Оценка степени загрязнения атмосферы и определение мероприятий по ее снижению. Загрязнение атмосферного воздуха

Загрязнение атмосферного воздуха различными вредными веществами ведет к возникновению заболеваний органов человека и, прежде всего – органов дыхания.

Атмосфера всегда содержит определенное количество примесей, поступающих от естественных и антропогенных источников. К числу примесей, выделяемых естественными источниками, относят: пыль (растительного, вулканического, космического происхождения; возникающую при эрозии почвы, частицы морской соли), дым, газы от лесных и степных пожаров и вулканического происхождения. Естественные источники загрязнений бывают либо распределенными, например, выпадение космической пыли, либо кратковременными, стихийными, например, лесные и степные пожары, извержения вулканов и т.п. Уровень загрязнения атмосферы естественными источниками является фоновым и мало изменяется с течением времени.

Основное антропогенное загрязнение атмосферного воздуха создают предприятия ряда отраслей промышленности, автотранспорт и теплоэнергетика.

Самыми распространенными токсичными веществами, загрязняющими атмосферу, являются: оксид углерода (СО), диоксид серы (S0 2), оксиды азота (No x), углеводороды (С п Н т ) и твердые вещества (пыль).

Кроме СО, S0 2 , NO x , C n H m и пыли в атмосферу выбрасываются и другие, более токсичные вещества: соединения фтора, хлор, свинец, ртуть, бенз(а)пирен. Вентиляционные выбросы завода электронной промышленности содержат пары плавиковой, серной, хромовой и других минеральных кислот, органические растворители и т.п. В настоящее время насчитывается более 500 вредных веществ, загрязняющих атмосферу, их количество все увеличивается. Выбросы токсических веществ в атмосферу приводят, как правило, к превышению текущих концентраций веществ над предельно допустимыми концентрациями.

Высокие концентрации примесей и их миграция в атмосферном воздухе приводят к образованию вторичных более токсичных соединений (смог, кислоты) или к таким явлениям, как "парниковый эффект и разрушение озонового слоя.

Смог – сильное загрязнение воздуха, наблюдаемое в больших городах и промышленных центрах. Различают два типа смога:

Густой туман с примесью дыма или газовых отходов производства;

Фотохимический смог – пелена едких газов и аэрозолей повышенной концентрации (без тумана), возникающая в результате фотохимических реакций в газовых выбросах под действием ультрафиолетового излучения Солнца.

Смог снижает видимость, усиливает коррозию металла и сооружений, отрицательно влияет на здоровье и является причиной повышенной заболеваемости и смертности населения.

Кислотные дожди известны более 100 лет, однако, проблеме кислотных дождей стали уделять должное внимание сравнительно недавно. Впервые выражение "кислотный дождь" использовал Роберт Ангус Смит (Великобритания) в 1872 г.



По существу, кислотные дожди появляются в результате химических и физических превращений соединений серы и азота в атмосфере. Конечным итогом этих химических превращений является соответственно серная (H 2 S0 4) и азотная (HN0 3) кислота. В последующем пары или молекулы кислот, поглощенные капельками облаков или частицами аэрозолей, выпадают на землю в виде сухого или влажного осадка (седиментация). При этом вблизи источников загрязнения доля сухих кислотных осадков превышает долю влажных по серосодержащим веществам в 1,1 и по азотосодержащим – в 1,9 раз. Однако по мере удаления от непосредственных источников загрязнения влажные осадки могут содержать большее количество загрязняющих примесей, чем сухие.

Если бы загрязняющие воздух вещества антропогенного и естественного происхождения равномерно распределялись по поверхности Земли, то влияние кислотных осадков на биосферу было бы менее пагубно. Различают прямое и косвенное воздействие кислотных осадков на биосферу. Прямое воздействие проявляется в непосредственной гибели растений и деревьев, которое в наибольшей степени имеет место вблизи источника загрязнения, в радиусе до 100 км от него.

Находящиеся в воздухе загрязнения и кислотные дожди ускоряют коррозию металлоконструкций (до 100 мкм/год), разрушают здания и памятники и особенно построенные из песчаника и известняка.

Косвенное воздействие кислотных осадков на окружающую среду осуществляется посредством процессов, происходящих в природе в результате изменения кислотности (рН) воды и почвы. Оно проявляется к тому же не только в непосредственной близости от источника загрязнения, но и на значительных расстояниях, исчисляемых сотнями километров.

Изменение кислотности почвы нарушает ее структуру, влияет на плодородие и ведет к гибели растений. Повышение кислотности пресных водоемов приводит к снижению запасов пресной воды и вызывает гибель живых организмов (наиболее чувствительные начинают погибать уже при рН = 6,5, а при РН = 4,5 способны жить только немногие виды насекомых и растений).

Парниковый эффект . Состав и состояние атмосферы влияют на многие процессы лучистого теплообмена между Космосом и Землей. Процесс передачи энергии от Солнца к Земле и от Земли в Космос сохраняет температуру биосферы на определенном уровне – в среднем +15°. При этом основная роль в поддержании температурных условий в биосфере принадлежит солнечной радиации, несущей на Землю определяющую часть тепловой энергии, по сравнению с другими источниками тепла, :

Теплота от солнечной радиации 25 · 10 23 99,80

Теплота от естественных источников

(из недр Земли, от животных и др.) 37,46 · 10 20 0,18

Теплота от антропогенных источников

(электроустановки, пожары и т.д.) 4,2 · 10 20 0,02

Нарушение теплового баланса Земли, приводящее к увеличению средней температуры биосферы, которое наблюдается в последние десятилетия, происходит за счет интенсивного выброса антропогенных примесей и их накоплений в слоях атмосферы. Большинство газов прозрачно для солнечной радиации. Однако углекислый газ (С0 2), метан (СН 4), озон (0 3), пары воды (Н 2 0) и некоторые другие газы в нижних слоях атмосферы, пропуская солнечные лучи в оптическом диапазоне длин волн – 0,38...0,77 мкм, препятствуют прохождению в космическое пространство отраженного с поверхности Земли теплового излучения в инфракрасном диапазоне длин волн – 0,77...340 мкм. Чем больше концентрация газов и других примесей в атмосфере, тем меньшая доля теплоты с поверхности Земли уходит в Космос, и тем больше, следовательно, ее задерживается в биосфере, вызывая потепление климата.

Моделирование различных климатических параметров показывает, что до 2050 г. средняя температура на Земле может повыситься на 1,5...4,5°С. Такое потепление вызовет таяние полярных льдов и горных ледников, что приведет к подъему уровня Мирового океана на 0,5...1,5 м. Одновременно будет подниматься и уровень рек, впадающих в моря (принцип сообщающихся сосудов). Все это вызовет затопление островных стран, прибрежной полосы и территорий, расположенных ниже уровня моря. Появятся миллионы беженцев, вынужденных покинуть обжитые места и мигрировать в глубь суши. Необходимо будет перестроить или переоборудовать все порты, чтобы приспособить их к новому уровню моря. Еще более сильное влияние может оказать глобальное потепление на распределение осадков и сельское хозяйство, из-за нарушения циркуляционных связей в атмосфере. Дальнейшее потепление климата уже к 2100 г. может поднять уровень Мирового океана на два метра, что приведет к затоплению уже 5 млн. км 2 суши, а это 3% от всей суши и 30% от всех урожайных земель планеты.

Парниковый эффект в атмосфере – довольно распространенное явление и на региональном уровне. Антропогенные источники теплоты (ТЭС, транспорт, промышленность), сконцентрированные в крупных городах и промышленных центрах, интенсивное поступление "парниковых" газов и пыли, устойчивое состояние атмосферы создают около городов пространства радиусом до 50 км и более с повышенными на 1...5°С температурами и высокими концентрациями загрязнений. Эти зоны (купола) над городами хорошо просматриваются из космического пространства. Они разрушаются лишь при интенсивных движениях больших масс атмосферного воздуха.

Разрушение озонового слоя . Основными веществами, разрушающими озоновый слой, являются соединения хлора и азота. По оценочным данным, одна молекула хлора может разрушить до 10 5 молекул, а одна молекула оксидов азота – до 10 молекул озона. Источниками поступления соединений хлора и азота в озоновый слой являются:

Значительное влияние на озоновый слой оказывают фреоны, продолжительность жизни которых достигает 100 и более лет. Оставаясь длительное время в неизменной форме, они в то же время постепенно перемещаются в более высокие слои атмосферы, где коротковолновые ультрафиолетовые лучи выбивают из них атомы хлора и фтора. Эти атомы вступают в реакцию с находящимся в стратосфере озоном и ускоряют его распад, оставаясь при этом неизменными. Таким образом, фреон играет здесь роль катализатора.

Источники и уровни загрязнения гидросферы. Вода является важнейшим фактором среды обитания, который оказывает многообразное воздействие на все процессы жизнедеятельности организма, в том числе и на заболеваемость человека. Она является универсальным растворителем газообразных, жидких и твердых веществ, а также участвует в процессах окисления, промежуточного обмена, пищеварения. Без пищи, но с водой человек способен жить около двух месяцев, а без воды – несколько дней.

Суточный баланс воды в организме человека составляет около 2,5 л.

Гигиеническое значение воды велико. Она используется для поддержания в надлежащем санитарном состоянии тела человека, предметов обихода, жилища, оказывает благоприятное влияние на климатические условия отдыха населения и быта. Но она может являться и источником опасности для человека.

В настоящее время примерно половина населения земного шара лишена возможности потреблять в достаточном количестве чистую пресную воду. В наибольшей степени от этого страдают развивающиеся страны, в которых 61% сельских жителей вынуждены пользоваться небезопасной в эпидемиологическом отношении водой, а 87% – не имеют канализации.

Давно замечено, что исключительно большое значение имеет водный фактор в распространении острых кишечных инфекций и инвазий. В воде водоисточников могут присутствовать сальмонеллы, кишечная палочка, холерный вибрион и т.д. Некоторые патогенные микроорганизмы длительно сохраняются и даже размножаются в природной воде.

Источником заражения поверхностных водоемов могут явиться неочищенные канализационные сточные воды.

Для водных эпидемий считается характерным внезапный подъем заболеваемости, сохранение высокого уровня в течение некоторого времени, ограничение эпидемической вспышки кругом лиц, пользующихся общим источником водоснабжения, и отсутствие заболеваний среди жителей того же населенного места, но пользующихся другим источником водоснабжения.

В последнее время исходное качество природной воды меняется вследствие нерациональной хозяйственной деятельности человека. Проникновение в водную среду различных токсикантов и веществ, изменяющих естественный состав воды, представляет исключительную опасность для природных экосистем и человека.

В использовании человеком водных ресурсов Земли различают два направления: водопользование и водопотребление.

При водопользовании вода, как правило, не изымается из водных объектов, но качество ее может меняться. К водопользованию относится использование водных ресурсов для гидроэнергетики, судоходства, рыболовства и разведения рыбы, отдыха, туризма и спорта.

При водопотреблении вода изымается из водных объектов и либо включается в состав вырабатываемой продукции (и вместе с потерями на испарения в процессе производства входит в состав безвозвратного водопотребления), либо частично возвращается в водоем, но обычно уже значительно худшего качества.

Сточные воды ежегодно несут большое количество различных химических и биологических загрязнений в водные объекты Казахстана: медь, цинк, никель, ртуть, фосфор, свинец, марганец, нефтепродукты, моющие средства, фтор, азот нитратный и аммонийный, мышьяк, пестициды – это далеко не полный и постоянно пополняющийся список веществ, попадающих в водную среду.

В конечном итоге загрязнение водоемов создает угрозу здоровью человека через потребление рыбы и воды.

Опасны не только первичные загрязнения поверхностных вод, но и вторичные загрязнения, возникновение которых возможно в результате химических реакций веществ в водной среде.

Последствия загрязнения природных вод многообразны, но, в конечном итоге, они снижают запасы питьевой воды, вызывают болезни людей и всего живого, нарушают круговорот многих веществ в биосфере.

Источники и уровни загрязнения литосферы . В результате хозяйственной (бытовой и производственной) деятельности человека в почву поступает различное количество химических веществ: пестицидов, минеральных удобрений, стимуляторов роста растений, поверхностно-активных веществ (ПАВ), полициклических ароматических углеводородов (ПАУ), промышленных и бытовых сточных вод, выбросов промышленных предприятий и транспорта и т. п. Накапливаясь в почве, они пагубно влияют на все обменные процессы, происходящие в ней, и препятствуют ее самоочищению.

Все более сложной становится проблема утилизации бытового мусора. Огромные мусорные свалки стали характерным признаком городских окраин. Неслучайно по отношению к нашему времени иногда применяют термин "мусорная цивилизация".

В Казахстане ежегодному захоронению и организованному складированию подлежит в среднем до 90% всех токсичных отходов производства. Эти отходы содержат мышьяк, свинец, цинк, асбест, фтор, фосфор, марганец, нефтепродукты, радиоактивные изотопы и отходы гальванического производства.

Сильное загрязнение почв в РК происходит за счет отсутствия необходимого контроля за использованием, хранением, транспортировкой минеральных удобрений и ядохимикатов. Используемые удобрения, как правило, не очищены, поэтому вместе с ними в почву попадают многие токсичные химические элементы и их соединения: мышьяк, кадмий, хром, кобальт, свинец, никель, цинк, селен. Кроме того, избыток азотных удобрений приводит к насыщению овощей нитратами, что вызывает отравление человека. В настоящее время существует множество различных ядохимикатов (пестицидов). Только в Казахстане ежегодно используется более 100 наименований пестицидов (метафос, децис, БИ-58, витовакс, витотиурам и др.), которые имеют широкий спектр действия, хотя применяются для ограниченного числа культур и насекомых. Они долго сохраняются в почве и проявляют токсическое действие на все организмы.

Наблюдаются случаи хронического и острого отравления людей при проведении сельскохозяйственных работ на полях, огородах, садах, обработанных пестицидами или загрязненных химическими веществами, содержащимися в атмосферных выбросах промышленных предприятий.

Поступление в почву ртути, даже в незначительных количествах, оказывает большое влияние на ее биологические свойства. Так, установлено, что ртуть снижает аммонифицирующую и нитрифицирующую активность почвы. Повышенное содержание ртути в почве населенных мест неблагоприятно воздействует на организм человека: наблюдаются частые заболевания нервной и эндокринной систем, мочеполовых органов, снижение фертильности.

Свинец при попадании в почву угнетает деятельность не только нитрифицирующих бактерий, но и микроорганизмов-антагонистов кишечной и дизентерийной палочек Флекснера и Зонне, удлиняет срок самоочищения почвы.

Находящиеся в почве химические соединения смываются с ее поверхности в открытые водоемы или поступают в грунтовый поток воды, тем самым, влияя на качественный состав хозяйственно-питьевых вод, а также пищевых продуктов растительного происхождения. Качественный состав и количество химических веществ в этих продуктах во многом определяется типом почвы и ее химическим составом.

Особое гигиеническое значение почвы связано с опасностью передачи человеку возбудителей различных инфекционных заболеваний. Несмотря на антагонизм почвенной микрофлоры, в ней длительное время способны сохраняться жизнеспособными и вирулентными возбудители многих инфекционных заболеваний. В течение этого времени они могут загрязнять подземные водоисточники и заражать человека.

С почвенной пылью могут распространяться возбудители ряда других инфекционных болезней: микробакгерии туберкулеза, вирусы полиомиелита, Коксаки, ECHO и др. Почва играет не последнюю роль и в распространении эпидемий, вызванных гельминтами.

