Семинар математическое моделирование в начальной школе.

Для эффективного решения различных задач обработки И необходима их математическая постановка, которая прежде всего включает в себя математическое описание, т. е. модель И как объекта исследования. К настоящему времени разработан целый ряд таких моделей , некоторые из них рассматриваются в этой главе.

1.1. Случайные поля

Наиболее распространенными в настоящее время являются информационные комплексы, включающие в себя пространственные системы датчиков и цифровую вычислительную технику. Поэтому мы будем в основном рассматривать МИ с дискретными пространственными и временными переменными. Не ограничивая общности, будем считать, что МИ заданы на многомерных прямоугольных сетках с единичным шагом. На рис. 1.1,а и 1.1,б изображены двумерная и трехмерная сетки. В общем случае И задано в узлах n-мерной сетки .

В зависимости от физической природы значения И могут быть скалярными (например, яркость монохроматического изображения), векторными (поле скоростей, цветные изображения, поле смещений) и более сложнозначными (например, матричными). Если обозначить через значение И в узле (пикселе) , то И есть совокупность этих значений на сетке: .

Если данные представляют собой временную последовательность И, то иногда удобно считать эту последовательность одним И, увеличив размерность сетки на единицу. Например, последовательность из плоских И (рис. 1.1,а) можно рассматривать как одно трехмерное И (рис. 2.1,б).

Если требуется временную переменную выделить особо, то будем ее записывать сверху: . Это И задано на прямом произведении сеток и I, где I – множество значений временного индекса. Сечение , т.е. совокупность отсчетов И при фиксированном значении временного индекса i, называется i-м кадром И . Каждый кадр задан на сетке . Например, на рис. 1.1,б изображено три двухмерных кадра.

Таким образом, МИ можно рассматривать как некоторую функцию, определенную на многомерной сетке. Значение элементов И невозможно точно предсказать заранее (иначе система наблюдения была бы не нужна), поэтому естественно рассматривать эти значения как случайные величины (СВ), применяя аппарат теории вероятностей и математической статистики. Итак, приходим к основной модели МИ – системе СВ, заданных на многомерной сетке. Такие системы называются дискретными случайными полями (СП) или случайными функциями нескольких переменных.

Для описания СП, как и любой другой системы СВ, можно задать сов-местную функцию распределения вероятностей (ФР) его элементов или совместную плотность распределения вероятностей (ПРВ) . Однако И обычно состоит из очень большого количества элементов (тысячи и миллионы), поэтому ФР (или ПРВ) при таком количестве переменных становится необозримой и требуются другие, менее громоздкие методы описания СП.

МОДЕЛИРОВАНИЕ ЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ ЭЛЕКТРОПРИВОДА

Методические указания и лабораторный практикум для студентов дневного и заочного отделения

Специальность 140604 "Электропривод и автоматика промышленных установок и технологических комплексов"


Печатается по решению редакционно-издательского совета Вятского государственного университета

УДК 621.31112: 621.313

Рецензент: кандидат технических наук доцент каф. АТ В. И. Семёновых

Составитель: преподаватель кафедры ЭПиАПУ Д.В. Ишутинов

Подписано в печать Усл. печ. л. 2,5

Бумага офсетная. Печать копир Aficio 1022

Заказ № 340 Тираж 52 Бесплатно.

Текст напечатан с оригинал-макета, предоставленного составителем

610000, г. Киров, ул. Московская, 36.

Оформление обложки, изготовление – ПРИП ВятГУ

Ó Вятский государственный университет, 2011

ВВЕДЕНИЕ

Аналогия – это частное сходство двух объектов, которое может быть существенным или менее существенным. Существенность сходства зависит от уровня абстрагирования и определяется целью исследования.

Аналогии, отражающие реальный, объективно существующий мир, обладают наглядностью, а значит, упрощают рассуждения и помогают проводить эксперименты, уточняющие природу явлений. Такие аналогии называют моделями .

Модель – это объект-заменитель объекта оригинала, обеспечивающий изучение некоторых свойств оригинала.

Моделирование – это представление реального физического объекта его моделью для получения информации о важнейших свойствах и физических процессах, протекающих в нем, путем проведения экспериментов с его моделью.

В процессе моделирования модель выступает в роли самостоятельного объекта, позволяющие получить некоторые знания – результаты моделирования. Если они подтверждаются и могут служить основой для прогнозирования процессов, протекающих в исследуемых объектах, то модель считается адекватной объекту. На основании адекватных моделей могут исследоваться подобные объекты.


1. КЛАССИФИКАЦИЯ ВИДОВ МОДЕЛИРОВАНИЯ

При разработке и проектировании современных электромеханических систем, представляющих собой сочетание электродвигателя, механической части электропривода и системы управления, возникает необходимость в решении сложных расчетных задач. Для этого во многих случаях прибегают к моделированию.

