Распознавание образов. Что такое распознавание образов? Некоторые типовые функции потерь

Sun, Mar 29, 2015

В настоящее время существует множество задач, в которых требуется принять некоторое решение в зависимости от присутствия на изображении объекта или классифицировать его. Способность «распознавать» считается основным свойством биологических существ, в то время как компьютерные системы этим свойством в полной мере не обладают.

Рассмотрим общие элементы модели классификации.

Класс - множество объектом имеющие общие свойства. Для объектов одного класса предполагается наличие «схожести». Для задачи распознавания может быть определено произвольное количество классов, больше 1. Количество классов обозначается числом S. Каждый класс имеет свою идентифицирующую метку класса.

Классификация - процесс назначения меток класса объектам, согласно некоторому описанию свойств этих объектов. Классификатор - устройство, которое в качестве входных данных получает набор признаков объекта, а в качестве результата выдающий метку класса.

Верификация - процесс сопоставления экземпляра объекта с одной моделью объекта или описанием класса.

Под образом будем понимать наименование области в пространстве признаков, в которой отображается множество объектов или явлений материального мира. Признак - количественное описание того или иного свойства исследуемого предмета или явления.

Пространство признаков это N-мерное пространство, определенное для данной задачи распознавания, где N - фиксированное число измеряемых признаков для любых объектов. Вектор из пространства признаков x, соответствующий объекту задачи распознавания это N-мерный вектор с компонентами (x_1,x_2,…,x_N), которые являются значениями признаков для данного объекта.

Другими словами, распознавание образов можно определить, как отнесение исходных данных к определенному классу с помощью выделение существенных признаков или свойств, характеризующих эти данные, из общей массы несущественных деталей.

Примерами задач классификации являются:

  • распознавание символов;
  • распознавание речи;
  • установление медицинского диагноза;
  • прогноз погоды;
  • распознавание лиц
  • классификация документов и др.

Чаще всего исходным материалом служит полученное с камеры изображение. Задачу можно сформулировать как получение векторов признаков для каждого класса на рассматриваемом изображении. Процесс можно рассматривать как процесс кодирования, заключающийся в присвоении значения каждому признаку из пространства признаков для каждого класса.

Если рассмотреть 2 класса объектов: взрослые и дети. В качестве признаков можно выбрать рост и вес. Как следует из рисунка эти два класса образуют два непересекающихся множества, что можно объяснить выбранными признаками. Однако не всегда удается выбрать правильные измеряемые параметры в качестве признаков классов. Например выбранные параметры не подойдут для создания непересекающихся классов футболистов и баскетболистов.

Второй задачей распознавания является выделение характерных признаков или свойств из исходных изображений. Эту задачу можно отнести к предварительной обработке. Если рассмотреть задачу распознавания речи, можно выделить такие признаки как гласные и согласные звуки. Признак должен представлять из себя характерное свойство конкретного класса, при этом общие для этого класса. Признаки, характеризующие отличия между - межклассовые признаки. Признаки общие для всех классов не несут полезной информации и не рассматриваются как признаки в задаче распознавания. Выбор признаков является одной из важных задач, связанных с построением системы распознавания.

После того, как определены признаки необходимо определить оптимальную решающую процедуру для классификации. Рассмотрим систему распознавания образов, предназначенную для распознавания различных M классов, обозначенных как m_1,m_2,…,m3. Тогда можно считать, что пространство образов состоит из M областей, каждая содержит точки, соответствующие образом из одного класса. Тогда задача распознавания может рассматриваться как построение границ, разделяющих M классов, исходя из принятых векторов измерений.

Решение задачи предварительной обработки изображения, выделение признаков и задачи получения оптимального решения и классификации обычно связано с необходимостью произвести оценку ряда параметров. Это приводит к задаче оценки параметров. Кроме того, очевидно, что выделение признаков может использовать дополнительную информацию исходя из природы классов.

Сравнение объектов можно производить на основе их представления в виде векторов измерений. Данные измерений удобно представлять в виде вещественных чисел. Тогда сходство векторов признаков двух объектов может быть описано с помощью евклидова расстояния.

где d - размерность вектора признака.

Разделяют 3 группы методов распознавания образов:

  • Сравнение с образцом . В эту группу входит классификация по ближайшему среднему, классификация по расстоянию до ближайшего соседа. Также в группу сравнения с образцом можно отнести структурные методы распознавания.
  • Статистические методы . Как видно из названия, статистические методы используют некоторую статистическую информацию при решении задачи распознавания. Метод определяет принадлежность объекта к конкретному классу на основе вероятности В ряде случаев это сводится к определению апостериорной вероятности принадлежности объекта к определенному классу, при условии, что признаки этого объекта приняли соответствующие значения. Примером служит метод на основе байесовского решающего правила.
  • Нейронные сети . Отдельный класс методов распознавания. Отличительной особенностью от других является способность обучаться.

Классификация по ближайшему среднему значению

В классическом подходе распознавания образов, в котором неизвестный объект для классификации представляется в виде вектора элементарных признаков. Система распознавания на основе признаков может быть разработана различными способами. Эти векторы могут быть известны системе заранее в результате обучения или предсказаны в режиме реального времени на основе каких-либо моделей.

Простой алгоритм классификации заключается в группировке эталонных данных класса с использованием вектора математического ожидания класса (среднего значения).