3. Промышленные предприятия, объекты энергетики, связи и транспорт являются основными источниками энергетического загрязнения промышленных регионов, городской среды, жилищ и природных зон. К энергетическим загрязнениям относят вибрационное и акустическое воздействия, электромагнитные поля и излучения, воздействия радионуклидов и ионизирующих излучений.

Вибрации в городской среде и жилых зданиях, источником которых является технологическое оборудование ударного действия, рельсовый транспорт, строительные машины и тяжелый автотранспорт, распространяются по грунту.

Шум в городской среде и жилых зданиях создается транспортными средствами, промышленным оборудованием, санитарно-техническими установками и устройствами и др. На городских магистралях и в прилегающих к ним зонах уровни звука могут достигать 70…80 дБ А, а в отдельных случаях 90 дБ А и более. В районе аэропортов уровни звука еще выше.

Источники инфразвука могут быть как естественного происхождения (обдувание ветром строительных сооружений и водной поверхности), так и антропогенного (подвижные механизмы с большими поверхностями - виброплощадки, виброгрохоты; ракетные двигатели, ДВС большой мощности, газовые турбины, транспортные средства). В отдельных случаях уровни звукового давления инфразвука могут достигать нормативных значений, равных 90 дБ, и даже превышать их, на значительных расстояниях от источника.

Основными источниками электромагнитных полей (ЭМП) радиочастот являются радиотехнические объекты (РТО), телевизионные и радиолокационные станции (РЛС), термические цехи и участки (в зонах, примыкающих к предприятиям).

В быту источниками ЭМП и излучений являются телевизоры, дисплеи, печи СВЧ и другие устройства. Электростатические поля в условиях пониженной влажности (менее 70 %) создают паласы, накидки, занавески и т.д.

Доза облучения, создаваемая антропогенными источниками (за исключением облучений при медицинских обследованиях), невелика по сравнению с естественным фоном ионизирующего облучения, что достигается применением средств коллективной защиты. В тех случаях, когда на объектах экономики нормативные требования и правила радиационной безопасности не соблюдаются, уровни ионизирующего воздействия резко возрастают.

Рассеивание в атмосфере радионуклидов, содержащихся в выбросах, приводит к формированию зон загрязнения около источника выбросов. Обычно зоны антропогенного облучения жителей, проживающих вокруг предприятий по переработке ядерного топлива на расстоянии до 200 км, колеблются от 0,1 до 65 % естественного фона излучения.

Миграция радиоактивных веществ в почве определяется в основном ее гидрологическим режимом, химическим составом почвы и радионуклидов. Меньшей сорбционной емкостью обладают песчаная почва, большей – глинистая, суглинки и черноземы. Высокой прочностью удержания в почве обладают 90 Sr и l 37 Cs.

Опыт ликвидации последствий аварии на Чернобыльской АЭС показывает, что ведение сельскохозяйственного производства недопустимо на территориях при плотности загрязнения выше 80 Ки/км 2 , а на территориях, загрязненных до 40...50 Ки/км 2 , необходимо ограничивать производство семенных и технических культур, а также кормов для молодняка и откормочного мясного скота. При плотности загрязнения 15...20 Ки/кмг по 137 Cs сельскохозяйственное производство вполне допустимо.

Из рассмотренных энергетических загрязнений в современных условиях наибольшее негативное воздействие на человека оказывают радиоактивное и акустическое загрязнения.

Негативные факторы при чрезвычайных ситуациях . Чрезвычайные ситуации возникают при стихийных явлениях (землетрясениях, наводнениях, оползнях и т.п.) и при техногенных авариях. В наибольшей степени аварийность свойственна угольной, горнорудной, химической, нефтегазовой и металлургической отраслям промышленности, геологоразведке, объектам котлонадзора, газового и подъемно-транспортного хозяйства, а также транспорту.

Разрушение или разгерметизация систем повышенного давления в зависимости от физико-химических свойств рабочей среды может привести к появлению одного или комплекса поражающих факторов:

Ударная волна (последствия – травматизм, разрушение оборудования и несущих конструкций и т.д.);

Возгорание зданий, материалов и т.п. (последствия – термические ожоги, потеря прочности конструкций и т.д.);

Химическое загрязнение окружающей среды (последствия – удушье, отравление, химические ожоги и т.д.);

Загрязнение окружающей среды радиоактивными веществами. Чрезвычайные ситуации возникают также в результате нерегламентированного хранения и транспортирования взрывчатых веществ, легковоспламеняющихся жидкостей, химических и радиоактивных веществ, переохлажденных и нагретых жидкостей и т.п. Следствием нарушения регламента операций являются взрывы, пожары, проливы химически активных жидкостей, выбросы газовых смесей.

Одной из распространенных причин пожаров и взрывов особенно на объектах нефтегазового и химического производства и при эксплуатации средств транспорта являются разряды статического электричества. Статическое электричество – совокупность явлений, связанных с образованием и сохранением свободного электрического заряда на поверхности и в объеме диэлектрических и полупроводниковых веществ. Причиной возникновения статического электричества являются процессы электризации.

Естественное статическое электричество образуется на поверхности облаков в результате сложных атмосферных процессов. Заряды атмосферного (естественного) статического электричества образуют потенциал относительно Земли в несколько миллионов вольт, приводящий к поражениям молнией.

Искровые разряды искусственного статического электричества – частые причины пожаров, а искровые разряды атмосферного статического электричества (молнии) – частые причины более крупных чрезвычайных ситуаций. Они могут стать причиной, как пожаров, так и механических повреждений оборудования, нарушений на линиях связи и энергоснабжения отдельных районов.

Большую опасность разряды статического электричества и искрение в электрических цепях создают в условиях повышенного содержания горючих газов (например, метана в шахтах, природного газа в жилых помещениях) или горючих паров и пыли в помещениях.

Основными причинами крупных техногенных аварий являются:

Отказы технических систем из-за дефектов изготовления и нарушений режимов эксплуатации; многие современные потенциально опасные производства спроектированы так, что вероятность крупной аварии на них весьма высока и оценивается величиной риска 10 4 и более;

Ошибочные действия операторов технических систем; статистические данные показывают, что более 60% аварий произошло в результате ошибок обслуживающего персонала;

Концентрация различных производств в промышленных зонах без должного изучения их взаимовлияния;

Высокий энергетический уровень технических систем;

Внешние негативные воздействия на объекты энергетики» транспорта и др.

Практика показывает, что решить задачу полного устранения негативных воздействий в техносфере нельзя. Для обеспечения защиты в условиях техносферы реально лишь ограничить воздействие негативных факторов их допустимыми уровнями с учетом их сочетанного (одновременного) действия. Соблюдение предельно допустимых уровней воздействия – один из основных путей обеспечения безопасности жизнедеятельности человека в условиях техносферы.

4. Производственная среда и ее характеристики. На производстве ежегодно погибает около 15 тыс. чел. и травмируется примерно 670 тыс. чел. По данным зам. председателя СМ СССР Догуджиева В.X. в 1988 г. в стране произошло 790 крупных аварий и 1 млн. случаев группового травматизма. Этим определяется важность безопасности деятельности человека, которая отличает его от всего живого – Человечество на всех этапах своего развития серьезное внимание обращало на условия деятельности. В трудах Аристотеля, Гиппократа (III-V) век до н.э.) рассматриваются условия труда. В эпоху возрождения медик Парацельс изучал опасности горного дела, итальянский врач Рамаццини (XVII век) заложил основы профессиональной гигиены. И интерес общества к этим проблемам растет, так как за термином "безопасность деятельности" стоит человек, а "человек есть мера всех вещей" (философ Протагор, V век до н.э.).

Деятельность – это процесс взаимодействия человека с природой и антропогенной средой. Совокупность факторов, влияющих на человека в процессе деятельности (труда) в производстве и в быту, составляют условия деятельности (труда). Причем действие факторов условий может быть благоприятным и неблагоприятным для человека. Воздействие фактора, могущее составить угрозу жизни или ущерб здоровью человека, называется опасностью. Практика свидетельствует, что любая деятельность потенциально опасна. Это аксиома о потенциальной опасности деятельности.

Рост промышленного производства сопровождается непрерывным ростом воздействия производственной среды на биосферу. Считается, что каждые 10…12 лет объем производства удваивается, соответственно также возрастает объем выбросов в окружающую среду: газообразных, твердых и жидких, а также энергетических. При этом имеет место загрязнение атмосферы, водного бассейна и почвы.

Анализ состава загрязнений, выбрасываемых в атмосферу машиностроительным предприятием, показывает, что, кроме основных загрязнений (СО, S0 2 , NO n , C n H m , пыль), в выбросах содержатся токсичные соединения, оказывающие значительное отрицательное воздействие на окружающую среду. Концентрация вредных веществ в вентиляционных выбросах невелика, но общее количество вредных веществ значительно. Выбросы производятся с переменной периодичностью и интенсивностью, но ввиду небольшой высоты выброса, рассредоточенности и плохой очистки они сильно загрязняют воздух на территории предприятий. При малой ширине санитарно-защитной зоны возникают трудности в обеспечении чистоты воздуха в жилых зонах. Существенный вклад в загрязнение атмосферы вносят энергетические установки предприятия. Они выбрасывают в атмосферу СО 2 , СО, сажу, углеводороды, SO 2 , S0 3 PbO, золу и частицы несгоревшего твердого топлива.

Шум, создаваемый промышленным предприятием, не должен превышать предельно допустимых спектров. На предприятиях могут работать механизмы, являющиеся источником инфразвука (двигатели внутреннего сгорания, вентиляторы, компрессоры и т.п.). Допустимые уровни звукового давления инфразвука установлены санитарными нормами.

Технологическое оборудование ударного действия (молоты, прессы), мощные насосы и компрессоры, двигатели являются источниками вибраций в окружающей среде. Вибрации распространяются по грунту и могут достигать фундаментов общественных и жилых зданий.

Контрольные вопросы:

1. Как подразделяются источники энергии?

2. Какие источники энергии относятся к природным?

3. Что относится физическим опасным и вредным факторам?

4. Как подразделяются химические опасные и вредные факторы?

5. Что включают в себя биологические факторы?

6. К каким последствиям ведет загрязнение атмосферного воздуха различными вредными веществами?

7. Что относится к числу примесей, выделяемых естественными источниками?

8. Какие источники создают основное антропогенное загрязнение атмосферного воздуха?

9. Какие самые распространенные токсичные вещества, загрязняющие атмосферу?

10. Что такое смог?

11. Какие виды смога различают?

12. Причины возникновения кислотных дождей?

13. Причины разрушения озонового слоя?

14. Какие бывают источники загрязнения гидросферы?

15. Какие бывают источники загрязнения литосферы?

16. Что такое ПАВ?

17. Что является источником вибрации в городской среде и жилых зданиях?

18. Какой уровень может достигать звук на городских магистралях и в прилегающих к ним зонах?

Особенностью нормирования качества атмосферного воздуха является зависимость воздействия загрязняющих веществ, присутствующих в воздухе, на здоровье населения не только от значения их концентраций, но и от продолжительности временного интервала, в течение которого человек дышит данным воздухом.

Поэтому в Российской Федерации, как и во всем мире, для загрязняющих веществ, как правило, установлены два норматива: рассчитанный на короткий период воздействия загрязняющих веществ (данный норматив называется "предельно допустимые максимально-разовые концентрации"); и норматив, рассчитанный на более продолжительный период воздействия (8 часов, сутки, по некоторым веществам - год). В Российской Федерации данный норматив устанавливается для 24 часов и называется "предельно допустимые среднесуточные концентрации".

ПДК - предельная допустимая концентрация загрязняющего вещества в атмосферном воздухе - концентрация, не оказывающая в течение всей жизни прямого или косвенного неблагоприятного действия на настоящее или будущее поколение, не снижающая работоспособности человека, не ухудшающая его самочувствия и санитарно-бытовых условий жизни. Величины ПДК приведены в мг/куб. м.

ПДКмр - предельно допустимая максимальная разовая концентрация химического вещества в воздухе населенных мест, мг/куб. м. Эта концентрация при вдыхании в течение 20-30 минут не должна вызывать рефлекторных реакций в организме человека.

ПДКсс - предельно допустимая среднесуточная концентрация химического вещества в воздухе населенных мест, мг/куб. м. Эта концентрация не должна оказывать на человека прямого или косвенного вредного воздействия при неопределенно долгом (годы) вдыхании.
В качестве обязательных статистических характеристик загрязнения воздуха используются три показателя качества воздуха: индекс загрязнения атмосферы - ИЗА, стандартный индекс - СИ и наибольшая повторяемость превышения ПДК - НП.

ИЗА - комплексный индекс загрязнения атмосферы, учитывающий несколько примесей. Комплексный ИЗА рассчитывается по специальной формуле, которая учитывает среднегодовую концентрацию загрязняющего вещества, его среднесуточную предельно допустимую концентрацию и коэффициент, который зависит от степени вредности загрязняющего вещества.

ИЗА характеризует уровень хронического, длительного загрязнения воздуха.

СИ - стандартный индекс, наибольшая измеренная разовая концентрация примеси, деленная на ПДК. Он определяется из данных наблюдений на посту за одной примесью, или на всех постах рассматриваемой территории за всеми примесями за месяц или за год. Характеризует степень кратковременного загрязнения.

НП - наибольшая повторяемость (в процентах) превышения максимально разовой ПДК по данным наблюдений за одной примесью на всех постах территории за месяц или за год.

В соответствии с существующими методами оценки выделяют четыре уровня загрязнения атмосферы :
1. Низкий при ИЗА от 0 до 4, СИ<1, НП < 10 %;
2. Повышенный при ИЗА от 5 до 6, СИ<5 , НП от 10 до20 %;
3. Высокий при ИЗА от 7 до 13, СИ от 5 до 10, НП от 20 до 50%;
4. Очень высокий при ИЗА равном или больше 14, СИ>10, НП>50%.

Охрана и оздоровление воздушной среды включает в себя комплекс научно обоснованных социально-экономических, технических, санитарно-гигиенических и иных мер по охране атмосферного воздуха от загрязнения промышленными и транспортными выбросами, которые можно объединить в следующие основные группы:
1. Конструктивно-технологические мероприятия, исключающие выделение опасных веществ в самом источнике их образования.
2. Улучшение состава топлива, совершенствование аппаратов карбюрации, уменьшение или устранение попадания отбросов в атмосферу с помощью очистных сооружений.
3. Предотвращение загрязнения атмосферы путем рационального размещения источников вредных выбросов и расширения зеленых насаждений.
4. Контроль за состоянием воздушной среды со стороны специальных государственных органов и общественности.

3. Факторы загрязнения воздушной среды .

Техногенное и антропогенное загрязнение самое опасное для атмосферы. В воздушный бассейн Новосибирской области с выбросами промышленных предприятий и транспорта поступают тысячи тонн различных вредных веществ. Уровень загрязнения атмосферы зависит:

От количественного и качественного состава промышленных выбросов;

Их периодичности и высоты, на которой осуществляется выброс;

От климатических условий, определяющих их перенос, рассеивание;

От атмосферных осадков, вымывающих вредные вещества;

От интенсивности фотохимических реакций в атмосфере.

Суммарная масса выбросов загрязняющих веществ в атмосферу в 2003 году составила 206,4 тыс.т. (подсчитать количество вагонов). Основными источниками загрязнения воздуха являются предприятия черной и цветной металлургии, тепловой энергетики, химической и цементной промышленности, нефте- и газопереработки, транспорт. Все эти предприятия кроме нефте и газопереработки сконцентрированы в Новосибирске и близь прилегающих к нему территориям. Каждый промышленный источник выделяет свой специфический набор загрязнения веществ:

Теплоэнергетика – оксиды серы, углерода, металлов, азота, пыль;

Транспорт – оксиды углерода и азота, углеводороды, тяжелые металлы;

Производство цемента – оксиды углерода, пыль.

