Решение системы дифференциальных уравнений методом операционного исчисления. Как решить дифференциальное уравнение методом операционного исчисления? Как решить дифференциальное уравнение методом операционного исчисления

Просмотр используемых в электронной таблице форматов

Формат >> Ячейка >> Число


Форматирование чисел

Формат числа определяется видом цифрового шаблона, который может быть двух видов:

· # замещаемый (необязательный)

· 0 обязательный

Пример.

Формат Результат

#.###,## 13

0.000,00 0.013,00

В таблице описывается каждая из категорий форматов. Пока не измените использующиеся по умолчанию установки, Excel будет использовать для всех типов данных формат Общий (General).


Таблица. Основные форматы Excel

Название формата

Описание

Общий (General)

Числовые данные не имеют специального форматирования обычно отображаются точно в таком виде, в котором вы и> вводите.

Числовой (Number)

Вы можете указать число десятичных знаков, которые Excel будет отображать во всех числовых значениях.

Денежный (Currency)

Отображает знак рубля (доллара или другой валюты), otboj под него два разряда.

финансовый (Accounting)

Выравнивает расположенные в столбце денежные величины разделителю целой и дробной части.

Отображает дату и время как значения, форматы которых в можете изменить.

Время (Time)

Отображает только время из значения даты и времени.

Процентный (Percentage)

Делит значение ячейки на 100 и выводит на экран с символ процента.

Дробный (Fraction)

Выводит числа в виде дробей.

Экспоненциальный (Scientific)

Использует экспоненциальное представление всех числовых значений.

Текстовый (Text)

Форматирует все данные как текст. Удобно использовать в почтовых индексах, которые состоят из цифр, никогда не использующихся в вычислениях.

Дополнительный (Special)

Форматирует почтовые индексы, индексы, телефонные номе и табельные номера.

Все форматы (Custom)

Позволяет вам задать свой собственный формат ячейки. Вы можете решить, нужно ли вам отображать знак «плюс» или «минус», и можете изменять количество знаков после запятой

Назначение формата

* активизировать ячейку или выделить блок

* Формат ® Ячейки... ® вкладка Число

* в поле “Коды формата” выбрать шаблон

* нажать ОК

Задать некоторые форматы чисел в ячейках можно с помощью кнопок на панели инструментов:

· кнопка служит для назначения формата валют, т.е. число 12 будет представлено как 12,00 р.

· кнопка служит для назначения формата процентов, т.е. число 0,05 будет представлено как 5%

· кнопка устанавливает разделение тысяч в формате числа пробелом, т.е. число 12456 будет представлено как 12 456,00

· кнопка увеличивает число знаков после запятой на один разряд

· кнопка уменьшает число знаков после запятой на один разряд

Упражнение3

1.Создайте таблицу «Ведомость мелких расходов»

Наименование

Цена за штуку

(руб.)

Цена со скидкой

Объем продаж

Общая стоимость

Дата создания ведомости

2. Произведите подсчет цены товаров с 12% скидкой, отформатируйте ячейки для показа двух десятичных знаков.

3. Произведите подсчет общей стоимости товара, представив результат в денежном формате.

4. Отформатируйте ячейки столбца «Цена за штуку (руб.) до одного десятичного знака.

5. Измените формат даты создания ведомости на любой формат без указания года.

6. Отформатируйте таблицу.

7. Сохраните созданную ведомость под именем а:\ it \ведомость. xls

Форматы представления данных в памяти ЭВМ. Машинные коды.

План.

1. Форматы представления данных в памяти ЭВМ.

a. Представление чисел в форме с фиксированной точкой

b. Представление чисел в форме с плавающей точкой

2. Машинные коды: прямой, обратный, дополнительный.

Форматы представления данных в памяти ЭВМ.

Для представления чисел (данных) в памяти ЭВМ выделяется оп­ределенное количество битов. В отличие от нумерации разрядов числа биты в байте нумеруются слева направо, начиная с 0. Каждый байт в памяти ЭВМ имеет свой порядковый номер, который называется абсолютным адресам байта . Байт является основной единицей хранения данных, это наименьшая адресуемая единица обмена информации в оперативной па­мяти ЭВМ, то есть минимальная единица обмена информации, имеющая адрес в памяти ЭВМ.

