 100, а диафрагму на 4.

2. Положите белый лист бумаги в том месте, где хотите измерить интенсивность освещения, и наведите на него фотоаппарат.

3. Определите выдержку.

4. Знаменатель выдержки, умноженный на 10, даст примерное значение люкс.

Пример: если время выдержки составило 1/60 секунды, это соответствует 600 люкс.

По материалам:

Палеева Т. В. «Ваши цветы. Уход и лечение», М.: Эксмо, 2003 г.;

Анита Паулисен «Цветы в доме», М.: Эксмо, 2004 г.;

Воронцов В. В. «Уход за комнатными растениями. Практические советы любителям цветов», М.: ЗАО «Фитон+», 2004 г.;

Беспальченко Е. А. «Тропические декоративные растения для дома, квартиры и офиса», ООО ПКФ «БАО», Донецк, 2005 г.;

Д. Госсе, «Даже солнцу надо помогать», журнал «Вестник цветовода», №3, 2005 г.

1. Сложение световых волн от естественных источников света.

2. Когерентные источники. Интерференция света.

3. Получение двух когерентных источников из одного точечного источника естественного света.

4. Интерферометры, интерференционный микроскоп.

5. Интерференция в тонких пленках. Просветление оптики.

6. Основные понятия и формулы.

7. Задачи.

Свет имеет электромагнитную природу, и распространение света - это распространение электромагнитных волн. Все оптические эффекты, наблюдаемые при распространении света, связаны с колебательным изменением вектора напряженности электрического поля Е, который называют световым вектором. Для каждой точки пространства интенсивность света I пропорциональна квадрату амплитуды светового вектора волны, приходящей в эту точку: I ~ Е m 2 .

20.1. Сложение световых волн от естественных источников света

Выясним, что происходит в том случае, когда в данную точку приходят две световые волны с одинаковыми частотами и параллельными световыми векторами:

При этом для интенсивности света получается выражение

При получении формул (20.1) и (20.2) мы не рассматривали вопроса о физической природе источников света, создающих колебания Е 1 и Е 2 . По современным представлениям, элементарными источниками света являются отдельные молекулы. Излучение света молекулой происходит при ее переходе с одного энергетического уровня на другой. Длительность такого излучения очень мала (~10 -8 с), а момент излучения есть событие случайное. При этом образуется ограниченный во времени электромагнитный импульс протяженностью около 3 м. Такой импульс называется цугом.

Естественными источниками света являются тела, нагретые до высоких температур. Свет такого источника представляет собой совокупность огромного числа цугов, испущенных различными молекулами в различные моменты времени. Поэтому среднее значение cosΔφв формулах (20.1) и (20.2) получается равным нулю, и эти формулы принимают следующий вид:

Интенсивности естественных источников света в каждой точке пространства складываются.

Волновая природа света в данном случае не проявляется.

20.2. Когерентные источники. Интерференция света

Результат сложения световых волн будет иным, если разность фаз для всех цугов, приходящих в данную точку, будет иметь постоянное значение. Для этого необходимо использовать когерентные источники света.

Когерентными называются источники света одинаковой частоты, обеспечивающие постоянство разности фаз для волн, приходящих в данную точку пространства.

Световые волны, испущенные когерентными источниками, также называют когерентными волнами.

Рис. 20.1. Сложение когерентных волн

Рассмотрим сложение двух когерентных волн, испущенных источниками S 1 и S 2 (рис. 20.1). Пусть точка, для которой рассматривается сложение этих волн, удалена от источников на расстояния s 1 и s 2 соответственно, а среды, в которых распространяются волны, имеют различные показатели преломления n 1 и n 2 .

Произведение длины пути, пройденного волной, на показатель преломления среды (s*n) называется оптической длиной пути. Абсолютная величина разности оптических длин называется оптической разностью хода:

Мы видим, что при сложении когерентных волн величина разности фаз в данной точке пространства остается постоянной и определяется оптической разностью хода и длиной волны. В тех точках, где выполняется условие

cosΔφ = 1, и формула (20.2) для интенсивности результирующей волны принимает вид

В этом случае интенсивность принимает максимально возможное значение.