Проанализируем таблицу «Валового выброса загрязняющими веществами атмосферу Новосибирской области»

По данным 2002 г. и 2003 года можно увидеть, что увеличение выбросов происходит год от года. Наибольшее количество выбросов составляют оксиды углерода, диоксид серы и оксиды азота.

Для определения степени загрязнения воздушной среды вводится показатель – индекс загрязнение воздуха (ИЗВ). ИЗВ обозначает количество вредных веществ в определенном объеме воздуха (1м 3 ). Для отслеживания степени загрязнения воздуха используются лазерные спектроскопы, которые обнаруживают присутствие в воздухе загрязняющих веществ на расстоянии 2 км. Установлены показатели ИЗВ:

    до 5 баллов – воздух чистый;

    от 5 – 6 баллов – загрязнение повышенное;

    от 7 до 13 баллов – ИЗВ высокое;

    более 14 баллов – очень высокое.

По индексу загрязнения определяется показатель - предельно допустимая концентрация, которая определена нормативными актами (мг/м 3).

Таблица 1

Индекс загрязнения отдельными ингредиентами атмосферного воздуха в Новосибирской области.

Загрязняющие вещества

Факторы загрязнения

1.Твердые и взвешенные вещества (сажа, пыль)

Неблагоустроенные дороги

В Новосибирске от 9 до 25 – очень высокий;

По области от 7 до 9 (летом пыль, зимой – сажа)

2.Оксид углерода

Выбросы промышленных предприятий;

Транспорт.

Он не вымывается осадками и не выступает в химические соединения с другими примесями. Его содержание регулируется главным образом условиями переноса и рассеивания

ПДК от 0, 7 до 1,6

повышенное и высокое

3.Диоксид азота

Образуется в результате процессов горения, количество выбросов зависит от температуры выходящих газов

1,3 – 1,5 ПДК

4.Формальдегид

Выбрасывается при производстве пластмасс, лаков, красок, деревообработки, автотранспорта

Повышенное 1 – 2,3 ПДК

Выбросы промышленных предприятий, зависит от условий рассеивания

0,003 – 3,9 ПДК

6. Фтористый водород

Металлургические предприятия

Повышенное 1,2 – 5,9 ПДК

7.Бенз(а)пирен

Источником является автотранспорт, котельные, ТЭЦ

Повышенное 1,4 – 4,9 ПДК (ВОЗ – 2,9)

Промышленные выбросы

Предельно допустимый в отдельных случаях 1,4 -9 ПДК

9.Диоксид серы

Сжигание угля и других видов твердого топлива;

Промышленные выбросы

Повышенное 0,9 – 1,4 ПДК

Наиболее повышенное загрязнение воздуха наблюдается в промышленных зонах Новосибирской области (Новосибирск, Искитим, Бердск, Барабинск, Куйбышев). Но в результате подвижности воздуха и его рассеивания загрязнению подвергается вся воздушная среда области, только ПДК будет разная.

Снежный покров позволяет более определенно отследить преобладание загрязнителей на отдельной территории области. Снег лежит 5 месяцев или 168 дней. За этот период в снежном покрове накапливается огромное количество загрязняющих атмосферу веществ.

Проведем анализ таблицы 1.1.2.1.

Таблица 2

Концентрация веществ

SО,сульфаты

Азот аллюминий

1.Барабинский

2.Искитим

4.Карасук

5.Кузедево

6.Кыштовка

7.Маслянино

8.Огурцово

9.Татарск

Из таблицы видно, что даже при отсутствии крупных промышленных предприятий на территории Татарского, Карасукского, Каргатского, Маслянинского районов, степень загрязнения снега повышенная, из-за рассеивания выбросов.

    Меры по охране воздушной среды.

Основными путями снижения и полной ликвидации загрязнений служат: разработка и внедрение очистных сооружений, безотходные технологии производства, борьба с выхлопными газами автомобилей, озеленение. Очистные сооружения являются основным средством борьбы с промышленными загрязнениями атмосферы. Очистка выбросов осуществляется путем пропускания их через различные фильтры (механические, электрические, магнитные, звуковые и др.), воду и химически активные жидкости. Все они предназначены для улавливания пыли, паров и газов.

Безотходная технология аналогична процессам, происходящим в биосфере, где в ее круговороте ненужных отходов не существует и где все они полностью используются различными звеньями экосистемы. Полностью исключаются выбросы в атмосферу, а используются для извлечения из промышленного воздуха ингредиентов, которые можно использовать в производстве (сера, азот, углерод, металлы).

Для защиты воздуха от выхлопных газов автомобилей используются фильтры и устройства, дожигающие топливо, чтобы снизить их выброс. В бензин добавляются вещества, заменяющие содержание бензина. Улучшается дорожное строительство в области, систематически ведется ремонт дорог, исключающие частую смену режима двигателей и уменьшение выбросов выхлопных газов.

Озеленение населенных пунктов и промышленных объектов, имеет важное значение в борьбе с загрязнением атмосферы. Зеленые растения в результате фотосинтеза освобождают воздух от диоксида углерода и обогащают ее кислородом. На деревьях и кустах оседает до 72% взвешенных в воздухе частиц пыли и до 60% диоксида серы. Особенно много пыли и загрязняющих веществ улавливают лиственные породы деревьев.

За качеством состояния воздушной среды ведутся наблюдения на метеостанциях. Наиболее системный мониторинг проводится в Новосибирске. Качественное состояние воздушной среды должно измеряться круглосуточно и население должно получать информацию о загрязнении воздуха.

5. Охрана воздушной среды в Новосибирской области.

Опасность загрязнения атмосферного воздуха несет тяжелые последствия. Воздух – подвижный объект природы, который постоянно перемещается и изменяет свои свойства и состав. В процессе циркуляции атмосферы воздух может оказаться загрязненным в местах, где нет «грязных» производств. Загрязняющие выбросы могут сохраняться в воздухе несколько суток и перемещаться с воздухом, выпадать с осадками в разных местах. Загрязнение воздуха – это мина замедленного действия, которая угрожает всему населению Земли.

Все усилия современного производства должны быть направлены на осуществление мер по снижению и полной ликвидации загрязнения атмосферы. Основным средством борьбы с промышленным загрязнением являются очистные фильтры. Очистные фильтры в зависимости от компонента загрязнения, который надо задерживать бывают механические, электрические, магнитные, звуковые и др. Промышленные выбросы в атмосферу пропускают через один или несколько фильтров, воду, химические активные жидкости и улавливают пыль, копоть, газы, пары. При грубой очистке промышленных выбросов устраняется от 70 до 84% загрязнителей. При средней очистке задерживается до 95 -98%, при тонкой - до 99% и выше.

Решить проблему охраны атмосферы только с помощью очистных фильтров невозможно. Необходимо внедрение в промышленную практику безотходных технологий.

Один из способов предохранения атмосферы от загрязнения – переход на альтернативные источники энергии. По запасам газа России опережает другие страны мира. Газификация хозяйства и экономики России составляет 45%, в нашей области.

Для уменьшения токсических веществ в выхлопных газах автомобилей предполагается замена бензина другими видами топлива – спирт, газ. Установка фильтров для очистки выхлопных газов автомобилей, использование добавок, не содержащих свинец, уменьшает загрязнение воздуха. Содержание дорог в хорошем состоянии, создание расширенного дорожного полотна и развязок на улицах городов исключает частую смену режимов работы двигателей, уменьшает количество выбросов.

Зеленые насаждения за счет фотосинтеза освобождают воздух от диоксида углерода и обогащают его кислородом. На листья деревьев и кустарников оседает до 72% пыли и взвешенных частиц, до 70% диоксида серы. Зеленые насаждения регулируют микроклимат населенных пунктов, гасят шум, приносящий вред здоровью людей.

Для поддержания чистоты большое значение имеет планировка города. Жилые кварталы лучше располагать на возвышенных участках и с подветренной стороны. Промышленные зоны размещать за пределами города.

Одним из направлений деятельности по снижению выбросов в атмосферу является «Закон об охране окружающей природной среды» Конституции РФ. В данном Законе определены меры охраны, утвержденные ГОСТами:

Нормы и методы измерений содержания оксида углерода и углеводородов в отработанных газах автомобилей с бензиновыми двигателями;

Нормы и методы измерения дымности отработанных газов дизелей;

Правила контроля качества воздуха населенных пунктов;

Правила установления допустимых выбросов вредных веществ промышленными предприятиями;

Инструкция о порядке рассмотрения, согласования и экспертизы воздухоохранных мероприятий и выдаче разрешений на выброс загрязняющих веществ в атмосферу.

Кроме общегосударственной нормативной базы, регулирующей глобальные вопросы охраны атмосферы и ее рационального использования в области, создана служба экологического контроля, которая следит за выполнением Федерального закона «Об охране окружающей природной среды».

Контрольные вопросы

    Опишите факторы техногенного загрязнения воздушной среды в нашей области.

    Ингредиенты, загрязняющие воздушную среду в Новосибирской области. Критерии измерения уровня загрязнения воздуха.

    Уровень загрязнения воздуха в г. Татарске зимой и летом. Необходимые меры улучшения качества воздушной среды в нашем городе.

    Воздействие загрязнения воздуха на здоровье людей, растения, животных.

Литература

    Ушаков С.А., Кац Я.Г. Экологическое состояние территории России. М.: Академия, 2002 г.

    Состояние окружающей среды Новосибирской области в 2003 году (Доклад МПР по Новосибирской области)

    Константинов В.М. Экологические основы природопользования. М., АCADEMA. 2006

Загрязнение окружающей среды – сложная и многоаспектная проблема. Однако, главным в современной её трактовке являются возможные неблагоприятные последствия для здоровья как настоящего, так и последующих поколений, ибо человек в ряде случаев уже нарушил и продолжает нарушать некоторые важные экологические процессы от которых зависит его существование.
Воздействие окружающей среды на здоровье городского населения
В большой степени загрязнение атмосферы сказывается на здоровье городского населения.
Наиболее активными загрязнителями атмосферы нашего города
(Днепропетровска) являются промышленные предприятия. Лидеры среди них - ПД
ГРЭС (среднее количество выбрасываемых в атмосферу вредных веществ ежегодно составляет около 78501,4 тонн), ОАО “Нижнеднепровский трубопрокатный завод”
(6503,4 тонн), ПО ЮМЗ (938 тонн), ОАО ДМЗ им. Петровского (10124,2 тонн).
Существенный вклад в картину общего загрязнения атмосферного воздуха города вносит автотранспорт. На его долю приходится более 24% от всех выбросов токсических веществ.
На территории Днепропетровска находится около 1500 автохозяйств.
Государственного транспорта насчитывается около 27 тысяч единиц. В личном пользовании граждан находится около 123000 автомобилей.
В ряде районов города (площадь Островского, проспект Газеты Правды, площадь
Ленина) наблюдается превышение предельно допустимых норм уровня загазованности по монооксиду углерода (СО) и углеводорода (СН).
Наибольший уровень загрязнения воздуха наблюдается на площади Островского, которая является одной из транспортных развязок Днепропетровска. Одной из причин загрязнения воздуха являются отработанные газы автотранспорта.
Для снижения влияния автомобильного транспорта на экологическое состояние
Днепропетровска управление по экологии города, проводит работу по следующим направлениям: переоборудование автотранспортных средств на сжатый природный газ; улучшение экологических свойств топлива путем проведения его модификации; проведение контроля и регулирования топливной аппаратуры на токсичность выхлопных газов: перевод автотранспортных средств с жидкого на газообразное топливо.
Работы по указанным направлениям проводятся с 1995 года. Было принято четыре решения ГИКа (№1580 - 95 г.; №442 - 96 г.;№45 - 97 г. и №380 -98г.)
Последнее решение (№380 от 19.03.98 г.) объединяет все направления деятельности управления по снижению влияния выхлопных газов автотранспорта на загрязнение атмосферного воздуха, определяет порядок внедрения и первоочередные мероприятия.
Управлением по экологии, выполняя решение горисполкома, проводится контроль за соблюдением на транспортных средствах требований природоохранного законодательства.
В настоящее время в городе работают 10 стационарных постов наблюдения за загрязнением атмосферного воздуха, семь из которых принадлежат Укргидромету и три автоматизированные - СЭМ-Город.
В 1998 году общий объем выбросов вредных веществ в атмосферу по сравнению с
1997 годом уменьшился. Так, например, Приднепровская ГРЭС, выбросы загрязняюших веществ которой составляют 75-80% выбросов всех предприятий города, снизила их объем на 7453 тонн, ОАО “ДМЗ им.Петровского” - на 940 тонн. ОАО “Днепрошина” - на 220 тонн, ПО “ЮМЗ”- на 72,5 тонн.
Несколько предприятий увеличило выбросы в 1998 году по сравнению с 1997 годом, но увеличение незначительное: ОАО “Нижнеднепровский трубопрокатный завод - на 15 тонн, ОАО “Днепропетровский силикатный завод” - на 79,2 тонны.
Изменения величин объемов выбросов загрязняющих веществ в атмосферу связаны с изменениями объемов производств. Мероприятия по снижению выбросов в атмосферу в отчетном году не выполнялись из-за отсутствия средств. Общий лимит выбросов загрязняющих веществ в атмосферу от стационарных источников по Днепропетровску в 1998 году имел объем 128850 тонн. Количество предприятий-загрязнителей атмосферного воздуха в городе - 167, получили
“нулевой” лимит - 33.
Среднегодовые концентрации загрязняющих веществ в 1998 году по
Днепропетровску превышали ПДК:

По пыли в 2 раза;

Двуокиси азота в 2 раза;

Оксиду азота в 1,2 раза;

Аммиаку в 1,8 раз;

Формальдегиду в 1,3 раза.

