Определение направления индукционного тока в катушке. Направление индукционного тока

Домашняя

работа по физике

за 11 класс

к учебнику «Физика. 11 класс» Г.Я Мякишев, Б.Б. Буховцев, М.: «Просвещение», 2000 г .

учебно-практическое пособие

Упражнение 1 ………..……..…………………………

Глава 2. Электромагнитные колебания

Упражнение 2 ……...…..….…..………………………

Глава 3. Производство, передача и использование

электрической энергии

Упражнение3 ………..……..……………………………

Глава 4. Электромагнитные волны

Упражнение 4 ………..……..…………………………

Глава 5. Световые волны

Упражнение 5 ………..……..…………………………

Упражнение 6 ………..……..…………………………

Глава 6. Элементы теории относительности

Упражнение 7 ………..……..…………………………

Глава 8. Световые кванты

Упражнение 8 ………..……..…………………………

Глава 9. Атомная физика

Упражнение 9 ………..……..…………………………

Глава 10. Физика атомного ядра

Упражнение 10 ………..……..…………………………

Лабораторные работы

Лабораторнаяработа№1. ..………………………….

Лабораторнаяработа№2. ..………………………….

Лабораторнаяработа№3. ..………………………….

Лабораторнаяработа№4. ..………………………….

Лабораторнаяработа№5. ..………………………….

Лабораторнаяработа№6. ..………………………….

Глава 1. Электромагнитная индукция

Упражнение 1

Задание № 1

Ключ (в схеме на рис.1) только что замкнули. Ток в нижней катушке направлен против часовой стрелки, если смотреть сверху. Каково направление тока в верхней катушке при условии, что она неподвижна?

Когда мы замкнули ключ, по нижней катушке пошел ток, направленный против часовой стрелки. По правилу буравчика мы можем определить, что вектор магнитной индукции этого тока направлен вверх. Поэтому индуктивный ток верхней катушки противодействует своим полем этому изменению (правило Ленца). Следовательно, линии магнитной индукции верхней катушки В ′ направлены вниз, а ток по правилу буравчика направлен по часовой стрелке.

Задание № 2

Магнит (рис.2, б) выдвигают из катушки. Определите направление индукционного тока в катушке.

Выдвигая магнит из катушки (например, северным полюсом), мы, таким образом, уменьшаем магнитный поток через какой-либо виток катушки. Магнитное поле индукционного тока катушки компенсирует это изменение (правило Ленца). Следовательно, индукционный ток потечет по часовой стрелке (Вектор магнитной индукции катушкиВ ′ направлен вниз). В обратном случае (магнит вытягиваем полюсомS ) мы наблюдаем обратное.

Задание № 3

Определите направление индукционного тока в сплошном кольце, к которому подносят магнит

Поднося к кольцу магнит, мы тем самым повышаем магнитный поток через поверхность кольца. Если магнит подносить полюсом S , то линии магнитной индукции идут

от кольца. В кольце появляется индукционный ток. Вектор магнитной индукции поля кольца направлен от магнита по правилу Ленца. Следовательно, ток течет против часовой стрелки. Если магнит подносить противоположным способом, то произойдет обратное.

Задание № 4

Сила тока в проводнике ОО ′ (рис.20) убывает. Найдите направление индукционного тока в неподвижном контуре ABCD и направления сил, действующих на каждую из сторон контура.

плоскости рисунка. Когда мы уменьшаем ток, мы тем самым r

уменьшаем Β . Следовательно, поток через контур тоже

уменьшается. Вектор индукции Β инд поля индукционного тока по правилу Ленца направлен так же как иВ . По правилу буравчика находим, что ток в контуре идет по часовой стрелке. Применив правило левой руки, можно выяснить, что силы действующие на проводники тока, во-первых, растягивают

рамку, стремясь увеличить ее площадь, а, во-вторых, их результирующая направлена к прямолинейному проводнику.

Задание № 5

Металлическое кольцо может свободно двигаться по сердечнику катушки, включенной в цепь постоянного тока (рис.21). Что будет происходить в моменты замыкания и размыкания цепи?