Для точек, в которых выполняется условие

Таким образом, при сложении когерентных волн происходит пространственное перераспределение энергии - в одних точках энергия волны увеличивается, а в других уменьшается. Это явление называется интерференцией.

Интерференция света - сложение когерентных световых волн, в результате которого происходит пространственное перераспределение энергии, приводящее к образованию устойчивой картины их усиления или ослабления.

Равенства (20.6) и (20.7) являются условиями максимума и минимума интерференции. Их удобнее записывать через разность хода.

Максимум интенсивности при интерференции наблюдается тогда, когда оптическая разность хода равна целому числу длин волн (четному числу полуволн).

Целое число k называется порядком интерференционного максимума.

Аналогично получается условие минимума:

Минимум интенсивности при интерференции наблюдается тогда, когда оптическая разность хода равна нечетному числу полуволн.

Интерференция волн проявляется особенно отчетливо, когда интенсивности волн близки. В этом случае в области максимума интенсивность в четыре раза превышает интенсивность каждой волны, а в области минимума интенсивность практически равна нулю. Получается интерференционная картина из ярких светлых полос, разделенных темными промежутками.

20.3. Получение двух когерентных источников из одного точечного источника естественного света

До изобретения лазера когерентные источники света создавали путем расщепления световой волны на два пучка, которые интерферировали между собой. Рассмотрим два таких метода.

Метод Юнга (рис. 20.2). На пути волны, идущей от точечного источника S, установлена непрозрачная преграда с двумя небольшими отверстиями. Эти отверстия и являются когерентными источниками S 1 и S 2 . Так как вторичные волны, исходящие из S 1 и S 2 , принадлежат одному волновому фронту, то они являются когерентными. В области перекрытия этих световых пучков наблюдается интерференция.

Рис. 20.2. Получение когерентных волн методом Юнга

Обычно отверстия в непрозрачной преграде делают в виде двух узких параллельных щелей. Тогда интерференционная картина на экране представляет собой систему светлых полос, разделенных темными промежутками (рис. 20.3). Светлая полоса, соответствующая

Рис. 20.3. Интерференционная картина, соответствующая методу Юнга, k - порядок спектра

максимуму нулевого порядка, располагается в центре экрана таким образом, что расстояния до щелей одинаковы. Справа и слева от нее располагаются максимумы первого порядка и т.д. При освещении щелей монохроматическим светом светлые полосы имеют соответствующий цвет. При использовании белого света максимум нулевого порядка имеет белый цвет, а остальные максимумы имеют радужную окраску, так как максимумы одного порядка для разных длин волн образуются в разных местах.

Зеркало Ллойда (рис. 20.4). Точечный источник S находится на небольшом расстоянии от поверхности плоского зеркала М. Интерферируют прямой и отраженный лучи. Когерентными источниками являются первичный источник S и его мнимое изображение в зеркале S 1 . В области перекрытия прямого и отраженного пучков наблюдается интерференция.

Рис. 20.4. Получение когерентных волн с использованием зеркала Ллойда

20.4. Интерферометры, интерференционный

микроскоп

На использовании интерференции света основано действие интерферометров. Интерферометры предназначены для измерения показателей преломления прозрачных сред; для контроля формы, микрорельефа и деформации поверхностей оптических деталей; для обнаружения примесей в газах (используются в санитарной практике для контроля чистоты воздуха в помещениях и шахтах). На рисунке 20.5 показана упрощенная схема интерферометра Жамена, который предназначен для измерения показателей преломления газов и жидкостей, а также для определения концентрации примесей в воздухе.

Лучи белого света проходят через два отверстия (метод Юнга), а затем через две одинаковые кюветы К 1 и К 2 , заполненные веществами с различными показателями преломления, один из которых известен. Если бы показатели преломления были одинаковы, то белый интерференционный максимум нулевого порядка располагался бы в центре экрана. Различие в показателях преломлений приводят к появлению оптической разности хода при прохождении кювет. В результате максимум нулевого порядка (его называют ахроматическим) смещается относительно центра экрана. По величине смещения определяют второй (неизвестный) показатель преломления. Приведем без вывода формулу для определения разности между показателями преломления:

где k - число полос, на которое сместился ахроматический максимум; l - длина кюветы.