Выбросы вредных веществ в атмосферный воздух по регионам (тыс. т.)
| |Стационарными источниками |Передвижными |
| |загрязнения |средствами |
| |1985 |1990 |1996 |1985 |1990 |1996 |
|Украина |12163,0 |9439,1 |4763,8 |6613,|6110,|1578,|
| | | | |9 |3 |5 |
|Автономная Республика|593,2 |315,9 |61,7 |362,3|335,2|60,8 |
|Крым | | | | | | |
|Винницкая |272,6 |180,2 |83,4 |281,3|248,5|67,5 |
|Волынская |37,3 |33,9 |15,3 |142,9|134,5|38,4 |
|Днепропетровская |2688,7 |2170,1 |831,4 |273,1|358,3|66,7 |
|Донецкая |3205,2 |2539,2 |1882,6 |570,3|550,9|135,5|
|Житомирская |79,2 |84,8 |23,1 |205,9|192,4|52,3 |
|Закарпатская |32,0 |38,2 |11,6 |132,9|106,3|20,4 |
|Запорожская |748,3 |587,5 |277,0 |305,9|299,6|67,1 |
|Ивано-Франковская |468,2 |403,3 |180,4 |101,1|146,2|41,7 |
|Киевская |233,8 |219,9 |81,1 |358,2|289,2|85,7 |
|Кировоградская |252,3 |171,7 |59,5 |204,5|166,3|42,1 |
|Луганская |1352,3 |862,3 |529,6 |174,5|308,2|78,6 |
|Львовская |378,0 |271,9 |106,4 |320,7|295,4|74,7 |
|Николаевская |154,4 |98,6 |27,2 |222,5|201,7|41,7 |
|Одесская |174,8 |129,0 |36,6 |354,2|297,1|72,2 |
|Полтавская |221,3 |220,7 |97,3 |324,9|279,8|99,9 |
|Ровенская |117,9 |63,5 |20,4 |161,2|141,4|35,1 |
|Сумская |121,5 |117,8 |33,7 |183,5|179,6|52,7 |
|Тернопольская |41,4 |71,6 |16,8 |183,0|148,6|37,1 |
|Харьковская |389,1 |355,9 |169,0 |434,7|318,6|108,5|
|Херсонская |120,4 |74,7 |25,8 |236,9|189,1|47,0 |
|Хмельницкая |82,5 |125,2 |31,4 |214,6|183,4|49,8 |
|Черкасская |147,4 |129,7 |56,6 |286,0|213,2|62,5 |
|Черновицкая |29,3 |25,9 |7,7 |121,4|107,3|20,3 |
|Черниговская |109,5 |81,6 |32,9 |186,8|174,7|55,2 |
|г. Киев |99,6 |54,7 |61,5 |231,3|218,3|57,0 |
|г. Севастополь |12,8 |11,3 |3,8 |39,3 |26,5 |8,0 |

Оценка риска здоровья городского населения в связи с загрязнением окружающей среды.
Система медико-экологического регламентирования основана на предположении о том, что загрязнение окружающей среды создает опасность для здоровья человека. Основанием для этого служат, во-первых, многочисленные жалобы населения, проживающего в условиях загрязненной окружающей среды, на неприятные запахи, головные боли, общее плохое самочувствие и другие дискомфортные состояния; во-вторых, данные медицинской статистики, свидетельствующие о тенденции к росту заболеваемости на загрязненных территориях; в-третьих, данные специальных научных исследований, направленных на определение количественных характеристик связи между загрязнением окружающей среды и его влиянием на организм (см. выше).
В связи с этим оценка риска здоровью человека, обусловленного загрязнением окружающей среды, является в настоящее время одной из важнейших медико- экологических проблем. Однако существует значительная неопределенность в определении понятия риска здоровью и установлении факта воздействия загрязняющих веществ на человека и его количественных характеристик.
К сожалению, существующая практика оценки опасности загрязнения, основанная на сравнении количественных показателей содержания примесей (концентрации) с нормативными регламентами (ПДК, ОБУВ и т.д.), не отражает истинной картины риска ухудшения здоровья, который может быть связан с окружающей средой. Это обусловлено следующей причиной.
Основой для установления безопасных уровней воздействия загрязнителей окружающей среды является концепция пороговости вредного действия, постулирующая, что для каждого агента, вызывающего те или иные неблагоприятные эффекты в организме, существуют и могут быть найдены дозы
(концентрации), при которых изменения функций организма будут минимальными
(пороговыми). Пороговость всех типов действия - ведущий принцип отечественной гигиены.
В целостном организме осуществляются процессы приспособления и восстановления биологических структур, и повреждение развивается только тогда, когда скорость процессов деструкции превышает скорость процессов восстановления и приспособления.
В действительности величина пороговой дозы зависит от следующих факторов:
- индивидуальной чувствительности организма,
- выбора показателя для ее определения,
- чувствительности использованных методов.
Так, разные люди по-разному реагируют на одни и те же воздействия. Кроме того, индивидуальная чувствительность каждого человека также подвержена значительным колебаниям. Таким образом, одни и те же уровни загрязнения окружающей среды часто вызывают далеко не однозначную реакцию как у населения в целом, так и у одного и того же человека. С другой стороны, чем выше чувствительность методов, тем ниже порог. Теоретически даже незначительное количество биологически активных веществ будет вступать в реакцию с биосубстратами и, следовательно, будет действующим.

Любой фактор внешней среды может стать патогенным, но для этого необходимы соответствующие условия. К ним относятся: интенсивность или мощность фактора, скорость нарастания этой мощности, продолжительность действия, состояние организма, его сопротивляемость. Сопротивляемость организма, в свою очередь, является переменной величиной: она зависит от наследственности, возраста, пола, физиологического состояния организма в момент воздействия неблагоприятного фактора, ранее перенесенных заболеваний и т.д. Поэтому в одинаковых условиях внешней среды один человек заболевает, а другой остается здоров или один и тот же человек в одном случае заболевает, а в другом - нет.
Таким образом, можно сделать вывод о том, что изучение заболеваемости населения помогает определить риск неблагоприятного влияния загрязнения окружающей среды, однако не в полной мере. Медико-экологическое регламентирование должно не только обеспечивать предупреждение появления заболеваний среди населения, но и способствовать созданию наиболее комфортных условий жизни.

Методология оценка риска здоровья

При оценке риска здоровью, который обусловливается качеством окружающей среды, принято исходить из следующих теоретических соображений, получивших признание научной общественности:
биологический эффект воздействия зависит от интенсивности вредного
(химического, физического и др.) фактора, действующего на организм человека;
интоксикация есть одна из фаз адаптации;
предельно допустимый уровень загрязнения окружающей среды есть понятие вероятностное, определяющее приемлемый (допустимый) риск и имеющее профилактическую направленность и гуманистическое значение.
Схема оценки риска здоровью состоит из четырех основных блоков:
расчет потенциального (прогнозируемого) риска в соответствии с результатами оценки качества окружающей среды;
оценка заболеваемости (здоровья) населения в соответствии с материалами медицинской статистики, диспансерных наблюдений и специальных исследований;
оценка реального риска здоровью с использованием статистических и экспертных аналитических методов;
оценка индивидуального риска на основе расчета накопленной дозы и применения методов дифференциальной диагностики.

ОЦЕКА КАЧЕСТВА ОКРУЖАЮЩЕЙ СРЕДЫ И РАСЧЕТ ПОТЕНЦИАЛЬНОГО РИСКА
1. Оценка потенциально вредных факторов
Оценка качества окружающей среды невозможна без всестороннего учета всех источников, способных ее загрязнять. Традиционно такие источники делятся на две основные группы:
естественные (природные),
антропогенные (связанные с деятельностью человека).
Первая из названных групп проявляет свое действие при стихийных бедствиях, таких как извержение вулканов, землетрясения, стихийные пожары. При этом в атмосферу, водные объекты, почву и т.д. выделяется большое количество взвешенных веществ, сернистого ангидрида и пр. В ряде случаев опасное загрязнение может создаваться и при относительно "спокойных" ситуациях, например при выделении радона и других опасных природных соединений из недр
Земли через трещины и изломы ее поверхностных слоев.
Однако наибольшую опасность в настоящее время представляет вторая группа источников, создающая антропогенное загрязнение. Ведущее место в этом типе загрязнения принадлежит промышленным предприятиям, теплоэлектроцентралям и автотранспорту. Эти источники, непосредственно загрязняя атмосферу, водные объекты, почву, создают условия и для ее вторичного загрязнения, вызывая накопление примесей в объектах окружающей среды.
2. АНАЛИЗ ДАННЫХ МЕДИЦИНСКОЙ СТАТИСТИКИ
Медицинская статистика предполагает проведение большого объема работ государственного масштаба, связанных с формированием информационных баз по следующим показателям.
Демографические показатели (рождаемость, смертность, детская смертность, неонатальная, постнатальная, перинатальная смертность, продолжительность предстоящей жизни).
Показатели рождаемости выражаются демографическими коэффициентами и рассчитываются по отношению к числу жителей, проживающих на административной территории. Основными являются общий и специальный показатели рождаемости. Общий показатель дает только приближенное представление о процессе воспроизводства населения, поскольку исчисляется по отношению к численности всего населения, тогда как рожают только женщины и только в детородном возрасте Плодовитым (фертильным) возрастом принято считать 15-49 лет. В связи с этим более объективно рождаемость может быть представлена специальным показателем, рассчитываемым именно на этот возраст.
Статистика смертности косвенно отражает состояние здоровья живущего населения, характеризуя риск смерти, который зависит от многих факторов.
Размеры смертности определяют путем вычисления коэффициентов смертности.
Коэффициенты смертности можно разделить на общие и специфические. При их расчете очень важно быть уверенным в том, что число смертей, используемое для вычисления этого коэффициента, имеет место именно в той популяции, для которой проводится расчет. Такая группа населения квалифицируется как популяция, подвергающаяся риску. Популяция риска, представляет собой среднюю численность населения на данной территории в период, к которому относятся коэффициенты смертности.
Детской смертностью называют смертность детей на первом году жизни. При анализе повозрастной смертности детская смертность выделяется для специального анализа вследствие ее особого значения как критерия социального благополучия населения и как показателя эффективности оздоровительных мероприятий. Детская смертность составляет значительную долю общей смертности и требует тщательного анализа ее причин. Размеры смертности на первом году жизни превышают показатели смертности в последующих возрастах, кроме возраста глубокой старости, и значительно снижают показатель средней продолжительности жизни.
Смертность детей на первом месяце жизни называется неонатальной и разделяется на раннюю неонатальную (на первой неделе жизни) и позднюю неонатальную. Смертность детей в возрасте от месяца до года называется постнеонатальной.
Перинатальная смертность - это число детей, мертворожденных и умерших в первые 7 дней жизни (168 часов). В составе перинатальной смертности различают антенатальную, интранатальную и постнатальную смертность
(смертность до начала родов, в период родов и после рождения соответственно).
Продолжительность предстоящей жизни определяется путем составления таблиц дожития. Таблицы дожития являются особым способом выражения коэффициента смертности в определенной группе населения для данного периода времени. Их основными элементами являются показатели вероятности смерти, рассчитанные раздельно по отдельным годам жизни или возрастным группам.
Средняя продолжительность предстоящей жизни - это число лет, которое осталось прожить людям данного возраста, а средняя продолжительность жизни
- это число лет, которое в среднем предстоит прожить данному поколению родившихся или сверстникам определенного возраста, если предположить, что на всем протяжении их жизни смертность в каждой возрастной группе будет такой, какой она была в том году, для которого производилось исчисление.
Такой порядок определения средней продолжительности жизни принят в международной статистической практике и при страховании жизни. Поэтому для разных стран показатели средней продолжительности жизни являются сопоставимыми.

Заболеваемость: инфекционная и неинфекционная (болезни различных органов и систем), репродуктивная функция популяции, инвалидность.
Заболеваемость населения - одна из важнейших характеристик общественного здоровья. Для ее оценки используются коэффициенты, рассчитанные как отношение числа заболеваний к численности групп населения, в которых они выявлены за определенный период времени, и пересчитанные на стандарт (100,
1000, 10 000, 100 000 человек).
Эти коэффициенты отражают вероятность (риск) появления того или иного заболевания в изучаемой группе населения.
Основные показатели заболеваемости населения представлены в табл. 2.1.
Говоря о заболеваемости, имеют в виду обычно только новые случаи заболеваний (первичная заболеваемость). Если необходимо составить представление как о новых случаях заболеваний, так и об уже имевшихся ранее, то рассчитывается показатель болезненности. Следовательно, заболеваемость является динамичным показателем, а

Таблица 1
Показатели заболеваемости
|Содержание |Основной термин |Способ |Термин |
|показатели |синонимы |вычисления |рекомендованны|
| | | |й ВОЗ |
|Впервые в жизни |Первичная |(q- 1000)/N |Incidence |
|диагностированные|заболеваемость | | |
|заболевания в |(заболеваемость, | | |
|течение |частота вновь | | |
|определенного |выявленных | | |
|периода (год) |заболеваний) | | |
|Все заболевания |Распространенность |(Р. 1000)/N |Prevalence |
|населения, |(болезненность, | | |
|имевшие место за |общая | | |
|определенный |заболеваемость, | | |
|период (год) |частота всех | | |
|(острые, |болезней) | | |
|хронические, | | | |
|новые и известные| | | |
|ранее) | | | |
|Заболевания, |Патологическая |Способ |Point |
|которые |пораженность |вычисления тот |prevalence |
|зарегистрированы |(частота |же | |
|у населения на |заболеваний, |применительно к| |
|определенную дату|выявленных при |соответствующей| |
|(момент) |осмотре, контингент |группе | |
| |больных на |населения | |
| |определенную дату) | | |