где x(i,j)- j-й эталонный признак класса i, n_j- количество эталонных векторов класса i.

Тогда неизвестный объект будет относиться к классу i, если он существенно ближе к вектору математического ожидания класса i, чем к векторам математических ожиданий других классов. Этот метод подходит для задач, в которых точки каждого класса располагаются компактно и далеко от точек других классов.

Трудности возникнут, если классы будут иметь несколько более сложную структуру, например, как на рисунке. В данном случае класс 2 разделен на два непересекающихся участка, которые плохо описываются одним средним значением. Также класс 3 слишком вытянут, образцы 3-го класса с большими значениями координат x_2 ближе к среднему значению 1-го класса, нежели 3-го.

Описанная проблема в некоторых случаях может быть решена изменением расчета расстояния.

Будем учитывать характеристику «разброса» значений класса - σ_i, вдоль каждого координатного направления i. Среднеквадратичное отклонение равно квадратному корню из дисперсии. Шкалированное евклидово расстояние между вектором x и вектором математического ожидания x_c равно

Эта формула расстояния уменьшит количество ошибок классификации, но на деле большинство задач не удается представить таким простым классом.

Классификация по расстоянию до ближайшего соседа

Другой подход при классификации заключается в отнесении неизвестного вектора признаков x к тому классу, к отдельному образцу которого этот вектор наиболее близок. Это правило называется правилом ближайшего соседа. Классификация по ближайшему соседу может быть более эффективна, даже если классы имеют сложную структуру или когда классы пересекаются.

При таком подходе не требуется предположений о моделях распределения векторов признаков в пространстве. Алгоритм использует только информацию об известных эталонных образцах. Метод решения основан на вычислении расстояния x до каждого образца в базе данных и нахождения минимального расстояния. Преимущества такого подхода очевидны:

  • в любой момент можно добавить новые образцы в базу данных;
  • древовидные и сеточные структуры данных позволяют сократить количество вычисляемых расстояний.

Кроме того, решение будет лучше, если искать в базе не одного ближайшего соседа, а k. Тогда при k > 1 обеспечивает наилучшую выборку распределения векторов в d-мерном пространстве. Однако эффективное использование значений k зависит от того, имеется ли достаточное количество в каждой области пространства. Если имеется больше двух классов то принять верное решение оказывается сложнее.

Литература

  • M. Castrillón, . O. Déniz, . D. Hernández и J. Lorenzo, «A comparison of face and facial feature detectors based on the Viola-Jones general object detection framework,» International Journal of Computer Vision, № 22, pp. 481-494, 2011.
  • Y.-Q. Wang, «An Analysis of Viola-Jones Face Detection Algorithm,» IPOL Journal, 2013.
  • Л. Шапиро и Д. Стокман, Компьютерное зрение, Бином. Лаборатория знаний, 2006.
  • З. Н. Г., Методы распознавания и их применение, Советское радио, 1972.
  • Дж. Ту, Р. Гонсалес, Математические принципы распознавания образов, Москва: “Мир” Москва, 1974.
  • Khan, H. Abdullah и M. Shamian Bin Zainal, «Efficient eyes and mouth detection algorithm using combination of viola jones and skin color pixel detection» International Journal of Engineering and Applied Sciences, № Vol. 3 № 4, 2013.
  • V. Gaede и O. Gunther, «Multidimensional Access Methods,» ACM Computing Surveys, pp. 170-231, 1998.

Современные роботы, снабженные системами технического зрения, способны хорошо видеть, чтобы работать с реальным миром. Они могут делать заключение о том, какого типа объекты присутствуют, в каких отношениях они находятся между собой, какие группы образуют.

Суть задачи распознавания – установить, обладают ли изучаемые объекты фиксированным конечным набором признаков, позволяющим отнести и ке определенному классу.

Цели науки распознавания образов:

Замена человеческого эксперта или сложной экспертной системы более простой системой (автоматизация деятельности человека или упрощение сложных систем);

Построение обучающихся систем, которые умеют принимать решения без указания четких правил, а именно, систем, которые умеют сами синтезировать правила принятия решений на основе некоторого конечного количества «продемонстрированных» системе примеров правильных решений.

Задачи распознавания можно охарактеризовать следующим образом.

1.Это информационные задачи, состоящие из двух основных этапов: приведение исходных данных к виду, удобному для распознавания и собственно распознавание.

2. В эти задачах можно вводить понятие аналогии Ии подобия объектов и формулировать понятие близости объектов в качестве основания для зачисления объекта в определенный класс.

3. В этих задачах можно оперировать набором примеров, классификация которых известна и которые в виде формализованных описаний могут быть предъявлены алгоритму распознавания для настройки на задачу в процессе обучения.

4. Для этих задач трудно строить формальные теории и применять классические математические методы.

5. В этих задачах возможна «плохая» информация.

Типы задач распознавания:

Отнесение предъявленного объекта к одному из классов (обучение с учителем);

Автоматическая классификация – разбиение множества объектов (ситуаций) по их описанияю на систему непересекающихся классов;

Выбор набора информатиыных признаков при распощнавании;

Приведение исходных данных к виду, удобному для распознавания;

Динамическое распознавание и динамическая классификация;

Задачи прогнозирования.