Рис. 20.5. Ход лучей в интерферометре:

S - источник, узкая щель, освещенная монохроматическим светом; Л - линза, в фокусе которой находится источник; К - одинаковые кюветы длины l ; Д - диафрагма с двумя щелями; Э -экран

С помощью интерферометра Жамена можно определять разницу в показателях преломления с точностью до шестого десятичного знака. Столь высокая точность позволяет обнаруживать даже небольшие загрязнения воздуха.

Интерференционный микроскоп представляет собой сочетание оптического микроскопа и интерферометра (рис. 20.6).

Рис. 20.6. Ход лучей в интерференционном микроскопе:

М - прозрачный объект; Д - диафрагма; О - окуляр микроскопа для

наблюдения интерферирующих лучей; d - толщина объекта

В связи с разницей показателей преломления объекта М и среды лучи приобретают разность хода. В результате между объектом и средой образуется световой контраст (при монохроматическом свете) или объект станет окрашенным (при белом свете).

Этот прибор применяется для измерения концентрации сухого вещества, размеров прозрачных неокрашенных микрообъектов, которые неконтрастны в проходящем свете.

Разность хода определяется толщиной d объекта. Оптическую разность хода можно измерить с точностью до сотых долей длины волны, что дает возможность количественно исследовать структуру живой клетки.

20.5. Интерференция в тонких пленках. Просветление оптики

Хорошо известно, что пятна бензина на поверхности воды или поверхность мыльного пузыря имеют радужную окраску. Радужную окраску имеют и прозрачные крылья стрекоз. Возникновение окраски объясняется интерференцией световых лучей, отраженных

Рис. 20.7. Отражение лучей в тонкой пленке

от передней и задней сторон тонкой пленки. Рассмотрим это явление подробнее (рис. 20.7).

Пусть луч 1 монохроматического света падает из воздуха на переднюю поверхность мыльной пленки под некоторым углом α. В точке падения наблюдаются явления отражения и преломления света. Отраженный луч 2 возвращается в воздушную среду. Преломленный луч отражается от задней поверхности пленки и, преломившись на передней поверхности, выходит в воздушную среду (луч 3) параллельно лучу 2.

Пройдя через оптическую систему глаза, лучи 2 и 3 пересекаются на сетчатке, где и происходит их интерференция. Расчеты показывают, что для мыльной пленки, находящейся в воздушной среде, разность хода между лучами 2 и 3 вычисляется по формуле

Различие связано с тем, что при отражении света от оптически более плотной среды его фаза изменяется на π, что равносильно изменению оптической длины пути луча 2 на λ/2. При отражении от менее плотной среды изменения фазы не происходит. У пленки бензина на поверхности воды отражение от более плотной среды происходит дважды. Поэтому добавка λ/2 появляется у обоих интерферирующих лучей. При нахождении разности хода она уничтожается.

Максимум интерференционной картины получается для тех углов зрения (α), которые удовлетворяют условию

Если бы мы смотрели на пленку, освещенную монохроматическим светом, то мы бы видели несколько полос соответствующего цвета, разделенных темными промежутками. При освещении пленки белым светом мы видим интерференционные максимумы различных цветов. Пленка при этом приобретает радужную окраску.

Явление интерференции в тонких пленках используется в оптических устройствах, уменьшающих долю световой энергии, отраженной оптическими системами, и увеличивающих (вследствие закона сохранения энергии), следовательно, энергию, поступающую к регистрирующим системам - фотопластинке, глазу.

Просветление оптики. Явление интерференции света находит широкое применение в современной технике. Одним из таких применений является «просветление» оптики. В современных оптических системах используются многолинзовые объективы с большим числом отражающих поверхностей. Потери света при отражении могут достигать 25 % в объективе фотоаппарата и 50 % в микроскопе. Кроме того, многократные отражения ухудшают качество изображения, например, возникает фон, уменьшающий его контрастность.