Примечание, q - число впервые выявленных заболеваний, Р - число всех заболеваний, N - средняя численность населения. болезненность - статичным. Заболеваемость может заметно отличаться от болезненности при хронических заболеваниях, однако при непродолжительных заболеваниях это различие незначительно. При выявлении причинных связей наиболее подходящими считают коэффициенты заболеваемости. Этиологические факторы проявляются прежде всего через развитие заболевания, поэтому чем чувствительнее и динамичнее показатели, тем они полезнее при исследовании причинных связей. Для установления влияния среды обитания на здоровье коэффициенты заболеваемости должны рассчитываться применительно к конкретным группам населения, чтобы затем можно было определить наличие или отсутствие причинно-следственных связей между воздействием конкретных факторов среды обитания на соответствующую группу населения.
Следует отметить, что полнота и достоверность данных о заболеваемости существенно зависят от метода ее изучения.
Инвалидность - это стойкая (длительная) потеря или значительное ограничение трудоспособности. Инвалидность наряду с заболеваемостью относят к медицинским показателям здоровья населения. Чаще всего причиной инвалидности является заболевание, которое, несмотря на лечение, приобретает устойчивый характер, а функция того или иного органа не восстанавливается.
Физическое развитие: информация, характеризующая здоровье детей, подростков и взрослых.
Под физическим развитием человека понимают комплекс функционально- морфологических свойств организма, который в итоге определяет запас его физических сил. На физическое развитие влияют многие факторы эндогенного и экзогенного характера, что определяет частое использование оценок физического развития в качестве интегральных показателей для характеристики состояния здоровья. Показатели физического развития, как правило, относят к позитивным признакам здоровья. Однако лица, имеющие заболевания, т.е. носители негативных признаков, также располагают определенным уровнем физического развития. Поэтому целесообразно квалифицировать физическое развитие не как самостоятельный позитивный показатель здоровья, а как критерий, пребывающий во взаимосвязи с другими показателями, характеризующими качественную сторону жизни населения.
Особенно большое значение показатели физического развития имеют для оценки здоровья тех групп населения, заболеваемость и инвалидизация которых сравнительно незначительны: дети старше 1 года, рабочие определенных профессий со строгим профессиональным отбором. Роль физического развития в области профилактики определяется также тем, что его состояние в значительной степени управляемо - средствами регулирования питания, режима труда и отдыха, двигательного режима, отказа от вредных привычек и т. д.
Для характеристики здоровья населения могут использоваться и другие показатели «качества» жизни или здоровья здоровых: умственное развитие, умственная и физическая работоспособность и др.
Анализ данных медицинской статистики предполагает ряд последовательных этапов.
1. Предположение: выявление заболеваний, контрастно выделяющихся во времени или в пространстве
Изучение здоровья и заболеваемости населения по материалам медицинской статистики позволяет сопоставлять эти показатели с временными и пространственными характеристиками. В этом случае основной целью такого сопоставления можно считать определение территорий, контрастно выделяющихся по уровню смертности, заболеваемости и т. д. Особое место здесь занимают методы электронного картографирования районов наблюдения, позволяющие получать достаточно наглядную информацию. Весьма характерными в этом плане являются получившие широкое распространение в последнее время работы по созданию медико-экологических атласов. Особое внимание при этом следует уделять достоверности отслеживаемой информации.
Так, например, наиболее широко для изучения заболеваемости по обращаемости используются материалы лечебно-профилактических учреждений (ЛПУ). Получение отчетов ЛПУ по утвержденным формам не вызывает, как правило, больших затруднений. Эти данные могут и должны использоваться заинтересованными организациями для оценки здоровья населения. Однако следует иметь в виду, что существующая система учета и отчетности ЛПУ позволяет получить лишь приблизительные оценки заболеваемости, а также временной нетрудоспособности в связи с заболеваниями и травмами. Данные ЛПУ достаточно точно отражают лишь работу самих этих учреждений, но не распределение заболеваемости по территории и группам населения. Это связано со следующими обстоятельствами.
1. Учет и отчетность ЛПУ основаны на регистрации обращаемости. Однако среди реально заболевших лиц далеко не все обращаются за медицинской помощью, причем доля обращающихся среди заболевших зависит от разных причин: тяжесть заболевания, доступность конкретного вида медицинской помощи в ближайшем
ЛПУ, возраст и пол больных, характер их трудовой деятельности.
2. Наряду с территориальными ЛПУ, имеются ведомственные и частные учреждения. Определить долю лиц, проживающих в зоне обслуживания ЛПУ, но получающих медицинскую помощь в других учреждениях (медсанчасти промышленных предприятий, поликлиники МО, МВД и др.), крайне сложно. Кроме того, нередко имеет место двойная регистрация одного и того же заболевания в разных лечебных учреждениях.
3. Люди, проживающие на одной и той же территории, обращаются по поводу разных заболеваний в разные ЛПУ: поликлиники, диспансеры, диагностические центры, травматологические пункты. Кроме того, специализированные кабинеты
(например, эндокринологические, урологические) часто обслуживают население, проживающее в зонах нескольких поликлиник.
4. Дети и взрослые обслуживаются, как правило, в разных поликлиниках, женщины обращаются по поводу ряда заболеваний в женские консультации.
Территориально зоны обслуживания этих трех типов ЛПУ накладываются друг на друга, и их границы обычно не совпадают.
Таким образом, при изучении заболеваемости по обращаемости в ЛПУ наряду с вопросом полноты и достоверности регистрируемых случаев заболеваний возникает проблема объединения данных, характеризующих заболеваемость населения (групп населения), проживающего на конкретной территории. При этом следует отметить, что чем меньше территория, на которой изучается заболеваемость, тем сложнее решать эту проблему. Так, относительно полные данные можно получить по городу в целом; менее достоверны данные по административным районам города, а при анализе заболеваемости по зонам обслуживания ЛПУ, и тем более по врачебным участкам, изучение обращаемости даже по статталонам позволяет получить лишь сугубо ориентировочные показатели.
Использование данных о заболеваемости по результатам медицинских осмотров позволяет уточнить информацию, получаемую в ЛПУ, так как в данном случае появляется возможность:
1) выявить заболевания в начальных стадиях;
2) провести достаточно полный учет "хронических" заболеваний;
3) придать результатам осмотров независимость от уровня санитарной культуры населения, доступности медицинской помощи и других немедицинских факторов.
Получение данных о заболеваемости по регистрации причин смертности позволяет установить те заболевания, которые привели к внезапной смерти, но не были выявлены первыми двумя методами (отравления, травмы, инфаркты, инсульты и др.). Ценность метода зависит от удельного веса в структуре заболеваемости соответствующих форм патологии. Следует учитывать, что остальные заболевания с благоприятным для жизни исходом не попадают в поле зрения врачей, изучающих заболеваемость по причинам смерти.
Получение данных о заболеваемости методом интервью (анкето-опросный метод) представляет интерес как дополнительный метод для выявления жалоб населения и, особенно, для получения сведений о факторах среды обитания и образе жизни с целью последующего исследования связи этих показателей со здоровьем. Во многих странах этот метод используется довольно широко вследствие того, что частный характер медицины и здравоохранения делает практически невозможным анализ истинной заболеваемости населения по данным обращаемости и медицинских осмотров.
2. Выдвижение гипотез (теоретическое обоснование возможности связи с окружающей средой)
В случае обнаружения территорий, контрастно выделяющихся по уровню заболеваемости, физического развития, смертности или иным показателям медицинской статистики, выдвигаются гипотезы связи этого явления с качеством окружающей среды. При этом используются данные научных исследований об особенностях биологического действия тех или иных примесей
(см. выше), а также результаты предыдущих эпидемиологических исследований.
В настоящее время разработан примерный список заболеваний, которые могут быть связаны с отдельными факторами окружающей среды (табл. 2).

Таблица 2

Список заболеваний, которые могут быть связаны с загрязнением окружающей среды
|Патология |Антропогенное загрязнение окружающей среды |
|1. Болезни |1.1. Загрязнение атмосферы: окислы серы, окись углерода, |
|системы |окислы азота, сернистые соединения, сероводород, этилен, |
|кровообращени|пропилен, бутилен, жирные кислоты, ртуть, свинец и др. |
|я |1.2. Шум |
| |1.3. Жилищные условия |
| |1.4. Электромагнитные поля |
| |1.5. Состав питьевой воды: нитраты, хлориды, нитриты, |
| |жесткость воды |
| |1.6. Биогеохимические особенности местности: недостаток или|
| |избыток во внешней среде кальция, магния, ванадия, кадмия, |
| |цинка, лития, хрома, марганца, кобальта, бария, меди, |
| |стронция, железа |
| |1.7. Загрязнение пестицидами и ядохимикатами |
| |1.8. Природно-климатические условия: быстрота смены погоды,|
| |влажность, давление, уровень инсоляции, скорость и |
| |направление ветра |
|2. Болезни |2.1. Природно-климатические условия: быстрота смены погоды,|
|нервной |влажность, давление, температура |
|системы и |2.2. Биогеохимические особенности: высокая минерализация |
|органов |почвы и воды, хром. |
|чувств. |2.3. Жилищные условия |
|Психические |2.4. Загрязнение атмосферы: окислы серы, углерода и азота, |
|расстройства |хром, сероводород, двуокись кремния, ртуть и др. |
| |2.5. Шум |
| |2.6. Электромагнитные поля |
| |2.7. Хлорорганические, фосфорорганические и другие |
| |пестициды |
|3. Болезни |3.1. Природно-климатические условия: быстрая смена погоды, |
|органов |влажность |
|дыхания |3.2. Жилищные условия |
| |3.3. Загрязнение атмосферы: пыль, окислы серы и азота, |
| |окись углерода), сернистый ангидрид, фенол, аммиак, |
| |углеводород, двуокись кремния, хлор ртуть и др. |
| |3.4. Хлорорганические и фосфорорганические пестициды |
|4. Болезни |4.1., Загрязнение окружающей среды пестицидами и |
|органов |ядохимикатами |
|пищеварения |4.2. Недостаток или избыток микроэлементов во внешней среде|
| |4.3. Жилищные условия |
| |4.4. Загрязнение атмосферы: сероуглерод, сероводород, пыль,|
| |окислы азота, хром, фенол, двуокись кремния, фтор и др. |
| |4.5. Шум |
| |4.6. Состав питьевой воды, жесткость воды |
|5. Болезни |5.1. Биогеохимические особенности: недостаток или избыток |
|крови и |хрома, кобальта, редкоземельных металлов 5.2. Загрязнение |
|кроветворных |атмосферного воздуха: окислы серы, углерода, азота, |
|органов |углеводород, азотисто-водородная кислота, этилен, пропилен,|
| |сероводород и др. |
| |5.3. Электромагнитные поля |
| |5.4. Нитриты и нитраты в питьевой воде |
| |5.5. Загрязнение окружающей среды пестицидами и |
| |ядохимикатами |
|б. Болезни |6.1. Уровень инсоляции |
|кожи и |6.2. Недостаток или избыток во внешней среде микроэлементов|
|подкожной | |
|клетчатки |6.3. Загрязнение атмосферного воздуха |
|7. Болезни |7.1. Уровень инсоляции |
|эндокринной |7.2. Избыток или недостаток во внешней среде свинца, йода, |
|системы, |бора, кальция, ванадия, брома, хрома, марганца, кобальта, |
|расстройство |цинка, лития, меди, бария, стронция, железа, молибдена |
|питания, |7.3. Загрязнение атмосферного воздуха |
|нарушение |7.4. Шум |
|обмена |7.5. Электромагнитные поля |
|веществ |7.6. Жесткость питьевой воды |
|8. Врожденные|8.1. Загрязнение атмосферного воздуха |
|аномалии |8.2. Загрязнение пестицидами и ядохимикатами |
| |8.3. Шум |
| |8.4. Электромагнитные поля |
|9. Болезни |9.1. Недостаток или избыток во внешней среде цинка, свинца,|
|мочеполовых |йода, кальция, марганца, кобальта, меди, железа |
|органов |9.2. Загрязнение атмосферы: сероуглерод, двуокись углерода,|
|9а. Патология|углеводород, сероводород, этилен, окись серы, бутилен, |
|беременности |амилен, окись углерода |
|в том числе |9.3. Жесткость питьевой воды |
| |9а.1. Загрязнение атмосферного воздуха |
| |9а.2. Электромагнитные поля |
| |9а.З. Загрязнение пестицидами и ядохимикатами |
| |9а.4. Недостаток или избыток микроэлементов |
|10. |10.1. Загрязнение атмосферного воздуха |
|Новообразован|10 2. Природно-климатические условия: влажность, уровень |
|ия рта, |инсоляции, температура, давление, суховеи и пыльные бури |
|носоглотки, | |
|верхних | |
|дыхательных | |
|путей, | |
|трахеи, | |
|бронхов, | |
|легких и др. | |
|11. |11.1. Загрязнение пестицидами и ядохимикатами |
|Новообразован|11.2. Загрязнение атмосферного воздуха- канцерогенные |
|ия органов |вещества, акролеин и другие фотооксиданты (окислы азота, |
|пищеварения. |озон, формальдегид, органические перекиси) |
| |11.3. Биохимические особенности: недостаток или избыток |
| |магния, марганца, кобальта, цинка, редкоземельных металлов,|
| |меди 11.4. Состав питьевой воды: хлориды, сульфаты, |
| |жесткость |
| | |
|12. |12.1. Загрязнение атмосферного воздуха: сероуглерод, |
|Новообразован|двуокись углерода, углеводород, сероводород, этилен, |
|ия |бутилен, амилен, окислы серы, окись углерода |
|мочеполовых |12.2. Загрязнение пестицидами и ядохимикатами 12.3. |
|органов |Недостаток или избыток магния, марганца, цинка, кобальта, |
| |молибдена, меди. |
| |12.4. Хлориды в питьевой воде |

Как видно из представленной таблицы, одни и те же заболевания могут быть вызваны или спровоцированы разными факторами окружающей среды. В связи с этим при обосновании гипотез особое внимание должно уделяться сопоставлению уровня заболеваемости с потенциальным риском воздействия каждого из вероятных факторов.
3. Тестирование (дополнительные выборки, специальные исследования)
Проверка выдвинутых гипотез подразумевает проведение специальных исследований "эпидемиологического" характера. При этом целесообразно, если возможно, проведение ряда дополнительных исследований, направленных на получение данных о количественном содержании вредных примесей или их метаболитов в тканях и органах пострадавших, а также проведение клинического обследования с постановкой специфических тестов.
Учитывая, что методам эпидемиологических исследований посвящено достаточное число публикаций, остановимся на наиболее важных моментах, имеющих отношение к определению риска.
В методике эпидемиологических исследований важны следующие моменты: построение исследований, формирование опытных и контрольных групп, наблюдение с использованием различных тестов, определение относительного риска. Само исследование может быть ретроспективным и проспективным, продольным и поперечным, когортным с формированием опытных и контрольных групп.
Ретроспективное исследование предусматривает анализ материала, собранного за уже прошедший период, а проспективное исследование проводится путем непосредственного наблюдения. Ретроспективное исследование экономит время при сборе материала, позволяет достаточно четко определить уже сложившуюся группу наблюдения, выяснить условия, повлиявшие на возникновение того или иного явления. Однако ретроспективное исследование имеет ограниченную программу, так как позволяет учесть лишь признаки, которые имеются в используемых для изучения материалах и документах.
Проспективное исследование может иметь программу с любым набором признаков и их сочетаний. Кроме того, существует возможность наблюдения за изменением признаков под воздействием различных факторов, возможность длительного наблюдения за группой населения.
Поперечное исследование характеризует совокупность на какой-то момент времени. При этом, одномоментно проводится осмотр всего населения или отдельных контингентов, определяются клинические, физиологические, психологические и другие характеристики обследуемых с выявлением больных или лиц с отклонением в состоянии здоровья.
Продольное исследование подразумевает наблюдение в динамике за одной и той же совокупностью. В этом случае можно проводить динамические наблюдения за каждым представителем такой совокупности и применить индивидуализирующие методы оценки.
Когортный метод предполагает выделение опытных и контрольных групп, причем статистическую совокупность здесь составляют относительно однородные единицы наблюдения. Главным различием опытной и контрольной групп является наличие и отсутствие вредных факторов.

4. Систематизации (формирование баз данных и табличных материалов)
Одним из важных результатов анализа данных медицинской статистики и применения эпидемиологического метода исследования является определение относительного и непосредственного риска. Относительный риск (ОР) - это отношение показателей заболеваемости в группе„лиц, подвергающихся влинию изучаемого фактора к тем же показателям у лиц не„подверженных влиянию этого фактора {как правило принимает значения от 1 до ) .
Непосредственный риск (HР)-это разность показателей заболеваемости у лиц, подверженных и не подверженных действию фактора (может принимать„значения‚от 0 до 1). Статистическая природа признаков риска обусловливает неизбежность так называемых ошибок первого рода (невключение в группу риска лиц, подверженных заболеванию) и ошибок второго рода
(включение в группу риска не подверженных заболеванию).
Таким образом, основной целью изучения состояния здоровья или заболеваемости населения в системе оценки риска является расчет атрибутивного риска в группах населения, находящихся в достоверно различающихся условиях окружающей среды. Именно этот показатель наиболее целесообразно считать целью данного блока исследований, и именно он должен сопоставляться с величинами рисков, полученными в соответствии с методикой, изложенной в п. 2.1. Базы данных и табличные материалы, являющиеся результатом обработки материалов медицинской статистики, должны содержать информацию об уровнях заболеваемости, смертности и другие показатели, характеризующие состояние здоровья населения на территориях наблюдения:
число зарегистрированных случаев;
относительные показатели (на 100, 1000, 10000 или 100 000);
величины относительного риска в сопоставлении с показателями для территории, выбранной для контроля или сравнения;
величины атрибутивного риска.

Анализ (определение связей в системе «среда-здоровье»)
Очевидно, что потенциальный рыск, определенный в соответствии с уровнем загрязнения атмосферного воздуха и интенсивностью воздействия ряда других факторов (шум, загрязнение питьевой воды и пр.), позволяет оценить вероятность неблагоприятного эффекта, связанного с этими загрязнениями.
Другими словами, потенциальный риск определяет максимальный размер группы риска (в процентах или долях единицы), т. е. количество населения, у которого потенциально могут проявиться неблагоприятные эффекты, связанные с данным экологическим фактором. В то же время, как это было показано выше, население, у которого могут проявиться признаки заболевания, составляет лишь часть группы риска. Еще меньшую часть составляют люди, воздействие на которых загрязненного воздуха может привести к смертельному исходу. В связи с этим особое внимание следует уделять определению реального риска, т.е. вероятности увеличения заболеваемости, смертности и других медико- статистических показателей. Для его расчета предназначен специальный блок анализа в общей системе определения риска.
.1. Определение формальных статистических связей
Статистическим методам определения связи между качеством окружающей среды и показателями здоровья населения в научной и специальной литературе уделяется достаточно большое внимание. Многообразие возможных вариантов не позволяет предложить достаточно однозначную и жесткую схему таких исследований. Однако, по мнению авторов, здесь наиболее целесообразно использовать следующие подходы.
Расчет неблагоприятного эффекта (уровень заболеваемости, смертности и пр.) в группе риска.