Основные определения

Образ – этоcтруктурированное описание объекта или явления, представленное вектором признаков, каждый элемент которого представляет числовое значение одного из признаков, характеризующих данный объект. Другими словами: образ - любой объект, для которого можно измерить набор определенных числовых признаков. Пример образа: буква, изображение, кардиограмма, и т.п.

Числовой признак (или просто признак). – это формула или иное описание способа сопоставления объекту некоторой числовой характеристики, которое действует в рамках конкретной задачи распознавания образов. Для каждого объекта может быть определено несколько различных признаков, то есть несколько числовых характеристик.

Пространство признаков .N-мерное пространство, определенное для данной задачи распознавания, гдеN– фиксированное число измеряемых признаков для любых объектов. Вектор из пространства признаков, соответствующий объекту задачи распознавания этоN-мерный вектор с компонентами (х1,х2, …, хN), которые являются значениями признаков данного объекта.

ОБЪЕКТ->Nпризнаков->M-мерный вектор признаков

Класс - неформализируемое (как правило) представление о возможности отнесения произвольного объекта из множества объектов задачи распознавания к определенной группе объектов. Для объектов одного класса предполагается наличие «схожести». Для задачи распознавания образов может быть определено произвольное количество классов, большее 1. Количество классов обозначается числомS.

В целом проблема распознавания образов состоит из двух частей: распознавания и обучении.

Распознавание образов заключается в классификации некоторой группы объектов на основе определенных требований. Объекты, относимые к одному классу образов, обладают общими свойствами. Требования, определяющие классификацию, могут быть различными, так как в различных ситуациях возникает необходимость в различных типах классификаций.

Например, при распознавании английских букв образуется 26 классов образов. Однако, чтобы отличить при распознавании английские буквы от китайских иероглифов, нужны лишь два класса образов.

Простейший подход к распознаванию образов заключается в сопоставлении с эталонами. В этом случае некоторое множество образов, по одному из каждого класса образов, хранится в памяти машины. Входной (распознаваемый) образ (неизвестного класса) сравнивается с эталоном каждого класса. Классификация основывается на заранее выбранном критерии соответствия или критерии подобия. Другими словами, если входной образ лучше соответствует эталону i-го класса образов, чем любому другому эталону, то входной образ классифицируется как принадлежащийi-му классу образов.

Недостаток этого подхода, т. е. сопоставления с эталоном, заключается в том, что в ряде случаев трудно выбрать подходящий эталон из каждого класса образов и установить необходимый критерий соответствия.

Более совершенный подход заключается в том, что классификация основывается на некотором множестве отобранных замеров, производимых на входных образах. Эти отобранные замеры, называемые «признаками», предполагаются инвариантными или малочувствительными по отношению к обычно встречающимся изменениям и искажениям и обладающими небольшой избыточностью.

Частный случай второго подхода «измерения признаков», при котором эталоны хранятся в виде измеренных признаков и в классификаторе используется специальный критерий классификации (сопоставление).

Признаки определяются разработчиками и должны быть инвариантны к ориентации, размеру и вариациям формы объектов.

В этой статье я задался целью осветить некоторые фундаментальные результаты теории машинного обучения таким образом, чтобы концепции были понятны читателям, немного знакомыми с задачами классификации и регрессии. Идея написать такую статью все четче проявлялась в моем сознании с каждой прочитанной книгой, в которой идеи обучения машин распознаванию рассказывались как бы с середины и совершенно не понятно, на что авторы того или иного метода опирались при его разработке. С другой стороны существует ряд книг, посвященных основным концепциям в машинном обучении, но изложение материала в них может показаться слишком сложным для первого прочтения.

Мотивация

Рассмотрим такую задачу. У нас есть яблоки двух классов - вкусные и не вкусные, 1 и 0. Яблоки обладают признаками - цветом и размером. Цвет изменятся непрерывно от 0 до 1, т.е. 0 -полностью зеленое яблоко, 1 - полностью красное. Размер может меняться аналогично, 0 - яблоко маленькое, 1 - большое. Мы хотели бы разработать алгоритм, который бы получал на вход цвет и размер, а на выходе отдавал класс яблока - вкусное оно или нет. Весьма желательно, чтобы число ошибок при этом было чем меньше тем лучше. При этом мы обладаем конечным списком, в котором указаны исторические данные о цвете, размере и классе яблок. Как бы мы могли решать такую задачу?

Логический подход

Решая нашу задачу, первый метод, который возможно придет на ум, может быть такой: давайте вручную составим правила типа if-else и в зависимости от значений цвета и размера будем присваивать яблоку определенный класс. Т.е. у нас есть предпосылки - это цвет и размер, и есть следствие - вкус яблока. Вполне разумно, когда признаков немного и можно на глаз оценить пороги для сравнения. Но может случится так, что придумать четкие условия не получится, и из данных не очевидно какие пороги брать, да и число признаков может увеличиваться в перспективе. А что делать, если в нашем списке с историческими данными, мы обнаружили два яблока с одинаковыми цветом и размером, но одно помечено как вкусное, а другое нет? Таким образом наш первый метод не настолько гибкий и масштабируемый, как нам бы хотелось.