Случай замыкания и размыкания цепи эквивалентен поднесению и удалению к кольцу магнита. В первом случае при

замыкании цепи возникает ток (в катушке), направленный против часовой стрелки. Вектор магнитной индукции данного поля тока направлен влево (правило буравчика). По правилу ленца индукционный ток противодействует своим

полем данному изменению. Следовательно, вектор r

магнитной индукции Β инд индукционного тока направлен вправо. Поэтому кольцо и катушка подобны двум магнитам, расположенным одинаковыми полюсами друг к другу. Они отталкиваются.

При размыкании магнитное поле, направленное вправо, исчезает, и индукционный ток препятствует этому. Векторы магнитной индукции его поля также направлены вправо. Следовательно, кольцо притягивается к катушке.

Задание № 6

Сила тока в катушке нарастает прямо пропорционально времени. Каков характер зависимости силы тока от времени в другой катушке, индуктивно связанной с первой?

При прямо пропорциональном возрастании силы тока в катушке, модуль вектора В поля катушки также прямо пропорционально возрастает по времени (В~t ). Так какФ =ВS cosα , то магнитный поток также растет пропорционально времени (Ф~t ).

Это дает нам то, что

ε i=

∆Φ

Const постоянна во

I инд

∆t

εi (t )

Const также постоянен.

По правилу

направлен противоположно I. Но это постоянное значение тока установится не сразу. Причиной этому является явление самоиндукции.

Задание № 7

В каком случае колебания стрелки магнитоэлектрического прибора затухают быстрее: когда клеммы прибора замкнуты накоротко или когда разомкнуты?

При замкнутых клеммах колебания стрелки затухают быстрее, чем при разомкнутых. Это объясняется тем, что действие любого магнитоэлектрического прибора основано на взаимодействии подвижного контура тока с магнитным полем постоянного магнита. Ток, протекающий по рамке, создает силы

Ампера, которые в свою очередь создают вращательный момент. При разомкнутых клеммах ток по рамке прибора не течет. Следовательно, рамка совершает колебания, затухающие за счет трения. А когда клеммы замкнут, то колебания затухают не только за счет трения, но и за счет диссипативных процессов, возникающих при протекании в ней индукционного тока.

Задание № 8

Магнитный поток через контур проводника сопротивлением 3· 10–2 Ом за 2 с изменился на 1,2· 10–2 Вб. Найдите силу тока в проводнике, если изменение потока происходило равномерно.

Дано: Решение:

R = 3· 10–2 Ом

∆ t = 2 с

∆ Ф = 1,2· 10–2 Вб

I - ?

Согласно закону электромагнитной индукции ЭДС индукции ε i в замкнутом контуре равна:

ε i =∆ ∆ Φ t =∆ ∆ Φ t .

Ток I в контуре, в соответствии с законом Ома, равен:

∆Φ

1,2 10−2

А = 0,2А

3 10-2 2

R R ∆ t

Вб

[Ι ]=

ν = 900 км/ч = 250 м/с = = 2,5 102 м/сВ = 5 10-2 Тл

l = 12 м

ε i - ?

вычислим ЭДС индукции ε i , возникающую в проводнике (самолете), движущемся в однородном магнитном поле.

Пусть вектор магнитной индукции Β перпендикулярен крыльям самолета и составляет некоторый уголα с

направлением его скорости υ r . (Если у индукции магнитногоr

поля Β есть составляющая, параллельная крыльям, то ее можно не учитывать при решении задачи, так как эта составляющая вызывает силу Лоренца, направленную перпендикулярно крыльям).

Мы видели, что вокруг проводника с током всегда существует магнитное поле.

А нельзя ли с помощью магнитного поля создать ток в проводнике?

Эту задачу решил М. Фарадей. После напряженных исканий, затратив много труда и изобретательности, он пришел к выводу: только меняющееся со временем магнитное поле может породить электрический ток.