В основу данного подхода положен расчет коэффициента определения (R), который числено равен квадрату коэффициента корреляции между потенциальным риском (блок "Окружающая среда") и атрибутивным риском (блок "Медицинская статистика"). Принято считать, что коэффициент определения в данном случае показывает долю вклада окружающей среды в формирование изучаемой патологии на территории наблюдения. При использовании этого подхода следует учесть, что достоверное значение R обычно встречается тогда, когда окружающая среда является одним из ведущих факторов, вызывающих или провоцирующих наблюдаемую патологию, а умножением R на показатель смертности, заболеваемости или другой относительный показателе можно получить число случаев смертей, заболеваний и т. д., вызванных загрязнением окружающей среды.
Факторный анализ - расчет вклада различных факторов, включая экологические, в возникновение неблагоприятных эффектов в здоровье населения при их одновременном воздействии.
В отличии от предыдущего метода, в данном случае возможно осуществить оценку вклада экологического фактора в формирование здоровья населения в общем контексте влияния остальных факторов, если они также подвергаются измерению. На основе получаемой факторной матрицы представляется возможность построить математическую модель уровня неблагоприятных эффектов при воздействии всего множества учитываемых факторов, что может быть использовано при принятии управленческих решений, разработке экономической стратегии, прогнозировании заболеваемости, смертности и т. д. Факторный анализ мог бы быть предпочтительным в общем наборе методов статистического анализа как дающий наиболее точные результаты, однако он не всегда может быть применен. Связано это с тем, что в данном случае, с одной стороны, требуется достаточно большое количество достоверной исходной информации, а с другой стороны, попытка "бесхитростного" усложнения математической модели приводит к тому, что называется "комбинаторным взрывом", - обвальному росту вычислительной сложности по мере увеличения размерности искомых взаимосвязей. Кроме того, возникает проблема роста ошибки метода, когда вероятная ошибка может стать соизмеримой с ожидаемым результатом.
Если предположить, что реальный риск должен представлять собой величину, характеризующую реальное число дополнительных случаев заболеваний, вызванных загрязнением окружающей среды, то из всего арсенала доступных статистических методов наиболее целесообразно применение следующих.
Упрощенный подход.
1. Определяется коэффициент корреляции (г) между потенциальным риском и уровнем относительной заболеваемости. В случае его достоверности и соответствия здравому смыслу рассчитывается уравнение линейной регрессии:

Заболеваемость = а + b Risk, где Risk - потенциальный риск.
Как результат оценивается следующее: а - фоновый уровень заболеваемости, т. е. тот, который не зависит от загрязнения окружающей среды; b - коэффициент пропорции роста заболеваемости в зависимости от уровня потенциального риска; для каждой территории определяется число дополнительных случаев заболеваний (на 1000 или др.) путем умножения b на
Risk дальнейшем результаты могут обобщаться в таблицы и картографироваться с целью зонирования территории наблюдения по степени медико-экологического риска.
Подход, основанный на использовании стандартизованных медико- статистических данных об уровнях заболеваемости населения.
Отличие такого подхода от предыдущего заключается в том, что в данном случае используется стандартизованная медико-статистическая информация об уровне заболеваемости. Стандартизованный показатель - это средний региональный уровень той или иной патологии (или класса), который определяется специальными исследованиями на основе длительного медико- статистического наблюдения. Иногда, в случае отсутствия утвержденных (или принятых в качестве таковых) стандартизованных данных, вместо них используют среднетерриториальные уровни. Например, при сравнении заболеваемости в районах города, в качестве стандартизованных данных выбирают ее среднегородское значение, на участках обслуживания поликлиники или ТМО - среднерайонное значение и т. д. В данном случае предлагается следующий алгоритм расчета реального риска.
1. Заполняются таблицы стандартизованных показателей. В случае отсутствия последних выполняется определение среднетерриториальных показателей: все случаи того или иного заболевания (или класса) по всем территориям на все население возрастной группы, выраженные на 1000, 100 000 или 1000 000, с определением ошибки (т) и дисперсии (ст).
2. Из списка заболеваний исследователем выбираются интересующие его формы или группы (классы).
3. За определенный исследователем период времени (желательно для сопоставления с потенциальным риском немедленного действия - максимально короткий срок, для других - максимально длинный) вычисляется относительный
(на 1000 и т.д.) уровень заболеваемости по каждой патологии и/или классу для всех (или выбранных исследователем в данный расчет) территорий.
4. Из уровня заболеваемости для каждой выбранной территории вычитается стандартизированный (или сред нетерриториальный) уровень, а полученная разность выражается в значениях ст. Определяется вероятность отклонения заболеваемости от среднерайонного значения с использованием распределения
Стьюдента:

|o |Вероятность |
|0,50 |0,383 |
|1.00 |0,682 |
|1.50 |0,866 |
|1.96 |0,950 |
|2.00 |0,954 |

5. Определяется коэффициент корреляции (г) между потенциальным риском и вероятностью отклонения уровня заболеваемости от сред нерайонного (или стандартизованного). В случае его достоверности и соответствия здравому смыслу рассчитывается уравнение линейной регрессии:
Вероятность отклонения = а + b Risk.
2. Оценка достоверности (исключение предвзятости)
Под оценкой достоверности полученных статистических закономерностей, помимо статистической достоверности, следует, прежде всего, понимать отсечение всего того, что не соответствует здравому смыслу. Иными словами, простые статистические связи, не согласующиеся с разумным биологическим объяснением, должны отвергаться. Часто такую оценку называют исключением предвзятости. Существует несколько типов (уровней) предвзятости. Назовем некоторые из них.
Личность исследователя. Конкретные задачи, решаемые им, могут повлиять как на выбор исходной информации, так и на идентификацию и интерпретацию полученных связей.
Доступность исходной информации. На объем выборки, которая послужила основанием для выводов, могут, существенно влиять стоимость и объем работ, необходимых для получения исходной информации, нежелание отдельных личностей и организаций принимать участие в исследовании (например, при интервьюировании раковых и других тяжелых больных) и т.д. Это может привести к тому что в силу организационных ошибок статистическая совокупность будет не в полной мере характеризовать все население, на которое переносятся выводы.
Влияние миграции. Миграция приводит к изменению реальных дозовых нагрузок, связанных с воздействием изучаемого фактора.
Другие типы. Связаны с конкретными условиями проведения исследования.
Для исключения предвзятости существуют различные методы, основными из которых являются следующие:
рандомизация,
систематизация,
стратификация,
кластеризация,
мультиэтапная выборка и др.
Оценка достоверности выводов является наиболее сложной и важной частью исследований по оценке риска здоровью. В значительной степени качество выводов этого этапа зависит от квалификации экспертов и их умения использовать современные знания по обсуждаемой проблеме.
3. Выводы о наличии связей в системе "среда-здоровье"
Выводы о наличии связей в системе "среда-здоровье" обычно формулируются на общепринятых принципах медико-экологических исследований. Существуют следующие критерии, позволяющие судить о реальном риске здоровью, связанном с загрязнением окружающей среды:
1) совпадение наблюдаемых эффектов у населения с экспериментальными данными;
2) согласованность наблюдаемых эффектов в различных группах населения;
3) правдоподобность ассоциаций (простые статистические связи, не согласующиеся с разумным биологическим объяснением, отвергаются);
4) тесная корреляция, превышающая значимость обнаруживаемых различий с вероятностью более 0,99;
5) наличие градиентов взаимосвязи "доза - эффект", "время - эффект";
6) увеличение неспецифической заболеваемости среди населения с повышенным риском (курильщики, старики, дети и др.);
7) полиморфность поражений при действии химических веществ;
8) однотипность клинической картины у пострадавших;
9) подтверждение контакта путем обнаружения вещества в биосредах или специфическими аллергологическими пробами;
10) тенденция к нормализации показателей после улучшения обстановки или устранения контакта с вредными веществами или факторами.
Обнаружение более пяти из перечисленных признаков делает связь выявляемых изменений с условиями среды вполне вероятной, а семи признаков - доказанной.
4. Определение индивидуального риска
Определение индивидуального риска представляет собой особую форму медико- экологической экспертизы, целью которой является диагностирование случаев экологически обусловленных заболеваний. К сожалению, в настоящее время еще не разработана правовая основа государственной системы диагностирования этих заболеваний, как нет и утвержденного определения "экологически обусловленное заболевание". Пока основные функции по установлению признаков заболеваний экологической этиологии возлагаются на лечебно-профилактические учреждения, расположенные на административной территории города, независимо от формы собственности и ведомственной принадлежности. Выявление признаков заболеваний производится в период обращения населения за медицинской помощью и при проведении медицинских осмотров. При этом выделяются следующие этапы диагностики.
4.1. Определение внутренней дозы
Для оценки индивидуального риска важным является определение внутренней дозы химического вещества, зависящей от конкретных особенностей контакта человека с окружающей средой. Наиболее точным методом расчета внутренней дозы является ее биоиндикация, т. е. лабораторное количественное определение экологических загрязнителей или их метаболитов в тканях и органах человека. Сопоставление лабораторных результатов с существующими стандартами позволяет определить реальную внутреннюю дозу экологической нагрузки. Однако для большинства наиболее распространенных химических загрязнителей биоиндикация или невозможна, или затруднена. Поэтому другим способом определения внутренней дозы является расчет. Один из вариантов такого расчета - использование информации о концентрациях химических веществ в различных зонах пребывания человека и среднего времени его нахождения в этих зонах. Так, например, проведя анкетирование можно определить среднее время пребывания человека внутри жилища, в жилой зоне, загородной зоне, транспорте, в рабочей зоне. Зная концентрации вещества, объем вдыхаемого воздуха, время нахождения в различных зонах, эксперт может рассчитать получаемую за год внутреннюю дозу, которая в данном случае называется аэрогенной нагрузкой. Суммировав аэрогенные нагрузки отдельными веществами, можно рассчитать суммарную индивидуальную аэрогенную нагрузку.
Различные вещества обладают неодинаковой токсичностью, в связи с чем для более точной оценки риска целесообразно использовать не просто аэрогенную нагрузку в миллиграммах вещества, а величину потенциального риска.
4.2. Определение биологических эффектов (расчет биодозы)
Под биодозой чаще всего подразумевают накопленную (кумулированную) сумму неблагоприятных эффектов, вызванных воздействием экотоксиканта. В традиционной трактовке кумуляция означает суммирование действия повторных доз загрязнителей окружающей среды, когда последующая доза поступает в организм раньше, чем заканчивается действие предыдущей. В зависимости от того, накапливается ли при этом в организме само вещество, различают следующие виды кумуляции.
Материальная кумуляция. Не само по себе накопление вещества, а участие все возрастающего количества экотоксиканта в развитии токсического процесса.
Функциональная кумуляция. Конечный эффект зависит не от постепенного накопления небольших количеств яда, а от повторного действия его на известные клетки организма. Действие небольших количеств яда на клетки суммируется, в результате чего и создается накопленный эффект (биодоза).
Смешанная кумуляция. При такой кумуляции имеют место как те, так и другие эффекты. Возможна ситуация, когда загрязнитель полностью выводится из организма, однако с рецептором оказывается связанной часть его молекулы или метаболит.
Существует несколько вариантов математического расчета биодозы. Не вдаваясь в их подробное описание, отметим что все они основаны на использовании следующих основных показателей
максимальная и/или средняя воздействующие концентрации;
продолжительность однократного контакта;
доля вещества, задерживаемого в организме при дыхании;
кумулятивные особенности примеси;
число контактов с примесью (режим воздействия);
общая длительность воздействия;
масса тела.
4.3. Оценка неблагоприятных эффектов (диагностика)
Этиология и патогенез экологически обусловленных состояний (явления дискомфорта, заболевание, смерть) требуют применения как традиционных, так и специальных методов диагностики. Основанием для подозрения на экологическую этиологию заболевания являются следующие признаки:
выявление в клинической картине характерных симптомов, не встречающихся при других нозологических формах и не связанных с профессиональной деятельностью обследуемого;
групповой характер неинфекционных заболеваний в районе проживания у лиц, не связанных общей профессией или местом трудовой деятельности;
наличие вредных или опасных экологических факторов в зоне проживания обследуемого.
Необходимо также учитывать возможность развития заболевания экологической этиологии после прекращения контакта с вредным фактором. Диагностическими критериями заболевания экологической этиологии являются:
санитарно-гигиеническая характеристика района проживания;
длительность проживания в данном районе;
профессиональный анамнез;
общий анамнез;
учет неспецифических клинических признаков, встречающихся и при других нозологических формах, но патогомоничных именно для данного заболевания;
изучение динамики патологического процесса с учетом как различных осложнений и отдаленных последствий, так и обратимости патологических явлений, выявляющейся после прекращения контакта с действующим агентом.
Диагностика экологически обусловленных состояний, как правило, основывается на их ретроспективном анализе с поиском соответствующих причинно- следственных связей и построением на их основе вероятностных диагностических моделей. При этом одним из важных направлений исследований в этой области следует считать определение факторов или их комбинаций, вызывающих, провоцирующих, способствующих или сопровождающих возникновение этих состояний, что в дальнейшем используется для целей их прогнозирования и предупреждения.
Подобные исследования предполагают получение и анализ достаточно объемной и разнородной информации. При этом современные медико-экологические данные характеризуются достаточно сложными взаимосвязями, вследствие чего общепринятые традиционные методы статистического анализа часто оказываются недостаточно корректными, поскольку опираются на существенно упрощенные модели величин и связей между ними (связи, например, предполагаются линейными, корреляции - квадратичными и т. п.). В реальных же задачах, как правило, связи значительно многомернее, когда значимость признака решающим образом зависит от контекста и применение традиционных методов обработки величин становится неприемлемым. При выполнении медико-экологических исследований с целью разработки диагностических правил идентификации экологически обусловленных заболеваний, целесообразно использование комбинированных подходов, основанных на применении сочетаний различных методов.
Примером такого подхода может служить использование комбинации методов математической логики и статистики. Исходные данные, на основе которых предполагается разработать систему правил для диагностики экологически обусловленных заболеваний, должны содержать информацию, которая касается условий возникновения различных заболеваний (не только обсуждаемых) и которая описывалась бы логическими признаками. При анализе таких данных целесообразно задаться тремя основными вопросами.
1. Какие сочетания признаков характерны для группы случаев, при которых возникали те или иные заболевания? Характерными будем считать те сочетания, которые достаточно часто встречаются в группе случаев, описывающих данное заболевание, и не встречаются никогда (или редко) в остальных. Число признаков в характерном сочетании не ограничено. Отметим, что каждый отдельный признак из характерного их сочетания может не быть специфичным в традиционном смысле (т. е. может одинаково часто встречаться в сравниваемых группах). Признак приобретает значимость при участии в характерной комбинации, т. е. в контексте других входящих в характерное сочетание признаков.
2. Позволяют ли найденные характерные сочетания достоверно идентифицировать всю группу случаев конкретного заболевания, отличить ее от остальных?
3. Входят ли в характерное сочетание признаки, характеризующиеся как экологические факторы?
Описываемый подход позволяет получить ответы на все три вопроса, и, если ответы на второй и третий вопросы положительные, возникает возможность построения статистически достоверной системы логических правил для диагностики экологически обусловленных заболеваний.
Поиск сочетаний признаков имеет ясный смысл лишь для данных логического типа, и этот метод работает исключительно с таким типом данных. Поэтому прежде чем анализировать данные с помощью этого метода, необходимо трансформировать их в логическую форму. Под термином "сочетание" подразумевается конъюнкция логических признаков, которая принимает положительное значение, если все входящие в конъюнкцию признаки также принимают это значение. Иными словами, сочетание признаков в описании случая очевидно только тогда, когда в нем встречаются все признаки, входящие в его состав.
Метод предполагает реализацию следующего условия: в процессе поиска сочетаний отрицательное значение расценивается не как отрицание признака, а как отсутствие информации о нем и никак не учитывается; признаки с отрицательным значением не могут входить в состав характерных сочетаний.
Это позволяет работать с неполными данными, в условиях существенной информационной неопределенности и помогает избежать появления бессмысленных сочетаний, когда отсутствие признака не является информативным и ни о чем не свидетельствует. Если негативное значение некоторого признака все-таки является информативным для решения задачи, то достаточно явно определить дополнительный признак, который будет принимать положительное значение тогда и только тоща, когда исходный признак принимает отрицательное значение.
Если допустить, что достоверность есть оценка предположения, что частота появления случайного события в выборке равна его вероятности, то достоверность определяется числом случаев в выборке и возрастает по мере увеличения объема выборки. При этом достоверность нескольких событий
(равномерная оценка) определяется соотношением между числом событий и объемом выборки. Отличие данного подхода от многих других методов состоит в том, что достоверность результатов не зависит от размерности исходного пространства признаков. Она зависит лишь от числа характерных сочетаний, необходимых для решения поставленной задачи: чем их меньше, тем лучше.
Поиск характерных сочетаний предполагает перебор достаточно большого объема комбинаций признаков, что наиболее успешно может быть выполнено с использованием компьютерной техники. Для этой цели можно использовать как пакеты программ общего применения (табличные процессоры), так и специализированные пакеты (например, Rule Maker).
4.4. Выводы об эффектах и индивидуальном "риске здоровью"
Окончательное решение, связанное с диагностикой экологически обусловленного состояния, выносится, как правило, группой экспертов. При выявлении лица с признаками заболевания экологической этиологии лечебно-профилактическое учреждение направляет извещение по установленной форме в центр госсанэпиднадзора по месту жительства больного. Все лица с выявленными заболеваниями, а также лица, у которых выявлены не резко выраженные отклонения со стороны органов и систем, в этиологии которых основную роль играет экологический фактор, должны находиться на диспансерном наблюдении у соответствующих специалистов (терапевт, невропатолог, дерматовенеролог и др.).
Право на установление группы инвалидности по заболеванию данной этиологии и определение процента утраты трудоспособности предоставляется врачебно- трудовым экспертным комиссиям. Заключение экспертов является основой для обращения пострадавшего с иском о возмещении ущерба, обусловленного экологической ситуацией.