Обозначения

Введем следующую нотацию. Будем обозначать -ое яблоко как . В свою очередь каждый состоит из двух чисел - цвета и размера. Этот факт мы будем обозначать парой чисел: . Класс каждого -го яблока мы обозначим как . Список с историческими данными обозначим буквой , длина этого списка равна . -ый элемент этого списка есть значение признаков яблока и его класс. Т.е. . Так же будем называть выборкой. Большими буквами и мы обозначим переменные, которые могут принимать значения конкретного признака и класса. Веедем новое понятие - решающее правило есть функция, которая принимает на вход значение цвета и размера , а на выходе возвращает метку класса:

Вероятностный подход

Развивая идею логического метода с предпосылками и следствиями, зададим себе вопрос - а какова вероятность того, что -ое яблоко, которое не принадлежит нашей выборке будет вкусное, при условии измеренных значений цвета и размера? В нотации теории вероятностей этот вопрос можно записать так:

В этом выражении можно интерпретировать как посылку, как следствие, но переход от посылки к следствию будет подчинятся вероятностным законам, а не логическим. Т.е. вместо таблицы истинности с булевскими значениями 0 и 1 для класса, будут значения вероятности, которые принимают значения от 0 до 1. Применим формулу Байеса и получим следующее выражение:

Рассмотрим правую часть этого выражения более подробно. Множитель называется априорной вероятностью и означает вероятность встретить вкусное яблоко среди всех возможных яблок. Априорная вероятность встретить невкусное яблоко есть . Эта вероятность может отражать наше личное знание о том, как распределены вкусные и невкусные яблоки в природе. Например, по нашему прошлому опыту мы знаем, что 80% всех яблок - вкусные. Или мы можем оценить это значение просто посчитав долю вкусных яблок в нашем списке с историческими данными S. Следующий множитель - показывает, насколько вероятно получить конкретное значение цвета и размера для яблока класса 1. Это выражение так же называется функцией правдоподобия и может иметь вид какого-нибудь конкретного распределения, например, нормального. Знаменатель мы используем в качестве нормировочной константы, что бы искомая вероятность изменялась в пределах от 0 до 1. Нашей конечной целью является не поиск вероятностей, а поиск решающего правила, которое бы сразу давало нам класс. Конечный вид решающего правила зависит от того, какие значения и параметры нам известны. Например, мы можем знать только значения априорной вероятности, а остальные значения оценить невозможно. Тогда решающее правило будет такое - ставить всем яблокам значение того класса, для которого априорная вероятность наибольшая. Т.е. если мы знаем, что 80% яблок в природе вкусные, то каждому яблоку ставим класс 1. Тогда наша ошибка составит 20%. Если же мы к тому же можем оценить значения функции правдоподобия $p(X=x_m | Y=1)$, то можем и найти значение искомой вероятности по формуле Байеса, как написано сверху. Решающее правило здесь будет таким: поставить метку того класса, для которого вероятность максимальна:

Это правило назовем Байесовским классификатором. Поскольку мы имеем дело с вероятностями, то даже большое значение вероятности не дает гарантий, что яблоко не принадлежит к классу 0. Оценим вероятность ошибки на яблоке следующим образом: если решающее правило вернуло значение класса равное 1, то вероятность ошибиться будет и наоборот:

Нас интересует вероятность ошибки классификатора не только на данном конкретном примере, но и вообще для всех возможных яблок:

Это выражение является математическим ожидаем ошибки . Итак, решая исходную проблему мы пришли к байесовскому классификатору, но какие у него есть недостатки? Главная проблема - оценить из данных условную вероятность . В нашем случае мы представляем объект парой чисел - цвет и размер, но в более сложных задачах размерность признаков может быть в разы выше и для оценки вероятности многомерной случайной величины может не хватить числа наблюдений из нашего списка с историческими данными. Далее мы попробуем обобщить наше понятие ошибки классификатора, а так же посмотрим, можно ли подобрать какой-либо другой классификатор для решения проблемы.

Потери от ошибок классификатора

Предположим, что у нас уже есть какое-либо решающее правило . Тогда оно может совершить два типа ошибок - первый, это причислить объект к классу 0, у которого реальный класс 1 и наоборот, причислить объект к классу 1, у которого реальный класс 0. В некоторых задачах бывает важно различать эти случаи. Например, мы страдаем больше от того, что яблоко, помеченное как вкусное, оказалось невкусным и наоборот. Степень нашего дискомфорта от обманутых ожиданий мы формализуем в понятии Более обще - у нас есть функция потерь, которая возвращает число для каждой ошибки классификатора. Пусть - реальная метка класса. Тогда функция потерь возвращает величину потерь для реальной метки класса и значения нашего решающего правила . Пример применения этой функции - берем из яблоко с известным классом , передаем яблоко на вход нашему решающему правилу , получаем оценку класса от решающего правила, если значения и совпали, то считаем что классификатор не ошибся и потерь нет, если значения не совпадают, то величину потерь скажет наша функция

Условный и байесовский риск

Теперь, когда у нас есть функция потерь и мы знаем, сколько мы теряем от неправильной классификации объекта , было бы неплохо понять, сколько мы теряем в среднем, на многих объектах. Если мы знаем величину - вероятность того, что -ое яблоко будет вкусное, при условии измеренных значений цвета и размера, а так же реальное значение класса(например возьмем яблоко из выборки S, см. в начале статьи), то можем ввести понятие условного риска. Условный риск есть средняя величина потерь на объекте для решающего правила :

В нашем случае бинарной классификации когда получается:

Выше мы описывали решающее правило, которое относит объект к тому классу, который имеет наибольшее значение вероятности Такое правило доставляет минимум нашим средним потерям(байесовскому риску), поэтому Байесовский классификатор является оптимальным с точки зрения введенного нами функционала риска. Это значит, что Байесовский классификатор имеет наименьшую возможную ошибку классификации.