Опыты Фарадея состояли в следующем. Если постоянный магнит вдвигать внутрь катушки, к которой присоединен гальванометр (рис. 2. а), то в цепи возникает электрический ток. Если магнит выдвигать из катушки, гальванометр также показывает ток, но противоположного направления (рис. 2, б). Электрический ток возникает и в том случае, когда магнит неподвижен, а движется катушка (вверх или вниз). Как только движение прекращается, ток тотчас же исчезает. Однако не при всяком движении магнита (или катушки) возникает электрический ток. Если вращать магнит вокруг вертикальной оси (рис. 2, в), ток не возникает.

Гальванометр покажет наличие тока в катушке В при относительном перемещении ее и катушки А с током (рис. 3, а) в момент замыкания или размыкания ключа К или при изменении силы тока в цепи катушки А (при передвижении движка реостата, рис. 3, б). Нетрудно заметить, что ток в катушке возникает всякий раз, когда изменяется магнитный поток, пронизывающий катушку.

Явление возникновения ЭДС в проводящем контуре (тока , если контур замкнут) при изменении магнитного потока, пронизывающего контур, называется явлением электромагнитной индукции . Полученный таким способом ток называется индукционным током, а создающая его ЭДС - ЭДС индукции .

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C.344- 345.

При внесении в катушку магнита в ней возникает индукционный ток. Если к катушке присоединить гальванометр, то можно заметить, что направление тока будет зависеть от того приближаем ли мы магнит или удаляем его.

Магнит будет взаимодействовать с катушкой либо притягиваясь, либо отталкиваясь от нее. Это будет возникать вследствие того, что катушка с проходящим по ней током, будет подобна магниту с двумя полюсами. Направление индуцируемого тока будет определять, где у катушки будет находиться какой из полюсов.

Если приближать к катушке магнит, то в ней будет возникать индукционный ток такого направления, что катушка обязательно будет отталкиваться от магнита. Если мы будет удалять магнит от катушки, то при этом в катушке возникнет такой индукционный ток, что она будет притягиваться к магниту.

Стоит отметить, что не важно каким полюсом мы подносим или убираем магнит, всегда при подносе катушка будет отталкиваться, а при удалении притягиваться. Различие состоит в том, что при приближении магнита к катушке магнитный поток, который будет пронизывать катушку, увеличивается, так как у полюса магнита кучность линий магнитной индукции увеличивается. А при удалении магнита, магнитный поток, пронизывающий катушку, будет уменьшаться.

Узнать направление индукционного тока можно. Для этого существует правило Ленца . Оно основано на законе сохранения. Рассмотрим следующий опыт.

Имеется катушка с подключенным к ней гальванометром. К одному и краев катушки начинаем подносить магнит, например, северным полюсом. Количество линий, которые будут пронизывать поверхность каждого витка катушки, будет увеличиваться. Следовательно, будет увеличиваться и значение магнитного потока.

Так как должен выполняться закон сохранения, должно возникнуть магнитное поле, которое будет препятствовать изменению магнитного потока. В нашем случае магнитный поток увеличивался, следовательно, ток должен течь в таком направлении, чтобы линии вектора магнитной индукции, создаваемые катушкой, были направлены в противоположном направлении линиям магнитной индукции, создаваемым магнитом.

То есть они должны в нашем случае быть направлены вверх. Теперь воспользуемся правилом буравчика. Направляем большой палец правой руки по необходимому нам направлению линий магнитной индукции, то есть - вверх. Тогда остальные пальцы укажут, в какую сторону должен быть направлен индукционный ток. В нашем случае, слева на право.

Аналогичный процесс происходит при удалении магнита. Убираем магнит, магнитный поток уменьшается, следовательно, должно возникнуть поле которое будет увеличивать магнитный поток. То есть поле линии магнитной индукции, которого будут сонаправлены с линиями магнитной индукции, создаваемыми постоянным магнитом. В нашем случае эти лини направлены вниз. Опять пользуемся правилом буравчика и определяем направление индукционного тока.