Последовательность нескольких смежных байтов образует поле данных . Количество байтов поля называется длиной поля , а адрес само­го левого байта поля - адресом поля . Обработка информации может вестись либо побайтно, либо полями данных (или форматом данных). Форматы данных показывают, как информация размещается в оперативной памяти и регистрах ЭВМ. Форматы данных различают по длине, типу данных и структуре, а каждое значение, содержащееся в байте может быть интерпретировано по разному:

– кодированное представление символа внешнего алфавита (при вводе и выводе данных);

– целым знаковым или беззнаковым числом (при внутреннем представлении чисел в памяти ЭВМ);

– частью команды или более сложной единицы данных и т.д.

В ЭВМ существуют следующие формы представления целых чисел: полуслово (байт), слово (два последовательных байта, пронумерованных слева направо от 0 до 15), двойное слово (4 байта).

Если в указанных форматах размещаются числа, то веса их разрядов возрастают справа налево.

В ЭВМ для представления чисел используется естественная (представление числа с фиксированной точкой) и полулогарифмическая (представление числа с плавающей точкой) формы.

Представление чисел в форме с фиксированной точкой.

В используемых представлениях чисел “запятая” или “десятичная точка” - это условный символ, предназначенный для разделения целой и дробной частей числа. Запятая имеет, следовательно, точный математический смысл, независимо от используемой системы счисления, и ее положение нисколько не меняет алгоритм вычислений или форму результата.

Если обрабатываемые числа имеют величину одного порядка, можно фиксировать позицию запятой или точки (такое представление называется представлением с фиксированной точкой). Тогда при обработке чисел в машине нет необходимости учитывать положение (представлять) десятичной точки. И тогда ее положение на уровне программы считается одинаковым и учитывается только в результате.

Существует в основном 2 способа фиксирования десятичной точки:

1) точка располагается справа от младшей цифры числа, и мы имеем целые числа;

2) точка располагается слева от старшей цифры числа, и мы имеем дробные числа по абсолютному значению меньше единицы.

Целые положительные числа можно представлять непосредственно в двоичной системе счисления (двоичном коде). В такой форме представления легко реализуется на компьютере двоичная арифметика.

Если же нужны и отрицательные числа, то знак числа может быть закодирован отдельным битом (обычно это старший бит). Старший разряд является знаковым, если он содержит 1 , то число отрицательное , если 0 , то число положительное .

При шестнадцатиразрядной сетке мы имеем:

В общем случае диапазон представления целых чисел равен (n – число разрядов в формате):

– для беззнаковых 0 ≤ x ≤ 2 n -1 (при n=8 от 0 до 255)

– для знаковых -2 n -1 ≤ x ≤ +2 n -1 -1 (при n=8 от -128 до 127);

Существенным недостатком такого способа представления является ограниченный диапазон представления величин, что приводит к переполнению разрядной сетки при выходе за допустимые границы и искажению результата, например, если рассмотреть пяти разрядную знаковую сетку, то при сложении двух чисел +22 и +13 получим:

Представление чисел в форме с плавающей точкой.

Действительные числа в математике представляются конечными или бесконечными дробями. Однако в компьютере числа хранятся в регистрах и ячейках памяти, которые являются последовательностью байтов с ограниченным количеством разрядов. Следовательно, бесконечные или очень длинные числа усекаются до некоторой длины и в компьютерном представлении выступают как приближенные.

Для представления действительных чисел, как очень маленьких, так и очень больших, удобно использовать форму записи чисел в виде произведения:

А = ± М·n ± p

где n - основание системы счисления;

M – мантисса;

р – целое число, называемое порядком (определяет местоположение десятичной точки в числе).

Такой способ записи чисел называется представлением числа с плавающей точкой .

Пример: -245,62=-0,24565·10 3 , 0,00123=0,123·10 -2 =1,23·10 -3 =12,3·10 -4

Очевидно, такое представление не однозначно.

Если мантисса заключена между n -1 и 1 (т.е. 1/n £ |M| <1), то представление числа становится однозначным, а такая форма назы­вается нормализованной .