Некоторые типовые функции потерь

Одной из наиболее частовстречающихся функций потерь является симметричная функция, когда потери от первого и второго типов ошибок равнозначны. Например, функция потерь 1-0 (zero-one loss) определяется так:

Тогда условный риск для a(x) = 1 будет просто значением вероятности получить класс 0 на объектке :

Аналогично для a(x) = 0:

Функция потерь 1-0 принимает значение 1, если классификатор делает ошибку на объекте и 0 если не делает. Теперь сделаем так, чтобы значение на ошибке равнялось не 1, а другой функции Q, зависящей от решающего правила и реальной метки класса:

Тогда условный риск можно записать так:

Замечания по нотации

Предыдущий текст был написан согласно нотации, принятой в книге Дуды и Харта. В оригинальной книге В.Н. Вапника рассматривался такой процесс: природа выбирает объект согласно распределению $p(x)$, а затем ставит ему метку класса согласно условному распределению $p(y|x)$. Тогда риск(матожидание потерь) определяется как

Где - функция, которой мы пытаемся аппроксимировать неизвестную зависимость, - функция потерь для реального значения и значения нашей функции . Эта нотации более наглядна для того чтобы ввести следущее понятие - эмпирический риск.

Эмпирический риск

На данном этапе мы уже выяснили, что логический метод нам не подходит, потому что он недостаточно гибкий, а байесовский классификатор мы не можем использовать, когда признаков много, а данных для обучения ограниченное число и мы не сможем восстановить вероятность . Так же нам известно, что байесовский классификатор обладает наименьшей возможной ошибкой классификации. Раз уж мы не можем использовать байесовский классификатор, давайте возьмем что-нибудь по проще. Давайте зафиксируем некоторое параметрическое семейство функций H и будем подбирать классификатор из этого семейства.

Пример: пусть множество всех функций вида

Все функции этого множества будут отличаться друг от друга только коэффициентами Когда мы выбрали такое семейство, мы предположили, что в координатах цвет-размер между точками класса 1 и точками класса 0 можно провести прямую линию с коэффициентами таким образом, что точки с разными классами находятся по разные стороны от прямой. Известно, что у прямой такого вида вектор коэффициентов является нормалью к прямой. Теперь делаем так - берем наше яблоко, меряем у него цвет и размер и наносим точку с полученными координатами на график в осях цвет-размер. Далее меряем угол между этой точкой и вектором $w$. Замечаем, что наша точка может лежать либо по одну, либо по другую сторону от прямой. Тогда угол между и точкой будет либо острый, либо тупой, а скалярное произведение либо положительное, либо отрицательное. Отсюда вытекает решающее правило:

После того как мы зафиксировали класс функций $Н$, возникает вопрос - как выбрать из него функцию с нужными коэффициентами? Ответ - давайте выберем ту функцию, которая доставляет минимум нашему байесовскому риску $R()$. Опять проблема - чтобы посчитать значения байесовского риска, нужно знать распределение $p(x,y)$, а оно нам не дано, и восстановиь его не всегда возможно. Другая идея - минимизировать риск не на всех возможных объектах, а только на выборке. Т.е. минимизировать функцию:

Эта функция и называется эмпирическим риском. Следующий вопрос - почему мы решили, что минимизируя эмпирический риск, мы при этом так же минимизируем байесовский риск? Напомню, что наша задача практическая - допустить как можно меньше ошибок классификации. Чем меньше ошибок, тем меньше байесовский риск. Обоснование о сходимости эмпирического риска к байесовскому с ростом объема данных было получено в 70-е годы двумя учеными - В. Н. Вапником и А. Я. Червоненкисом.

Гарантии сходимости. Простейший случай

Итак, мы пришли к тому, что байесовский классификатор дает наименьшую возможною ошибку, но обучить его в большинстве случаев мы не можем и ошибку(риск) посчитать мы тоже не в силах. Однако, мы можем посчитать приближение к байесовскокому риску, которое называется эмпирический риск, а зная эмпирический риск подобрать такую аппроксимирующую функцию, которая бы минимизировала эмпирический риск. Давайте рассмотрим простейшую ситуацию, когда минимизация эмпирического риска дает классификатор, так же минимизирующий байесовский риск. Для простейшего случая нам придется сделать предположение, которое редко выполняется на практике, но которое в дальнейшем можно будет ослабить. Зафиксируем конечный класс функций из которого мы будем выбирать наш классификатор и предположим, что настоящая функция, которую использует природа для разметки наших яблок на вкусы находится в этом конечном множестве гипотез: . Так же у нас есть выборка , полученная из распределения над объектами . Все объекты выборки считаем одинаково независимо распределенными(iid). Тогда будет верна следующая

Теорема

Выбирая функцию из класса с помощью минимизации эмпирического риска мы гарантированно найдем такую , что она имеет небольшое значение байесовского риска если выборка, на которой мы производим минимизацию имеет достаточный размер.