ЭКОНОМИЧЕСКИЕ АСПЕКТЫ ОЦЕНКИ РИСКА ЗДОРОВЬЮ
1. ЦЕНА РИСКА ЗДОРОВЬЮ
Для того чтобы оценка риска здоровью стала фактором управления, ее необходимо характеризовать экономическими категориями (цена, рентабельность, экономичность и др.).
Понимая, насколько сложно аргументировать цену здоровья, мы предлагаем упрощенную схему ее определения, основанную на существующих экономических механизмах здравоохранения в нашей стране.
Расчеты, проведенные по методикам, изложенным в настоящем издании, позволяют нам определить число людей, у которых риск отрицательных последствий велик. Для этого нам необходимо знать зону воздействия, число проживающих в ней людей и показатель Risk. Необходимую информацию можно получить из: а) системы социально-гигиенического мониторинга, б) сводных томов ПДВ (ВСВ), в) инвентаризационных бюро исполнительной власти, г) статистических объектов.

Однако при всех недостатках предлагаемых экономических расчетов трудно переоценить значение самого показателя цены риска - самого эффективного средства в системе управления риском. Ниже будут приведены некоторые примеры.
2. Уравление риском
Предупредительный санитарный надзор
По существующим правилам в проектных материалах в разделе ОВОС должны содержаться сведения о прогнозе воздействия на здоровье населения объекта, намечаемого к строительству или реконструкции. Предлагаемая нами система оценки риска здоровью в полной мере устроит и проектировщика, и заказчика, и эксперта. Существуют два варианта расчета риска: а) условия существующего положения, б) после введения объекта (проекта) в эксплуатацию.
Исходный материал для прогностических расчетов берется из самого проекта. В принципе здесь оценивается не риск, а его динамика в ходе реализации проекта, что гораздо важней для того, чтобы сделать полноценное заключение.
Если продолжить экономические расчеты, определить цену риска (цену динамики риска) и включить полученную величину в расходную часть бизнес-плана
(смету), то при большой величине риска, обусловленного объектом, последний может оказаться экономически нецелесообразным (нерентабельным). В этом случае фактор "здоровье" сработает как экономический механизм и будет определять окончательное решение по проекту без мер административного принуждения.
Текущий санитарный надзор
Уместно будет использовать систему оценки риска здоровью для введения дифференцированного налога на землю и недвижимость. Очевидно, что риск здоровью населения, проживающего в неблагоприятной экологической обстановке, выше, чем в условиях минимального воздействия факторов среды.
Обоснованные таким образом различные ставки налога на землю и, следовательно, на недвижимость, позволяют, с одной стороны, компенсировать ущерб, причиненный здоровью населения, путем снижения налога в экологически неблагополучных микрорайонах, а с другой стороны, компенсировать администрации сдержанность в развитии промышленности и транспорта в микрорайонах с благополучной экологической обстановкой. В любом случае для санитарной службы постоянно имеется социальный заказ на ведение социально- гигиенического мониторинга, расчета и оценки риска здоровью населения, что в конечном счете определяет стратегию и тактику санитарной службы.

Мероприятия по санитарной охране атмосферного воздуха населенных мест

Проблема защиты атмосферы от вредных выбросов является сложной и комплексной. Можно выделить три основные группы мероприятий:

Технологические;

Планировочные;

С экономической точки зрения дешевле бороться с вредными веществами в местах их образования - создание замкнутых технологических циклов, при которых бы отсутствовали хвостовые газы или абгазы. Применение природоохранного принципа рационального использования природных ресурсов - максимальное извлечение всех полезных компонентов и утилизация отходов
(максимум экономического эффекта и минимума отходов, загрязняющих окружающую среду).
В данную группу можно отнести также:
1) замена вредных веществ на на производстве менее вредными или безвредными;
2) очистка сырья от вредных примесей (десульфиризация мазута перед его сжиганием);
3) замена сухих способов переработки пылящих материалов мокрыми;
4) замена пламенного нагрева электрическим (шахтные печи на электрические индукционные);
5) герметизация процессов, использование гидро- и пневмотранспорта при транспортировке пылящих материалов;
6) замена прерывистых процессов непрерывными.
2. Планировочные мероприятия

В группу планировочных мероприятий входит комплекс приемов, включающих:

Зонирование территории города,

Борьбу с природной запыленностью,

Организацию санитарно-защитных зон (уточнение по розе ветров, озеленение зоны)

Планировка жилых районов (зонирование застройки кварталов),

Озеленение населенных мест.
3. Санитарно-технические мероприятия

Специальные меры защиты при помощи очистных сооружений:

Сухие механические пылеуловители (циклоны, мультициклоны),

Аппараты фильтрации (ткани, керамические, металлкерамические и др.),

Электростатической очистки (электрофильтры),

Аппараты мокрой очистки (скрубберы),

Химические: каталитическая очистка газов, озонирование.

СПИСОК ЛИТЕРАТУРЫ

1. Барышников И. И., Мусийчук Ю. И. Здоровье человека -системообразующий фактор при разработке проблем экологии современных городов. - В сб.:

Медико-географические аспекты оценки уровня здоровья населения и состояния окружающей среды. - СПб, 1992, с. 11-36.

2. Вихерт А. М., Жданов В. С., Чаклин А. В. и др. Эпидемиология неинфекционных заболеваний. - М.: Медицина, 1990. - 272 с.

3. Временные методические указания по обоснованию предельно допустимых концентраций (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест. № 4681-88 от 15 июля 1988 г.

4. Крутько В. Н. Подходы к "Общей теории здоровья". -Физиология человека, 1994, № 6, т. 20, с. 34-41.

5. Осипов Г. Л., Прутков Б. Г., Шишкин И. А., Карагодина И. Л.

6. Пинигин М. А. Гигиенические основы оценки степени загрязнения атмосферного воздуха. - Гигиена и санитария, 1993, № 7.

7. Токсикометрия химических веществ, загрязняющих окружающую среду/Под общей ред. А. А. Каспарова и И. В. Саноцкого. - М., 1986. - 428 с.

8. Управление риском в социально-экономических системах: концепция и методы ее реализации. Часть 1. Публикация Объединенного комитета по управлению риском. -В кн.: Проблемы безопасности при чрезвычайных ситуациях. Обзорная информация, выпуск 11. М.. ВИНИТИ 1995, С. 3-36.

9. Яничкин Л. П., Королева Н. В., Пак В. В. О применении индекса загрязнения атмосферы. - Гигиена и санитария 1991, № 11, с. 93-95. "

Степень загрязнения атмосферного воздуха сильно колеблется во времени и пространстве. В одной и той же точке территории в короткие промежутки времени могут появляться относительно высокие концентрации при относительно низких средних уровнях. Чем длительнее время усреднения, тем ниже концентрация. Для гигиенической оценки степени загрязнения атмосферного воздуха имеют значение как средние уровни, определяющие длительное резорбтивное действие загрязнений, так и относительно кратковременные пиковые концентрации, с которыми связано появление запахов, раздражающего действия на слизистые оболочки дыхательных путей и глаза. В связи с этим для гигиенической оценки степени загрязнения воздуха недостаточно знать только концентрацию, а надо установить, за какое время усреднения эта концентрация получена. В нашей стране для характеристики степени загрязнения атмосферы приняты максимальные разовые концентрации, т.е. достоверные максимальные концентрации, появляющиеся в конкретной точке территории за 20-30 минутный период, и среднесуточные, т.е. средняя концентрация за 24ч. Таким образом, характеризуя степень загрязнения атмосферного воздуха, мы используем максимальные разовые или среднесуточные концентрации, что позволяет вести оперативный контроль за загрязнением атмосферного воздуха

Степень загрязнения атмосферного воздуха зависит от множества различных факторов и условий:

1.количества выбросов вредных веществ (различают мощные, крупные, мелкие производства

К мощным источникам загрязнения относятся производства типа металлургических и химических заводов, заводов строительных материалов, тепловые электростанции. Большое количество мелких источников может значительно загрязнять воздух. Чем больше величина выброса в единицу времени, тем больше при прочих равных условиях загрязняющих веществ поступает в воздушный поток и, следовательно, создается в нем более высокая концентрация загрязнений. Прямо пропорциональной зависимости между величиной выброса и концентрацией нет, так как на уровень концентрации загрязнителя оказывают влияние и другие факторы, степень влияния которых в разных случаях бывает различной.

Величина выброса является главным фактором, определяющим уровень приземной концентрации. В связи с этим при гигиенической оценке источников загрязнения атмосферы санитарного врача должна интересовать количественная характеристика каждого компонента выброса. Выражается выброс в единицах на единицу времени (кг/сут, г/с, т/год) или других единицах, например кг/т продукции, мг/м 3 промышленного выброса. В этом случае необходим пересчет на единицу времени с учетом количества получаемой продукции за час, сутки и т.д. или максимальный объем отходящих газов за конкретный временной интервал.

Загрязняющие вещества поступают в атмосферу как организованный или неорганизованный выброс. К организованным выбросам относятся хвостовые газы, абгазы,газы аспирационных и вентиляционных систем. Хвостовые газы образуются в конечной стадии производственного процесса и характеризуются, как правило, сравнительно высокими концентрациями и значительной абсолютной массой загрязняющих веществ. В атмосферу выброс поступает через трубу. Типичным примером хвостовых газов являются дымовые газы котельных и электростанций.

Абгазы образуются в промежуточных стадиях производственного процесса и удаляются специальными абгазовыми линиями. Так как назначение этих технологических линий состоит в выравнивании давления в различных замкнутых аппаратах, сбросе газов при нарушениях технологического процесса и необходимости быстро освободить аппаратуру, абгазы характеризуются периодичностью выброса, небольшим объемом при относительно высоких концентрациях загрязняющих веществ. Особенно много выбрасывается абгазов на предприятиях химической, нефтехимической и нефтеперерабатывающей промышленности.

Газы аспирационных систем образуются в результате работы местной вентиляции из различных укрытий (кожухи, камеры, зонты) и характеризуются относительно высокими концентрациями. Вентиляционные системы часто удаляют воздух из цехов через аэрационные фонари. Вентиляционные выбросы характеризуются огромными объемами и малыми концентрациями загрязняющих веществ, что затрудняет их очистку. В то же время общая масса загрязняющих веществ, поступающих в атмосферу, может быть достаточно большой.

Неорганизованный выброс образуется за счет внецехового оборудования и сооружений и при выполнении наружных работ. К ним относятся погрузочно-разгрузочные работы пылящих и испаряющихся сырьевых материалов и готовой продукции, открытое хранение пылящих материалов и готовой продукции, открытое хранение пылящих материалов и испаряющихся жидкостей, градирни, шламохранилища, отвалы отходов, открытые каналы сточных вод, неплотности стыков и сальников наружных технологических линий и т.д. Особенность таких выбросов состоит в том, что они плохо поддаются количественному учету. В то же время практика подтверждает высокие уровни загрязнения атмосферного воздуха территорий, прилегающих к предприятиям, характеризующимся наличием неорганизованных выбросов.

Классифицировать выбросы на организованные и неорганизованные необходимо и потому, что первые в полном объеме должны учитываться при прогнозировании загрязнения атмосферного воздуха, а санитарный врач как в порядке предупредительного, так и текущего санитарного надзора обязан уметь проверить полноту учета выбросов в расчете. Имеются предпосылки и для учета неорганизованных выбросов в ближайшем будущем.

Для качественной и количественной характеристики выбросов используются прямые и косвенные методы. Прямые методы основаны на измерении концентрации загрязнителя в организованных выбросах и расчета на этой основе массы загрязнителя за единицу времени. В основу косвенных методов положен материальный баланс, учитывающий необходимые сырьевые и образующиеся продукты.

Прямые методы определения выброса используются, как правило, на предприятиях с превалирующим значением организованных выбросов. Эти определения производятся специализированной организацией или лабораторией предприятия. Косвенные методы лучше использовать на предприятиях, характеризующихся и неорганизованными выбросами. Материальный баланс является частью технологического регламента. Прямые и косвенные методы определения выбросов должны использоваться предприятием для инвентаризации источников загрязнения атмосферы.

П.Их химического состава (различают по составу выбросов 5 класса производства по опасности).

Большое влияние на величину выброса оказывает эффективность работы очистных сооружений. Так, снижение эффективности с 98 до 96:, т.е. всего на 2%, увеличивает выброс в 2 раза. В связи с этим при оценке источников загрязнения атмосферы санитарный врач должен знать как проектный, так и реальный коэффициенты очистки и для оценки использовать последний.

Ш.высоты, на которой осуществляются выбросы (низкие, средней высоты, высокие). Под низкими источниками выброса считают те производства, которые осуществляют выбросы из труб, высота которых ниже 50м и под высокими – выше 50м. Нагретыми, называют выбросы, у которых температура газовоздушной смеси выше 50 0 С, при более низкой температуре выбросы считаются холодным.