Пример : для десятичной системы счисления - 0,1 < |m| < 1 (мантисса - число меньше 1, и первая цифра после запятой отлична от нуля, т.е. значащая).

Действительные числа в компьютерах различных типов записываются по-разному, тем не менее, существует несколько международных стандартных форматов, различающихся по точности, но имею­щих одинаковую структуру. Для основанного на стандарте IEEE – 754 (определяет представление чисел с одинарной точностью (float ) и с двойной точностью (double )) представление вещественного числа в ЭВМ используется m+p+1 бит, распределяемые следующим образом: один разряд (S)- используется для знака мантиссы, p – разрядов определяют порядок, m разрядов определяют абсолютную величину мантиссы. Для записи числа в формате с плавающей запятой одинарной точности требуется тридцатидвухбитовое слово. Для записи чисел с двойной точностью требуется шестидесятичетырёхбитовое слово.

1 p-1 0 m-1 0
S Порядок Дробная часть М

Так как порядок может быть положительным или отрицатель­ным, нужно решить проблему его знака. Величина порядка представляется с избытком, т.е., вместо истинного значения порядка хранится число, называемое характеристикой (или смещенным порядком ).

Смещение требуется, чтобы не вводить в число еще один знак. Смещённый порядок всегда положительное число. Для одинарной точности смещение принято равным 127, а для двойной точности – 1023 (2 p -1 -1) . В десятичной мантиссе после запятой могут присутствовать цифры 1:9, а в двоичной - только 1. Поэтому для хранения единицы после двоичной запятой не выделяется отдельный бит в числе с плавающей запятой. Единица подразумевается, как и двоичная запятая . Кроме того, в формате чисел с плавающей запятой принято, что мантисса всегда больше 1. То есть диапазон значений мантиссы лежит в диапазоне от 1 до 2.

Примеры :

1) Определить число с плавающей запятой, лежащее в четырёх соседних байтах:

11000001 01001000 00000000 00000000

Разделим двоичное представление на знак (1 бит), порядок (8 бит) и мантиссу (23 бита):

1 10000010 10010000000000000000000

– Знаковый бит, равный 1 показывает, что число отрицательное.

– Экспонента 10000010 в десятичном виде соответствует числу 130. Скорректируем порядок: вычтем число 127 из 130, получим число 3.

– К мантиссе добавим слева скрытую единицу 1 ,100 1000 0000 0000 0000 0000, перенесем порядок от скрытой единицы вправо на полученную величину порядка: 1 100, 1000 0000 0000 0000 0000.

– И, наконец, определим десятичное число: 1100,1 2 = 12,5 10

– Окончательно имеем -12,5

2) Определить число с плавающей запятой, лежащее в четырёх соседних байтах:

01000011 00110100 00000000 00000000

– Знаковый бит, равный 0 показывает, что число положительное.

– Экспонента 10000110 в десятичном виде соответствует числу 134. Вычтя число 127 из 134, получим число 7.

– Теперь запишем мантиссу: 1 ,011 0100 0000 0000 0000 0000

– И, наконец, определим десятичное число: 10110100 2 =180 10

Поскольку под мантиссу и порядок отводится определенное число разрядов, соответственно m и p , то можно оценить диапазон чисел, которые можно представить в нормализованном виде в системе счисления с основанием n .

Если m=23 и p=8 (4 байта), то диапазон представленных чисел от 1,5·10 -45 до 3,4·10 +38 (обеспечивает точность с 7-8 значащими цифрами).

Если m=52 и p=11 (8 байт), то диапазон представленных чисел от 5,0·10 -324 до 1,7·10 +308 (обеспечивает точность с 15-16 значащими цифрами).

Чем больше разрядов отводится под запись мантиссы, тем выше точность представления числа. Чем больше разрядов занимает поря­док, тем шире диапазон от наименьшего отличного от нуля числа до наибольшего числа, представимого в компьютере при заданном формате.

При выполнении операций с плавающей точкой возникает меньше проблем с переполнением разрядной сетки, чем для операций с фиксированной точкой. Однако операции с плавающей точкой более сложные, так как они требуют нормализации и денормализации мантисс.