Для уменьшения интенсивности отраженного света объектив покрывают прозрачной пленкой, толщина которой равна 1 / 4 длины волны света в ней:

где λ П - длина световой волны в пленке; λ - длина световой волны в вакууме; n - показатель преломления вещества пленки.

Обычно ориентируются на длину волны, соответствующую середине спектра используемого света. Материал пленки подбирают так, чтобы его показатель преломления был меньше, чем у стекла объектива. В этом случае для вычисления разности хода используется формула (20.11).

Основная доля света падает на объектив под малыми углами. Поэтому можно положить sin 2 α ≈ 0. Тогда формула (20.11) принимает следующий вид:

Таким образом, лучи, отраженные от передней и задней поверхностей пленки, находятся в противофазе и при интерференции почти полностью гасят друг друга. Это имеет место в средней части спектра. Для других длин волн интенсивность отраженного пучка также уменьшается, хотя и в меньшей степени.

20.6. Основные понятия и формулы

Окончание таблицы

20.7. Задачи

1. Какова пространственная протяженность L цуга волн, образующегося за время t высвечивания атома?

Решение

L = c*t = 3х10 8 м/сх10 -8 с = 3 м. Ответ: 3 м.

2. Разность хода волн от двух когерентных источников света равна 0,2 λ. Найти: а) чему равна при этом разность фаз, б) каков результат интерференции.

3. Разность хода волн от двух когерентных источников света в некоторой точке экрана равна δ = 4,36 мкм. Каков результат интерференции, если длина волны λ равна: а) 670; б) 438; в) 536 нм?

Ответ: а) минимум; б) максимум; в) промежуточная точка между максимумом и минимумом.

4. На мыльную пленку (n = 1,36) падает белый свет под углом 45°. При какой наименьшей толщине пленки h она приобретет желтоватый оттенок = 600 нм) при рассматривании ее в отраженном свете?

5. Мыльная пленка толщиной h = 0,3 мкм освещается белым светом, падающим перпендикулярно ее поверхности (α = 0). Пленка рассматривается в отраженном свете. Показатель преломления мыльного раствора равен n = 1,33. Какого цвета будет при этом пленка?

6. Интерферометр освещается монохроматическим светом с λ = 589 нм. Длина кювет l = 10 см. Когда воздух в одной кювете заменили на аммиак, ахроматический максимум сместился на k = 17 полос. Показатель преломления воздуха n 1 = 1,000277. Определить показатель преломления аммиака n 1 .

n 2 = n 1 + kλ/l = 1,000277 + 17*589*10 -7 /10 = 1,000377.

Ответ: n 1 = 1,000377.

7. Для просветления оптики применяют тонкие пленки. Какой толщины должна быть пленка, чтобы пропускать без отражения свет длины волны λ = 550 нм? Показатель преломления пленки n = 1,22.

Ответ: h = λ/4n = 113 нм.

8. Как по внешнему виду отличить просветленную оптику? Ответ: Так как нельзя одновременно погасить свет всех длин

волн, то добиваются гашения света, соответствующего середине спектра. Оптика приобретает фиолетовую окраску.

9. Какую роль выполняет покрытие с оптической толщиной λ/4, нанесенной на стекло, если показатель преломления вещества покрытия больше показателя преломления стекла?

Решение

В этом случае происходит потеря полуволны только на границе пленка-воздух. Поэтому разность хода получается равной λ вместо λ/2. При этом отраженные волны усиливают, а не гасят друг друга.

Ответ: покрытие является отражающим.

10. Лучи света, падающие на тонкую прозрачную пластинку под углом α = 45°, окрашивают ее при отражении в зеленый цвет. Как будет меняться цвет пластинки при изменении угла падения лучей?

При α = 45° условия интерференции соответствуют максимуму для зеленых лучей. При увеличении угла левая часть уменьшается. Следовательно, должна уменьшаться и правая часть, что соответствует увеличению λ.