Что значит «небольшое значение» и «достаточный размер» см. в литературе ниже.

Идея доказательства

По условию теоремы мы получаем выборку из распределения , т.е. процесс выбора объектов из природы случаен. Каждый раз, когда мы собираем выборку она будет из того же распределения, но сами объекты в ней могут быть различны. Главная идея доказательства состоит в том, что мы можем получить такую неудачную выборку , что алгоритм, который мы выберем с помощью минимизации эмпирического риска на данной выборке будет плохо минимизировать байесовский риск но при этом хорошо минимизировать эмпирический риск, но вероятность получить такую выборку мала и ростом размера выборки эта вероятность падает. Подобные теоремы существуют и для более реалистичных предположений, но здесь мы не будем их рассматривать.

Практические результаты

Имея доказательства того, что функция, найденная при минимизации эмпирического риска не будет иметь большую ошибку на ранее не наблюдаемых данных при достаточном размере обучающей выборки мы можем использовать этот принцип на практике, например, следующим образом - берем выражение:

И подставляем разные функции потерь, в зависимости от решаемой задачи. Для линейной регрессии:

Для логистической регресии:

Несмотря на то, что за методом опорных векторов лежит в основном геометрическая мотивация, его так же можно представить как проблему минимизации эмпирического риска.

Заключение

Многие методы обучения с учителем можно рассматривать в том числе как частные случаи теории, разработанной В. Н. Вапником и А. Я. Червоненкисом. Эта теория дает гарантии относительно ошибки на тестовой выборке при условии достаточного размера обучающей выборки и некоторых требований к пространству гипотез, в котором мы ищем наш алгоритм.

Используемая литература

  • The Nature of Statistical Learning Theory, Vladimir N. Vapnik
  • Pattern Classification, 2nd Edition, Richard O. Duda, Peter E. Hart, David G. Stork
  • Understanding Machine Learning: From Theory to Algorithms, Shai Shalev-Shwartz, Shai Ben-David
P.S. Просьба писать в личку обо всех неточностях и опечатках

Теги: Добавить метки

С задачей распознавания образов живые системы, в том числе и человек, сталкиваются постоянно с момента своего появления. В частности, информация, поступающая с органов чувств, обрабатывается мозгом, который в свою очередь сортирует информацию, обеспечивает принятие решения, а далее с помощью электрохимических импульсов передает необходимый сигнал далее, например, органам движения, которые реализуют необходимые действия. Затем происходит изменение окружающей обстановки, и вышеуказанные явления происходят заново. И если разобраться, то каждый этап сопровождается распознаванием.

С развитием вычислительной техники стало возможным решить ряд задач, возникающих в процессе жизнедеятельности, облегчить, ускорить, повысить качество результата. К примеру, работа различных систем жизнеобеспечения, взаимодействие человека с компьютером, появление роботизированных систем и др. Тем не менее, отметим, что обеспечить удовлетворительный результат в некоторых задачах (распознавание быстродвижущихся подобных объектов, рукописного текста) в настоящее время не удается.

Цель работы: изучить историю систем распознавания образов.

Указать качественные изменения произошедшие в области распознавания образов как теоретические, так и технические, с указанием причин;

Обсудить методы и принципы, применяемые в вычислительной технике;

Привести примеры перспектив, которые ожидаются в ближайшем будущем.

1. Что такое распознавание образов?

Первые исследования с вычислительной техникой в основном следовали классической схеме математического моделирования - математическая модель, алгоритм и расчет. Таковыми были задачи моделирования процессов происходящих при взрывах атомных бомб, расчета баллистических траекторий, экономических и прочих приложений. Однако помимо классических идей этого ряда возникали и методы основанные на совершенно иной природе, и как показывала практика решения некоторых задач, они зачастую давали лучший результат нежели решения, основанные на переусложненных математических моделях. Их идея заключалась в отказе от стремления создать исчерпывающую математическую модель изучаемого объекта (причем зачастую адекватные модели было практически невозможно построить), а вместо этого удовлетвориться ответом лишь на конкретные интересующие нас вопросы, причем эти ответы искать из общих для широкого класса задач соображений. К исследованиям такого рода относились распознавание зрительных образов, прогнозирование урожайности, уровня рек, задача различения нефтеносных и водоносных пластов по косвенным геофизическим данным и т. д. Конкретный ответ в этих задачах требовался в довольно простой форме, как например, принадлежность объекта одному из заранее фиксированных классов. А исходные данные этих задач, как правило, задавались в виде обрывочных сведений об изучаемых объектах, например в виде набора заранее расклассифицированных объектов. С математической точки зрения это означает, что распознавание образов (а так и был назван в нашей стране этот класс задач) представляет собой далеко идущее обобщение идеи экстраполяции функции.