>> Направление индукционного тока. Правило Ленца


Присоединив катушку, в которой возникает индукционный ток, к гальванометру, можно обнаружить, что направление этого тока зависит от того, приближается ли магнит к катушке (например, северным полюсом) или удаляется от нее (см. рис. 2.2, б).

Возникающий индукционный ток того или иного направления как-то взаимодействует с магнитом (притягивает или отталкивает его). Катушка с проходящим по ней током подобна магниту с двумя полюсами - северным и южным. Направление индукционного тока определяет, какой конец катушки выполняет роль северного полюса (линии магнитной индукции выходят из него). На основе закона сохранения энергии можно предсказать, в каких случаях катушка будет притягивать магнит, а в каких отталкивать его.

Взаимодействие индукционного тока с магнитом. Если магнит приближать к катушке, то в ней появляется индукционный ток такого направления, что магнит обязательно отталкивается. Для сближения магнита и катушки нужно совершить положительную работу. Катушка становится подобной магниту, обращенному одноименным полюсом к приближающемуся к ней магниту. Одноименные же полюса отталкиваются.

При удалении магнита, наоборот, в катушке возникает ток такого направления, чтобы появилась притягивающая магнит сила.

В чем состоит различие двух опытов: приближение магнита к катушке и его удаление? В первом случае число линий магнитной индукции, пронизывающих витки катушки, или, что то же самое, магнитный поток, увеличивается (рис. 2.5, а), а во втором случае уменьшается (рис. 2.5, б). Причем в первом случае линии индукции магнитного поля, созданного возникшим в катушке индукционным током, выходят из верхнего конца катушки, так как катушка отталкивает магнит, а во втором случае, наоборот, входят в этот конец. Эти линии магнитной индукции на рисунке 2.5 изображены черным цветом. В случае а катушка с током аналогична магниту, северный полюс которого находится сверху, а в случае б - снизу.

Аналогичные выводы можно сделать с помощью опыта, показанного на рисунке 2.6. На концах стержня, который может свободно вращаться вокруг вертикальной оси, закреплены два проводящих алюминиевых кольца. Одно из них с разрезом. Если поднести магнит к кольцу без разреза, то в нем возникнет индукционный ток и направлен он будет так, что это кольцо оттолкнется от магнита и стержень повернется. Если удалять магнит от кольца, то оно, наоборот, притянется к магниту. С разрезанным кольцом магнит не взаимодействует, так как разрез препятствует возникновению в кольце индукционного тока. Отталкивает или притягивает катушка магнит, это зависит от направления индукционного тока в ней. Поэтому закон сохранения энергии позволяет сформулировать правило, определяющее направление индукционного тока.

Теперь мы подошли к главному: при увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует усилению магнитного потока через витки катушки. Ведь линии индукции этого поля направлены против линий индукции поля, изменение которого порождает электрический ток. Если же магнитный поток через катушку ослабевает, то индукционный
ток создает магнитное поле с индукцией , увеличивающее магнитный поток через витки катушки.

В этом и состоит сущность общего правила определения направления индукционного тока, которое применимо во всех случаях. Это правило было установлено русским физиком Э. X. Ленцем .

Согласно правилу Ленца возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Более кратко это правило можно сформулировать следующим образом: индукционный ток направлен так, чтобы препятствовать причине, его вызывающей.

Применять правило Ленца для нахождения направления индукционного тока в контуре надо так:

1. Определить направление линий магнитной индукции внешнего магнитного поля.
2. Выяснить, увеличивается ли поток вектора магнитной индукции этого поля через поверхность, ограниченную контуром (Ф > 0), или уменьшается (Ф < 0).
3. Установить направление линий магнитной индукции магнитного поля индукционного тока. Эти линии должны быть согласно правилу Ленца направлены противоположно линиям магнитной индукции при Ф > 0 и иметь одинаковое с ними направление при Ф < 0.
4. Зная направление линий магнитной индукции , найти направление индукционного тока, пользуясь правилом буравчика.

Направление индукционного тока определяется с помощью закона сохранения энергии. Индукционный ток во всех случаях направлен так, чтобы своим магнитным полем препятствовать изменению магнитного потока, вызывающего данный индукционный ток .