Любая информация (числа, команды, алфавитно-цифровые записи и т. п.) представляется в компьютере в виде двоичных кодов. Отдельные элементы двоичного кода, принимающие значения 0 или 1, называются разрядами или битами.

В старых компьютерах, рассчитанных на вычислительные задачи, минимальной единицей информации, доступной для обработки, была ячейка. Количество разрядов в ячейке было ориентировано на представление чисел и было различным в разных компьютерах (24 бита, 48 бит и т.д.). Однако такой большой размер ячеек был неудобен для представления символов, поскольку для представления символьных данных достаточно 5-8 байт. Это дает возможность представить от 32 до 256 символов.

Поэтому минимальной единицей данных, обрабатываемой в современном компьютере, является байт, состоящий из восьми двоичных разрядов (битов). Байт впервые был введен в компьютерах серии IBM/360 и используется для представления как чисел, так и символов. Каждый байт, расположенный в памяти компьютера, имеет свой адрес, который определяет его местонахождение и задается соответствующим кодом. Адреса памяти начинаются с нуля для первого байта и последовательно возрастают на единицу для каждого последующего.

Производными единицами от байта являются килобайт (2 10 байт) – сокращение Кбайт или Кб, мегабайт (2 20 байт) – сокращение Мбайт или Мб, гигабайт (2 30 байт) – сокращение Гбайт или Гб, терабайт (2 40 байт) – сокращение Тбайт или Тб и петабайт (2 50 байт) – сокращение Пбайт или Пб.

Для представления чисел используются один или несколько последовательно расположенных байтов. Группы байтов образуют двоичные слова, которые, в свою очередь, могут быть как фиксированной, так и переменной длины.

Форматы данных фиксированной длины (полуслово, слово и двойное слово) состоят соответственно из одного, двух или четырех последовательно расположенных байтов. Обращение к этим данным производится по адресу крайнего левого байта формата, который для слова должен быть кратен числу 2, а для двойного слова – числу 4.

Формат данных переменной длины состоит из группы последовательно расположенных байтов от 1 до 256. Адресация таких данных производится, как и в форматах фиксированной длины, по адресу самого левого байта.

В зависимости от характера информации используются форматы представления данных как фиксированной, так и переменной длины. Так, в форматах данных фиксированной длины обычно представляются двоичные числа, команды и некоторые логические данные, а в форматах данных переменной длины – десятичные числа, алфавитно-цифровая и некоторая логическая информация.

В современных компьютерах применяются две формы представления чисел: с фиксированной точкой (запятой) и с плавающей точкой (запятой). Эти формы, кроме того, называются соответственно естественной и полулогарифмической.


При представлении чисел с фиксированной точкой положение точки фиксируется в определенном месте относительно разрядов числа. В первых компьютерах точка фиксировалась перед старшим разрядом числа, поэтому представленные числа по абсолютной величине были меньше единицы. В современных компьютерах точку фиксируют справа от самого младшего разряда и поэтому могут быть представлены только целые числа. При этом используются два варианта представления целых чисел: со знаком и без знака.

Для числа со знаком крайний слева разряд отводится под знак числа. В этом разряде записывается нуль для положительных чисел и единица – для отрицательных чисел. Числа без знака занимают все разряды числа, т.е. числа могут быть только положительными. Нумерация разрядов числа обычно ведется справа налево.

В компьютерах числа с фиксированной точкой имеют три основных формата – один байт (полуслово), 16-разрядное слово (короткий формат) и 32-разрядное двойное слово (длинный формат).

Для хранения чисел в памяти компьютера используется два формата: целочисленный (естественная форма) и с плавающей точкой (нормализованная форма) (точка - разделительный знак для целой и дробной части числа).

Целочисленный формат (формат с фиксированной точкой) используется для представления в компьютере целых (англ. integer) положительных и отрицательных чисел. Для этого, как правило, используются форматы, кратные байту: \(1\), \(2\), \(4\) байта.

В форме с фиксированной запятой числа изображаются в виде последовательности цифр с постоянным для всех чисел положением запятой (или точки), отделяющей целую часть от дробной.