Важность такой постановки для технических наук не вызывает никаких сомнений и уже это само по себе оправдывает многочисленные исследования в этой области. Однако задача распознавания образов имеет и более широкий аспект для естествознания (впрочем, было бы странно если нечто столь важное для искусственных кибернетических систем не u1080 имело бы значения для естественных). В контекст данной науки органично вошли и поставленные еще древними философами вопросы о природе нашего познания, нашей способности распознавать образы, закономерности, ситуации окружающего мира. В действительности, можно практически не сомневаться в том, что механизмы распознавания простейших образов, типа образов приближающегося опасного хищника или еды, сформировались значительно ранее, чем возник элементарный язык и формально-логический аппарат. И не вызывает никаких сомнений, что такие механизмы достаточно развиты и у высших животных, которым так же в жизнедеятельности крайне необходима способность различения достаточно сложной системы знаков природы. Таким образом, в природе мы видим, что феномен мышления и сознания явно базируется на способностях к распознаванию образов и дальнейший прогресс науки об интеллекте непосредственно связан с глубиной понимания фундаментальных законов распознавания. Понимая тот факт, что вышеперечисленные вопросы выходят далеко за рамки стандартного определения распознавания образов (в англоязычной литературе более распространен термин supervised learning), необходимо так же понимать, что они имеют глубокие связи с этим относительно узким(но все еще далеко неисчерпанным) направлением .

Уже сейчас распознавание образов плотно вошло в повседневную жизнь и является одним из самых насущных знаний современного инженера. В медицине распознавание образов помогает врачам ставить более точные диагнозы, на заводах оно используется для прогноза брака в партиях товаров. Системы биометрической идентификации личности в качестве своего алгоритмического ядра так же основаны на результатах этой дисциплины. Дальнейшее развитие искусственного интеллекта, в частности проектирование компьютеров пятого поколения, способных к более непосредственному общению с человеком на естественных для людей языках и посредством речи, немыслимы без распознавания. Здесь рукой подать и до робототехники, искусственных систем управления, содержащих в качестве жизненно важных подсистем системы распознавания.

Именно поэтому к развитию распознавания образов с самого начала было приковано немало внимания со стороны специалистов самого различного профиля - кибернетиков, нейрофизиологов, психологов, математиков, экономистов и т.д. Во многом именно по этой причине современное распознавание образов само питается идеями этих дисциплин. Не претендуя на полноту (а на нее в небольшом эссе претендовать невозможно) опишем историю распознавания образов, ключевые идеи .

Определения

Прежде, чем приступить к основным методам распознавания образов, приведем несколько необходимых определений.

Распознавание образов (объектов, сигналов, ситуаций, явлений или процессов) - задача идентификации объекта или определения каких-либо его свойств по его изображению (оптическое распознавание) или аудиозаписи (акустическое распознавание) и другим характеристикам.

Одним из базовых является не имеющее конкретной формулировки понятие множества. В компьютере множество представляется набором неповторяющихся однотипных элементов. Слово "неповторяющихся" означает, что какой-то элемент в множестве либо есть, либо его там нет. Универсальное множество включает все возможные для решаемой задачи элементы, пустое не содержит ни одного.

Образ - классификационная группировка в системе классификации, объединяющая (выделяющая) определенную группу объектов по некоторому признаку. Образы обладают характерным свойством, проявляющимся в том, что ознакомление с конечным числом явлений из одного и того же множества дает возможность узнавать сколь угодно большое число его представителей. Образы обладают характерными объективными свойствами в том смысле, что разные люди, обучающиеся на различном материале наблюдений, большей частью одинаково и независимо друг от друга классифицируют одни и те же объекты. В классической постановке задачи распознавания универсальное множество разбивается на части-образы. Каждое отображение какого-либо объекта на воспринимающие органы распознающей системы, независимо от его положения относительно этих органов, принято называть изображением объекта, а множества таких изображений, объединенные какими-либо общими свойствами, представляют собой образы.

Методика отнесения элемента к какому-либо образу называется решающим правилом. Еще одно важное понятие - метрика, способ определения расстояния между элементами универсального множества. Чем меньше это расстояние, тем более похожими являются объекты (символы, звуки и др.) - то, что мы распознаем. Обычно элементы задаются в виде набора чисел, а метрика - в виде функции. От выбора представления образов и реализации метрики зависит эффективность программы, один алгоритм распознавания с разными метриками будет ошибаться с разной частотой.

Обучением обычно называют процесс выработки в некоторой системе той или иной реакции на группы внешних идентичных сигналов путем многократного воздействия на систему внешней корректировки. Такую внешнюю корректировку в обучении принято называть "поощрениями" и "наказаниями". Механизм генерации этой корректировки практически полностью определяет алгоритм обучения. Самообучение отличается от обучения тем, что здесь дополнительная информация о верности реакции системе не сообщается.

Адаптация - это процесс изменения параметров и структуры системы, а возможно - и управляющих воздействий, на основе текущей информации с целью достижения определенного состояния системы при начальной неопределенности и изменяющихся условиях работы.

Обучение - это процесс, в результате которого система постепенно приобретает способность отвечать нужными реакциями на определенные совокупности внешних воздействий, а адаптация - это подстройка параметров и структуры системы с целью достижения требуемого качества управления в условиях непрерывных изменений внешних условий.

Примеры задач распознавания образов: - Распознавание букв;

И т. п. объектов , которые характеризуются конечным набором некоторых свойств и признаков. Такие задачи решаются довольно часто, например, при переходе или проезде улицы по сигналам светофора. Распознавание цвета загоревшейся лампы светофора и знание правил дорожного движения позволяет принять правильное решение о том, можно или нельзя переходить улицу.

Необходимость в таком распознавании возникает в самых разных областях - от военного дела и систем безопасности до оцифровки аналоговых сигналов.