Виды моделирования можно классифицировать по различным критериям. С точки зрения типа модели и способа представления математического описания классификация представлена на рисунке 1.1.

Таким образом, моделирование может быть условно разделено на два основных вида: математическое и физическое.

Физическим моделированием называют проведение исследований на реальном объекте или его макете. При проведении экспериментов на реальном объекте различные характеристики исследуются на самом объекте или его части. Физическое моделирование может проводиться на объектах, работающих в нормальном режиме или в специальных режимах. Реальное моделирование является наиболее адекватным, но его возможности ограничены физическими, техническими и другими особенностями реальных объектов и систем.

Другим видом физического моделирования является моделирование на макете, которое применяется, в случае если эксперименты с реальным объектом затруднены, невозможны или опасны. Исследования с помощью макета проводятся на установках, которые обладают физическим подобием и сохраняют природу явлений в изучаемом объекте.

Физическое моделирование может протекать в реальном или произвольном масштабе времени. Наибольшую сложность и интерес представляет моделирование в реальном масштабе времени, позволяющее получить наиболее достоверные результаты исследований.

Математическое моделирование может проводиться при помощи аналитических методов исследования, а также с использованием аналоговых (АВМ) и цифровых (ЭВМ) вычислительных машин.

При использовании аналитических методов исследования можно получить в общем виде явные зависимости для искомых характеристик объекта. Аналитическое исследование позволяет получить наиболее общее представление о процессах функционирования системы, однако оно возможно для относительно простых систем, и связано с проведением трудоёмких расчётов. Даже в простейших случаях (для линейных систем) аналитическое моделирование не позволяет получить исчерпывающие результаты. При наличии в системе нелинейных элементов, переменных параметров и других усложняющих расчеты факторов возможности аналитических методов расчёта ещё более ограничены.

Современные вычислительные машины позволяют с достаточной точностью имитировать любые передаточные функции, нелинейные статические характеристики, произведения и частные. Вычислительные машины, а, следовательно, и модели бывают аналоговыми и цифровыми.

Под аналоговой моделью понимается такая, которая описывается уравнениями, связывающими непрерывные величины. Решение дифференциальных уравнений в АВМ носит непрерывный характер. Реальный физический объект заменяется при аналоговом моделировании подобным физическим объектом. В АВМ в качестве такого объекта выступает решающий операционный усилитель. Основным преимуществом моделирования на АВМ является высокая наглядность модели и возможность подключения к модели других технических средств. Также применение АВМ может ускорить исследование достаточно простых систем. С другой стороны возникают проблемы связанные с настройкой сложных моделей; появляются погрешности, обусловленные дрейфом параметров АВМ и кусочной линеаризацией нелинейностей. Максимальная величина выходного напряжения решающего операционного усилителя в АВМ ограничена значением в сто вольт. Поэтому для всех переменных модели вводятся масштабные коэффициенты, в результате чего могут накапливаться дополнительные ошибки.

Под цифровой моделью понимается модель, в которой решение уравнений и процессы, протекающие в ней, носят дискретный характер. Следовательно, все рассчитываемые величины определены в некоторые дискретные интервалы времени. Цифровая модель обладает меньшей физической наглядностью, однако лишена недостатков присущих аналоговой модели. Для проектирования цифровых моделей применяются современные средства вычислительной техники, а расчёт таких моделей основан на применении численных методов.

С помощью средств вычислительной техники математические модели могут исследоваться как прямым решением систем дифференциальных уравнений, так и на основе моделирования по структурным схемам.

В первом случае математическое моделирование заключается в численном решении системы дифференциальных уравнений, описывающей поведение исследуемого объекта. Такая модель не отражает реальной структуры физического объекта. В данном случае для расчета модели не нужно знание специализированных САПР, однако затрудняется понимание структуры реального физического объекта.

Во втором случае строится структурная модель, в которой элементы соединены в соответствии со структурой исследуемой системы. При использовании структурного метода модель системы представляется в виде моделей типовых динамических звеньев ТАР и нелинейных блоков, имитирующих работу отдельных физических узлов исследуемой системы. Применение структурных моделей позволяет при моделировании сохранить структуру исследуемого объекта, и поэтому на модели легко воспроизводится изменение параметров и структуры реального физического объекта, например, включение корректирующих устройств, выбор глубины обратных связей, изменение момента инерции механической части и жесткости механических характеристик.


Методы математического моделирования

Для исследования характеристик технических систем и физических процессов, протекающих при функционировании любой системы, математическими методами должна быть проведена формализация процессов, т.е. построена математическая модель.