Чем выше от поверхности земли осуществляется выброс загрязняющих веществ, тем при прочих равных условиях ниже их концентрация в приземном слое. Снижение концентрации с повышением высоты выброса связано с двумя закономерностями распределения загрязнений в факеле: снижением концентрации вследствие увеличения поперечного сечения факела и удалением от его осевой линии, несущей основную массу загрязнений, от которой они распространяются к периферии факела. Имеют значение и более высокие скорости ветра над устьем высокой трубы,так как ослабляется тормозящее влияние поверхности земли. Высокая труба не только снижает уровень приземной концентрации, но и удаляет начало зоны задымления. Вместе с тем следует учитывать, что высокая труба увеличивает радиус задымления, хотя и при более низких концентрациях. Зона максимального загрязнения, хотя и при более низких концентрациях. Зона максимального загрязнения находится в пределах расстояния, равного 10-40 высотам трубы при нагретых высоких выбросах и 5-20 высотам – при холодных и низких. В связи со строительством высоких труб (180-320 м) дальность влияния отдельных источников может составлять 10 км и более. Для высоких источников при отсутствии неорганизованных выбросов имеется зоны переброса, так как точка касания факелом поверхности земли тем дальше, чем выше труба.

1У. Климатогеографических условий, определяющих перенос, рассеивание и превращение выбрасываемых веществ:

2.условий переноса и распространения выбросов в атмосфере (температурной инверсии, барометрического давления в атмосфере и т.д.)

3.интенсивности солнечной радиации, определяющей фотохимические превращения примесей и возникновение вторичных продуктов загрязнения воздуха

4.количества и продолжительности атмосферных осадков, приводящих к вымыванию примесей из атмосферы, а так же от степени влажности воздуха.

При одном и том же абсолютном выбросе степень загрязнения атмосферного воздуха может меняться в зависимости от метеорологических факторов, так как рассеивание выбросов происходит под влиянием турбулентности, т.е. перемешивания различных слое воздуха. Турбулентность связана с притоком тепла, излучаемого солнцем и достигающим земной поверхности, и имеет свои закономерности переноса воздушных масс в зависимости от широты и времени года. Среди метеорологических факторов заслуживают особого рассмотрения направление и скорость ветра, температурная стратификация атмосферы и влажность воздуха.

Вследствие непрерывного изменения направления ветра наблюдательная точка то попадает в факел выброса источника загрязнения, расположенного вблизи этой точки, то выходит из него. Поэтому уровень загрязнения меняется с изменением направления ветра. Эта зависимость имеет важное значение для санитарной практики при решении вопросов размещения промышленных предприятий в плане города и выделении промышленной зоны.

На этой закономерности «поведения» промышленных выбросов в приземном слое атмосферы основаны санитарные требования к функциональному зонированию территории населенных мест с размещением промышленных предприятий подветренно от селитебной территории, т.е. чтобы господствующее направление ветра было с селитебной территории на промышленное предприятие.

Особое значение эта зависимость приобретает в практической деятельности санитарной службы крупных промышленных центров при решении вопроса о ведущих источниках загрязнения. Очень показательна для анализа санитарной ситуации диаграмма, построенная по принципу розы ветров и названная поэтому «роза задымления» (В.А.Рязанов).

Для построения розы задымления необходимо располагать результатами систематических наблюдений за загрязнением атмосферного воздуха не менее чем за год. Все данные разбиваются на группы в соответствии с направлением ветра в период отбора проб. Для каждого направления ветра подсчитываются средние концентрации, по которым в произвольном масштабе строится график. Выступающие вершины графика указывают на основной источник загрязнения воздуха данной территории. Для каждого загрязнителя строится отдельный график. Как пример построения розы задымления приведены в табл.2 и на рис. 1. На основании результатов систематических наблюдений одного из промышленных центров страны. Концентрация загрязнителей в период штилей составляла 0,14 мг/м 3

Таблица 2

Зависимость концентрации сернистого газа от направления ветра

Румб Концентрация,мг/м 3 Румб Концентрация,мг/м 3
С 0,11 Ею 0,06
СВ 0,19 ЮЗ 0,06
В 0,26 З 0,09
ЮВ 0,12 СЗ 0,09

Рис.1 «Роза задымления»

Вершина указывает направление ведущего источника (С-В)

Из приведенных данных видно, что основной источник загрязнения воздуха сернистым газом находится к востоку от изученной территории. На том же принципе основана методика определения фоновых концентраций, но с учетом скорости ветра и по 4 градациям стран света. Определение фоновых концентраций с учетом направления ветра помогает объективно решать вопросы о размещении промышленных предприятий в плане города, т.е. не размещать их в направлениях, ветры которых приносят наивысшие уровни загрязнения.

Если бы концентрации загрязнений зависели только от величины выброса и направления ветра, то они не изменялись бы при неизменном выбросе и направлении ветра. Однако основное значение имеет процесс разбавления выброса атмосферным воздухом, в котором большую роль играет скорость ветра. Чем выше скорость ветра, тем интенсивнее перемешивание выброса с атмосферным воздухом и тем ниже при прочих равных условиях, концентрация загрязнений. Высокие концентрации обнаруживаются в период штиля.

Скорость ветра способствует переносу и рассеиванию примесей, так как с усилением ветра в районе высоких источников возрастает интенсивность перемешивания воздушных слоев. При слабом ветре в районе высоких источников выброса концентрации у земли уменьшаются за счет увеличения подъема факела и уноса примеси вверх.

При сильном ветре подъем примеси уменьшается, но происходит возрастание скорости переноса примеси на значительные расстояния. Максимальные концентрации примеси наблюдаются при некоторой скорости, кот орая называется опасной и зависит от параметров выброса. Для мощных источников выброса с большим перегревом дымовых газов, относительно окружающего воздуха, она составляет 5-7 м/с. Для источников со сравнительно малым объемом выбросов и низкой температурой газов она близка к 1-2 м/с.

Неустойчивость направления ветра способствует усилению рассеивания по горизонтали и концентрации примесей у земли уменьшаются.

Санитарный врач должен использовать эту закономерность. При решении вопросов отвода участка под строительство промышленного предприятия, рассмотрении материалов по реконструкции существующего предприятия важно учитывать как направление, так и скорость ветра, в частности чтобы «опасная» скорость ветра для рассматриваемого источника не совпадала с часто встречающейся в направлении от источника на селитебную территорию.Важно учитывать эту закономерность и при организации лабораторного контроля.

Рассеивающая способность атмосферы зависит от вертикального распределения температуры и скорости ветра. Например, чаще всего неустойчивое состояние атмосферы наблюдается летом в дневное время. При таких условиях у земной поверхности отмечаются большие концентрации

Большое влияние на разбавление промышленных выбросов оказывает т е м п е р а т у р н а я с т р а т и ф и к а ц и я а т м о с ф е р ы. Способность поверхности земли поглощать или излучать тепло влияет на вертикальное распределение температуры в приземном слое атмосферы. В обычных условиях с подъемом вверх температура падает. Этот процесс рассматривается как адиабатический, т.е. протекающий без притока или отдачи тепла: поднимающийся поток воздуха будет охлаждаться за счет увеличения объема вследствие уменьшения давления и, наоборот, опускающийся поток будет нагреваться благодаря увеличению давления. Изменение температуры, выраженное в градусах на каждые 100 м подъема вверх, называется температурным градиентом. При адиабатическом процессе температурный градиент составляет примерно 1 0С.

Бывают периоды, когда с увеличением высоты температура падает быстрее, чем на 1 0 С на 100 м, в результате чего теплые массы воздуха от нагретой солнцем поверхности земли поднимаются на большую высоту, что сопровождается быстрым опусканием холодных потоков воздуха. Такое состояние, относящееся к сверхдиабатическому градиенту температуры, называют конвективным. Оно характеризуется сильным перемешиванием воздуха.

В реальных условиях температура воздуха с высотой не всегда падает и вышележащие слои воздуха могут иметь более высокую температуру, чем нижележащие, т.е. возможно извращение температурного градиента.

Состояние атмосферы с извращенным температурным градиентом носит название температурной инверсии. В периоды инверсий ослабляется турбулентный обмен,в связи в чем ухудшаются условия рассеивания промышленных выбросов, что может приводить к накоплению вредных веществ в приземном слое атмосферы.

Различают приземные и приподнятые инверсии. Приземные инверсии характеризуются извращением температурного градиента у поверхности земли, а приподнятые – появлением более теплого слоя воздуха на каком-либо расстоянии от поверхности земли.

В случае приподнятой инверсии приземные концентрации зависят от высоты источника загрязнения по отношению к их нижней границе. Если источник располагается ниже слоя приподнятой инверсии, то основная часть примеси концентрируется вблизи поверхности земли.

В слое инверсии практически становятся невозможны вертикальные токи воздуха, так как снижается коэффициент турбулентной диффузии, в результате чего выброс под слоем инверсии не может подниматься вверх и распределяется в приземном слое. Поэтому температурные инверсии, как правило, сопровождаются значительным увеличением концентрации загрязнений в приземном слое. Как известно, массовые отравления населения в долине Маас, а также в Доноре м Лондоне наблюдались в период устойчивой температурной инверсии, продолжавшейся несколько суток. Чем длительнее инверсия, тем выше концентрации атмосферных загрязнений, потому что накопление атмосферных выбросов происходит в ограниченном, как бы замкнутом, пространстве атмосферы.

Большое значение имеет не только длительность, но и высота инверсии. Естественно, что низкие приземные (до 15-20м) и очень приподнятые (выше 600м) инверсии могут не оказывать существенного влияния на уровень концентраций: первые – вследствие того, что высота выброса некоторых источников загрязнения может находиться над слоем инверсии и она не будет препятствовать их рассеиванию, а вторые – потому, что при очень приподнятых инверсиях слой атмосферы под ними оказывается достаточным, чтобы разбавить промышленные выбросы.

Таким образом, вертикальный температурный градиент является важнейшим фактором, определяющим интенсивность процессов перемешивания загрязнений с атмосферным воздухом и имеющим большое практическое значение. Например, если в каком-то районы часты приземные инверсии в слое 150-200 м, то строительство труб высотой 120-150м не имеет смысла, так как-это не окажет влияния на снижение концентраций в периоды инверсий. Целесообразно строительство трубы выше 200 м. Если часты приподнятые инверсии на высоте 300-400 м, то строительство трубы даже высотой 250 м не будет способствовать снижению концентраций в период инверсии.

Накопление вредных выбросов в приземном слое в период приземных инверсий будет происходить при низких выбросах. Особенно возрастают концентрации загрязнений в случае расположения приподнятых инверсий непосредственно над источником выброса, т.е. устьем трубы. Санитарный врач должен знать особенности температурной стратификации атмосферы обслуживаемой территории, чтобы учитывать их при решении вопросов предупредительного и текущего надзора в гигиене атмосферного воздуха.

В связи с изменениями температурно-радиационного режима воздуха городской территории над городом более вероятно образование инверсий по сравнению с окрестными территориями. В холодный период года наблюдаются более частые и длительные инверсии. Температурный градиент изменяется не только по сезонам, но и на протяжении суток. Вследствие охлаждения поверхности земли лучеиспусканием нередко образуются ночные инверсии, чему благоприятствуют ясное небо и сухой воздух. Ночные инверсии могут возникать и в летнее время, достигая максимума в ранние утренние часы.

Нередко инверсии образуются в долинах между возвышенностями. Спускающийся в них холодный воздух подтекает под более теплый воздух долины и образуется «озеро» холода. В таких условиях решение вопроса о размещении промышленных предприятий оказывается особенно трудным.

Наиболее высокие концентрации атмосферных загрязнений наблюдаются при низких температурах в период зимних инверсий.

Определенное значение для распределения загрязнений в приземном слое атмосферы имеет влажность воздуха. Для большинства загрязнителей имеется прямая зависимость, т.е. с ростом влажности возрастают их концентрации. Исключение составляют лишь соединения, способные гидролизоваться. Особенно высокие концентрации атмосферных загрязнений отмечаются в периоды туманов. Связь уровня загрязнения и влажности объясняется тем, что в городской атмосфере имеется значительное количество гигроскопических частиц, конденсация влаги на которых начинается при относительной влажности меньше 100%. В связи с утяжелением частиц за счет конденсации влаги они опускаются и концентрируются в более узком слое приземной атмосферы. Газообразные загрязнения, растворяясь в конденсате частиц, также накапливаются в нижних слоях атмосферы.

Таким образом, при одном и том же выбросе уровень приземной концентрации загрязнителей может существенно меняться в зависимости от метеорологических условий.

Существенное влияние на рассеивание выбросов оказывает сам город, изменяющий температурно-радиационный, влажностный и ветровой режимы. С одной стороны, город представляет «остров тепла», в результате чего возникают местные конвективные восходящие и нисходящие потоки, с другой- в условиях города чаще возникают туманы (часто за счет загрязнения его), что ухудшает рассеивание загрязнений. Направление и скорость ветра деформируются за счет изменения подстилающей поверхности и экранирующего влияния высоких зданий. В таких условиях непригодны расчеты, созданные для равнинной местности, и используются специальные методы расчета с учетом аэродинамической тени, создаваемой зданиями.

На рассеивание примесей в условиях города существенно влияет планировка улиц, их ширина, направление, высота зданий, наличие зеленых массивов и водных объектов.

Поэтому даже при постоянных промышленных и транспортных выбросах в результате влияния метеорологических условий уровни загрязнения воздуха могут различаться в несколько раз.

Определенную роль в освобождении атмосферы от загрязнений играет зеленая растительность вследствие как механической сорбции на поверхности, так и химического связывания некоторых соединений.

У1.На распространение примеси влияет рельеф местности . На наветренных склонах при ветре образуются восходящие движения воздуха, а подветренных склонах – нисходящие. Над водоемами летом образуются нисходящие потоки движения воздушных масс. В нисходящих потоках приземные концентрации увеличиваются, при восходящих потоках- уменьшаются. В некоторых формах рельефа, например в котлованах , воздух застаивается, что приводит к накоплению токсинов от низких источников выбросов. В холмистой местности максимумы приземной концентрации примеси обычно больше, чем при отсутствии неровностей рельефа.

Влияние неровностей местности на уровень приземной концентрации связано с изменением характера движения воздуха, что приводит к изменению поля концентраций. В низинах наблюдаются явления застоя воздуха, что повышает опасность накопления загрязнений. При высоте отметок 50-100 м с углом наклона 5-6 0 отличие максимальных концентраций может достигать 50% при относительно невысоких трубах. Влияние рельефа уменьшается с повышением высоты выброса. Большое значение имеет расположение источника на подветренном или наветренном склоне. Увеличение концентрации может наблюдаться и при расположении источника выброса на возвышенности, но вблизи подветренного склона, где снижаются скорости ветра и возникают нисходящие течения.

Влияние неровностей местности на характер движения воздуха настолько сложно, что требует иногда моделирования условий с целью определения характера распространения промышленных выбросов. В настоящее время имеются предложения по введению коэффициентов, учитывающих влияние рельефа на рассеивание выбросов.

УП. От времени года (зимой больше, чем летом, т.к. включены отопительные системы, а при их эксплуатации увеличивается загрязнение выбросами и на нижних слоях воздуха больше накапливаются загрязнители, т.к. конвекция воздуха замедляется).

УШ. От времени суток (максимальное загрязнение наблюдается днем, т.к. работа всех производств и транспортных средств приходится на дневное время).


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20