Проблема распознавания образа приобрела выдающееся значение в условиях информационных перегрузок, когда человек не справляется с линейно-последовательным пониманием поступающих к нему сообщений, в результате чего его мозг переключается на режим одновременности восприятия и мышления, которому такое распознавание свойственно.

Неслучайно, таким образом, проблема распознавания образа оказалась в поле междисциплинарных исследований - в том числе в связи с работой по созданию искусственного интеллекта , а создание технических систем распознавания образа привлекает к себе всё большее внимание.

Энциклопедичный YouTube

    1 / 4

    Введение в распознавание образов

    Р.В. Шамин. Лекция № 6 Сети Хопфилда и Хемминга в задачах распознавания образов

    [ДДШ-2016]: Нейронные сети и современное компьютерное зрение

    Лекция 9. Экспоненциальное сглаживание. Распознавание образов: метод к-го ближайшего соседа

    Субтитры

Направления в распознавании образов

Можно выделить два основных направления :

  • Изучение способностей к распознаванию, которыми обладают живые существа, объяснение и моделирование их;
  • Развитие теории и методов построения устройств, предназначенных для решения отдельных задач в прикладных целях.

Формальная постановка задачи

Распознавание образов - это отнесение исходных данных к определенному классу с помощью выделения существенных признаков, характеризующих эти данные, из общей массы несущественных данных.

При постановке задач распознавания стараются пользоваться математическим языком, стремясь - в отличие от теории искусственных нейронных сетей , где основой является получение результата путём эксперимента, - заменить эксперимент логическими рассуждениями и математическими доказательствами .

Классическая постановка задачи распознавания образов : Дано множество объектов. Относительно них необходимо провести классификацию. Множество представлено подмножествами, которые называются классами. Заданы: информация о классах, описание всего множества и описание информации об объекте, принадлежность которого к определенному классу неизвестна. Требуется по имеющейся информации о классах и описании объекта установить - к какому классу относится этот объект.

Наиболее часто в задачах распознавания образов рассматриваются монохромные изображения , что дает возможность рассматривать изображение как функцию на плоскости. Если рассмотреть точечное множество на плоскости T {\displaystyle T} , где функция выражает в каждой точке изображения его характеристику - яркость, прозрачность, оптическую плотность, то такая функция есть формальная запись изображения.

Множество же всех возможных функций f (x , y) {\displaystyle f(x,y)} на плоскости T {\displaystyle T} - есть модель множества всех изображений X {\displaystyle X} . Вводя понятие сходства между образами можно поставить задачу распознавания. Конкретный вид такой постановки сильно зависит от последующих этапов при распознавании в соответствии с тем или иным подходом.

Некоторые методы распознавания графических образов

Для оптического распознавания образов можно применить метод перебора вида объекта под различными углами, масштабами, смещениями и т. д. Для букв нужно перебирать шрифт, свойства шрифта и т. д.

Второй подход - найти контур объекта и исследовать его свойства (связность, наличие углов и т. д.)

Ещё один подход - использовать искусственные нейронные сети . Этот метод требует либо большого количества примеров задачи распознавания (с правильными ответами), либо специальной структуры нейронной сети, учитывающей специфику данной задачи.

Персептрон как метод распознавания образов

Ф. Розенблатт, вводя понятие о модели мозга , задача которой состоит в том, чтобы показать, как в некоторой физической системе, структура и функциональные свойства которой известны, могут возникать психологические явления, описал простейшие эксперименты по различению. Данные эксперименты целиком относятся к методам распознавания образов, но отличаются тем, что алгоритм решения не детерминированный.

Простейший эксперимент, на основе которого можно получить психологически значимую информацию о некоторой системе, сводится к тому, что модели предъявляются два различных стимула и требуется, чтобы она реагировала на них различным образом. Целью такого эксперимента может быть исследование возможности их спонтанного различения системой при отсутствии вмешательства со стороны экспериментатора, или, наоборот, изучение принудительного различения, при котором экспериментатор стремится обучить систему проводить требуемую классификацию.

В опыте с обучением персептрону обычно предъявляется некоторая последовательность образов, в которую входят представители каждого из классов, подлежащих различению. В соответствии с некоторым правилом модификации памяти правильный выбор реакции подкрепляется. Затем персептрону предъявляется контрольный стимул и определяется вероятность получения правильной реакции для стимулов данного класса. В зависимости от того, совпадает или не совпадает выбранный контрольный стимул с одним из образов, которые использовались в обучающей последовательности, получают различные результаты:

  1. Если контрольный стимул не совпадает ни с одним из обучающих стимулов, то эксперимент связан не только с чистым различением , но включает в себя и элементы обобщения .
  2. Если контрольный стимул возбуждает некоторый набор сенсорных элементов, совершенно отличных от тех элементов, которые активизировались при воздействии ранее предъявленных стимулов того же класса, то эксперимент является исследованием чистого обобщения .

Персептроны не обладают способностью к чистому обобщению, но они вполне удовлетворительно функционируют в экспериментах по различению, особенно если контрольный стимул достаточно близко совпадает с одним из образов, относительно которых персептрон уже накопил определенный опыт.

Примеры задач распознавания образов

  • Распознавание штрих-кодов
  • Распознавание автомобильных номеров
  • Распознавание изображений
  • Распознавание локальных участков земной коры, в которых находятся месторождения