При уменьшении угла λ будет уменьшаться.

Ответ: при увеличении угла окраска пластинки будет постепенно меняться в сторону красного цвета. При уменьшении угла окраска пластинки будет постепенно меняться в сторону фиолетового цвета.

Вычислим теперь полную энергию, излучаемую зарядом при ускорении. Для общности возьмем случай произвольного ускорения, считая, однако, движение нерелятивистским. Когда ускорение направлено, скажем, по вертикали, электрическое поле излучения равно произведению заряда на проекцию запаздывающего ускорения, деленному на расстояние. Таким образом, нам известно электрическое поле в любой точке, а отсюда мы знаем энергию , проходящую через единичную площадку за .

Величина часто встречается в формулах распространения радиоволн. Обратную ей величину можно назвать импедансом вакуума (или сопротивлением вакуума); она равна . Отсюда мощность (в ваттах на квадратный метр) есть средний квадрат поля, деленный на 377.

С помощью формулы (29.1) для электрического поля мы получаем

, (32.2)

где - мощность на , излучаемая под углом . Как уже отмечалось, обратно пропорционально расстоянию. Интегрируя, получаем отсюда полную мощность, излучаемую во всех направлениях. Для этого сначала умножим на площадь полоски сферы, тогда мы получим поток энергии в интервале угла (фиг. 32.1). Площадь полоски вычисляется следующим образом: если радиус равен , то толщина полоски равна , а длина , поскольку радиус кольцевой полоски есть . Таким образом, площадь полоски равна

(32.3)

Фигура 32.1. Площадь кольца на сфере, равна .

Умножая поток [мощность на , согласно формуле (32.2)] на площадь полоски, найдем энергию, излучаемую в интервале углов и ; далее нужно проинтегрировать по всем углам от до :

(32.4)

При вычислении воспользуемся равенством и в результате получим . Отсюда окончательно

Необходимо сделать несколько замечаний по поводу этого выражения. Прежде всего, поскольку есть вектор, то в формуле (32.5) означает , т. е. квадрат длины вектора. Во-вторых, в формулу (32.2) для потока входит ускорение, взятое с учетом запаздывания, т. е. ускорение в тот момент времени, когда была излучена энергия, проходящая сейчас через поверхность сферы. Может возникнуть мысль, что энергия действительно была излучена точно в указанный момент времени. Но это не совсем правильно. Момент излучения нельзя определить точно. Можно вычислить результат только такого движения, например колебания и т. п., где ускорение в конце концов исчезает. Следовательно, мы можем найти только полный поток энергии за весь период колебаний, пропорциональный среднему за период квадрату ускорения. Поэтому в (32.5) должно означать среднее по времени от квадрата ускорения. Для такого движения, когда ускорение в начале и в конце обращается в нуль, полная излученная энергия равна интегралу по времени от выражения (32.5).

Посмотрим, что дает формула (32.5) для осциллирующей системы, для которой ускорение имеет вид . Среднее за период от квадрата ускорения равно (при возведении в квадрат надо помнить, что на самом деле вместо экспоненты должна входить ее действительная часть - косинус, а среднее от дает ):

Следовательно,

Эти формулы были получены сравнительно недавно - в начале XX века. Это замечательные формулы, они имели огромное историческое значение, и о них стоило бы почитать в старых книгах по физике. Правда, там использовалась другая система единиц, а не система СИ. Однако в конечных результатах, относящихся к электронам, эти осложнения можно исключить с помощью следующего правила соответствия: величина где - заряд электрона (в кулонах), раньше записывалась как . Легко убедиться, что в системе СИ значение численно равно , поскольку мы знаем, что и . В дальнейшем мы будем часто пользоваться удобным обозначением (32.7)

Если это численное значение подставить в старые формулы, то все остальные величины в них можно считать определенными в системе СИ. Например, формула (32.5) прежде имела вид . А потенциальная энергия протона и электрона на расстоянии есть или , где СИ.