Эта форма проста и привычна для большинства пользователей, но имеет небольшой диапазон представления чисел и поэтому не всегда пригодна при вычислениях. Если же в результате какой-либо арифметической операции получается число, выходящее за допустимый диапазон, то происходит переполнение разрядной сетки, и все дальнейшие вычисления теряют смысл.

Однобайтовое представление применяется только для положительных целых чисел. В этом формате отсутствует знаковый разряд. Наибольшее двоичное число, которое может быть записано при помощи \(1\) байта, равно \(11111111\), что в десятичной системе счисления соответствует числу 255 10 .

Для положительных и отрицательных целых чисел обычно используется \(2\) и \(4\) байта, при этом старший бит выделяется под знак числа: \(0\) - плюс, \(1\) - минус.

Самое большое (по модулю) целое число со знаком, которое может поместиться в \(2\)-байтовом формате, это число \(0 1111111 11111111\), то есть при помощи подобного кодирования можно представить числа от − 32 768 10 до 32 767 10 .

Обрати внимание!

Если число вышло за указанные границы, произойдет переполнение! Поэтому при работе с большими целыми числами под них выделяется больше места, например \(4\) байта.

Формат с плавающей точкой (нормализованная форма) используется для представления в компьютере действительных чисел (англ. real) . Числа с плавающей точкой размещаются, как правило, в \(4\) или \(8\) байтах.

Нормализованная форма представления чисел обеспечивает огромный диапазон их записи и является основной в современных ЭВМ.

Представление целого положительного числа в компьютере

Для представления целого положительного числа в компьютере используется следующее правило:

Число переводится в двоичную систему;

- последний разряд слева является знаковым, в положительном числе он равен \(0\).

Например, положительное число + 135 10 в зависимости от формата представления в компьютере будет иметь следующий вид:
- для формата в виде \(1\) байта - \(10000111\) (отсутствует знаковый разряд);
- для формата в виде \(2\) байтов - \(0 0000000 10000111\);
- для формата в виде \(4\) байтов - \(0 0000000 00000000 00000000 10000111\).

Представление целого отрицательного числа в компьютере

Для представления целого отрицательного числа в компьютере используется дополнительный код . Такое представление позволяет заменить операцию вычитания числа операцией сложения с дополнительным кодом этого числа. Знаковый разряд целых отрицательных чисел всегда равен \(1\).

Для представления целого отрицательного числа в компьютере используется следующее правило:

Число без знака переводится в двоичную систему;
- результат дополняется нулями слева в пределах выбранного формата;
- полученное число переводится в обратный код (нули заменяются единицами, а единицы - нулями);

К полученному коду прибавляется \(1\).

Обратный код для положительного двоичного числа совпадает с его прямым кодом, а для отрицательного числа нужно во всех разрядах, кроме знакового, нули заменить единицами и наоборот.

Дополнительный код для положительного числа совпадает с его прямым кодом, а для отрицательного числа образуется путем прибавления 1 к обратному коду.

Отрицательное число может быть представлено в виде \(2\) или \(4\) байт.

Например, представим число − 135 10 в \(2\)-байтовом формате:

135 10 ® \(10000111\) (перевод десятичного числа без знака в двоичный код);
- \(0 0000000 10000111 \)(дополнение двоичного числа нулями слева в пределах формата);
- \(0 0000000 10000111 \)® \(1 1111111 01111000 \)(перевод в обратный код);
- \(1 1111111 01111000 \)® \(1 1111111 01111001\) (перевод в дополнительный код).

Представление вещественного (действительного) числа в компьютере

Вещественное число может быть представлено в экспоненциальном виде, например:

16000000 10 = 0 , 16 ⋅ 10 8

− 0,0000156 10 = − 0,156 ⋅ 10 − 4

В этом формате вещественное число (\(R\)) представляется в виде произведения мантиссы (\(m\)) и основания системы счисления (\(P\)) в целой степени (\(n\)), называемой порядком .

Представим это в общем виде, как: R = m ⋅ P n .

Порядок \(n\) указывает, на какое количество позиций и в каком направлении должна сместиться в мантиссе точка (запятая), отделяющая дробную часть от целой. Мантисса, как правило, нормализуется, то есть представляется в виде правильной дроби \(0\) < \(m\) < \(1\).