1. Как определяется направление индукционного тока?
2. Возникнет ли в кольце с разрезом электрическое поле, если подносить к нему магнит!

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

2. Вдвигая полосовой магнит виутрь катушки, определите направление индукционного тока. Повторите опыт, выдвигая магнит из катушки. Сделайте вывод.

3. Определите, как влияет скорость движения постояиного магнита внутри катушки на силу индукционного тока в ией. Объясните наблюдаемое изменение силы тока и сделайте вывод.

4. Соберите еще одну цепь, состоящую из источника тока, второй катушки электромагнита, реостата и ключа, соединенных последовательио. Расположите вторую катушку рядом с первой так, чтобы их оси совпадали.

б. Замыкая и размыкая цепь, проследите, возникает ли иидукциоипый ток в первой катушке, соединенной с миллиамперметром. Определите его направлеиие. Сделайте вывод.

6. Замкнув цепь второй кагушки, изменяйте силу тока в ней с помощью реостата. Определите направление индукционного тока при возрастании и убывании силы тока в первой катушке. Сделайте вывод.

ф 39. Самоиндукция

1. Рассмотрим электрическую цепь, состоящую из источника тока, ключа и проводника, силу тока в которой можно изменять с помощью реостата. Поскольку возникающее вокруг проводника магнитное поле зависит от силы тока в цепи, изменение силы тока вызовет изменение индукции магнитного поля, создаваемого этим током. Следовательно, сам проводник с изменяющейся в нем силой тока окажется в изменяющемся магнитном поле, что приведет к возникновению индукционного тока в этом же проводнике. Подобное явление получило название самонндукции, а так, возникающий при этом, - шок самоиндунции.

Самоиндукция является частным случаем электромагнитной индукции и представляет собой по сути еиндуктивное влияние электрического тока на самого себя >.

Впервые явление самоиндукции наблюдал американский ученый Джозеф Генри 11797 - 1878) в 1832 гл индукционный ток возникал в катушке, когда магнитный поток в ней увеличивался или уменьшался вследствие изменения тока, протекающего в самой катушке.

2. Явление самоиндукции можно наблюдать на достаточно простых опытах.

Соберем электрическую цепь, состоящую из двух параллельно подключенных к источнику тока одинаковых ламп. Последователь-

но с первой лампой включен реостаг, а со второй катушка с железным сердечником (рис. 157). Реостат должен иметь такое же электрическое сопротивление, что и обмотка катушки.

Опыт показывает, что при замыкании цепи первая лампа загорается практически сразу, а вторая - с заметным запаздываниРис 1Б7 ем. Нарастанию тока в части цепи с катушкой препятствует возникающий при этом ток самоиндукции. Согласно правилу Ленца этот ток препятствует изменению, в данном случае возрастанию, магнитного потока. Постепенно магнитный поток перестает изменяться, и ток самоиндукции становится равным нулю. Сила тока в цепи с катушкой становится максимальной.

При размыкании цепи возникающий при этом ток самоиндукции направлен в ту же сторону, что и ток от источника, поскольку он препятствует уменьшению силы тока в цепи. При этом магнитный поток, созданный током в катушке, уменьшается; возникающий ток препятствует этому изменению, поддерживая основной ток в цепи.

3. Явление самоиндукции подобно явлению инерции в механике. Аналогичность этих процессов проявляется в том, что как движущееся тело нельзя мгновенно остановить, а покоящееся- привести в движение, так и ток за счет самоиндукции не может мгновенно приобрести определенное значение. Он нарастает и уменьшается постепенно.

4. Как уже было показано, магнитный поток Ф прямо пропорционален модулю вектора магнитной индукции В: Ф - В. В свою очередь, магнитная индукция В прямо пропорциональна силе тока в проводнике 1, создающем магнитное поле: В - 1. Следовательно, можно считать, что Ф - 1. Обозначив коэффициент пропорциональности между силой тока в проводнике и магнитным потоком, пронизывающим его, буквой В, можно записать.