Математическое моделирование - это процесс установления соответствия реальному физическому объекту некоторого математического объекта (математического описания), называемого математической моделью , и исследование этой модели, позволяющее получить, с некоторым приближением, характеристики рассматриваемого реального объекта. Математическое моделирование может быть динамическим, имитационным и комбинированным.

При решении задач электропривода используются динамические модели объектов. Такие модели описываются системами дифференциальных уравнений и исследуются при помощи аналитических, численных или качественных методов.

Аналитическое исследование позволяет получить наиболее общее представление о процессах функционирования системы, однако оно возможно лишь для относительно простых или линейных систем.

Численные методы используются, если невозможно разрешить математическое описание системы в общем виде или система существенно не линейна. Численные методы наиболее эффективны при использовании ЭВМ.

В некоторых случаях для исследования системы достаточно качественных методов анализа математической модели. Такие методы применяются в теории автоматического регулирования и позволяют судить, например, об устойчивости системы при определённом управлении.

В общем виде некоторый динамический объект описывается системой дифференциальных уравнений n-го порядка вида:

, (2.1)

где x 1 , x 2 , … x n – переменные динамического объекта;

– скорость изменения (производные) переменных динамического объекта;

– значение переменных в начальный момент времени;

t – независимая переменная.

Математическое моделирование, основанное на решении обыкновенных дифференциальных уравнений, опирается на численные методы. Численные методы позволяют получить приближенные значения реального непрерывного процесса, которые отстоят друг от друга на некоторый интервал времени, называемый шагом интегрирования. Выбор шага интегрирования зависит от динамических свойств моделируемой системы. Для широкого спектра динамических систем численное решение тем точнее, чем меньше шаг интегрирования. Однако, следует иметь ввиду, что чрезмерное уменьшение шага интегрирования может приводить к существенному увеличению затрат машинного времени.

К наиболее часто применяемым методам численного интегрирования дифференциальных уравнений относятся метод Эйлера (метод конечных приращений) и метод Рунге – Кутта четвёртого порядка.

Метод Эйлера основан на разложении подынтегральной функции в окрестности исследуемой точки в ряд Тейлора:

, (2.2)

где h – малая окрестность исследуемой точки (шаг интегрирования);

e - погрешность разложения в ряд Тейлора.

Метод Эйлера учитывает только первую производную ряда Тейлора. Тогда уравнение (2.2) будет иметь вид:

где - правая часть дифференциального уравнения, вычисленная в точке .

Следовательно, для решения уравнения или системы дифференциальных уравнений первого порядка методом Эйлера должна быть составлена следующей система уравнений с начальными условиями:

, (2.4)

где t i , t i +1

x j , i , x j , i+1 – значение j

f j – подынтегральная функция для j – ой переменной;

h – шаг интегрирования;

i = 0 .. m

j = 0 .. n


К достоинствам метода Эйлера можно отнести следующие:

· При достаточно малом шаге интегрирования можно получить высокую точность решения. Погрешность метода примерно равна квадрату шага интегрирования: e » h 2 ;

· Метод Эйлера имеет устойчивый алгоритм вычислений при решении широкого круга задач, связанных с исследованием электромеханических систем электропривода.

К недостаткам метода Эйлера можно отнести то, что уменьшение шага интегрирования необходимое для обеспечения требуемой точности существенно замедляет вычисления.

Метод Рунге – Кутта основан на разложении подынтегральной функции в окрестности исследуемой точки в ряд Тейлора. Вычисление коэффициентов ряда Тейлора (до четвёртого порядка) осуществляется с помощью специальных коэффициентов Рунге – Кутта. Такой подход позволяет получить более высокую точность решения.

Формулы для нахождения численного решения дифференциального уравнения или системы дифференциальных уравнений первого порядка методом Рунге – Кутта имеют следующий вид:

, (2.5)

где t i , t i +1 – значение независимой переменной (времени) на предыдущем и следующем шаге интегрирования;

x j , i , x j , i+1 – значение j – ой переменной динамического объекта на предыдущем и следующем шаге интегрирования;

f j – подынтегральная функция для j – ой переменной;

k l i, j – коэффициенты Рунге – Кутта (l = 1 .. 4 );

h – шаг интегрирования;

i = 0 .. m – число шагов интегрирования;

j = 0 .. n – количество переменных динамического объекта.

К достоинствам метода Рунге – Кутта можно отнести следующие. Высокая точность численного решения. При фиксированном шаге интегрирования погрешность решения примерно равна пятой степени шага интегрирования: e » h 5 .

Однако данный метод не всегда обеспечивает устойчивые решения. Устойчивость решения зависит как от величины шага интегрирования, так и от особенностей динамики исследуемой системы.


3. Динамические расчеты систем по структурным схемам

с использованием системы САПР System View

САПР System View позволяет на уровне структурных моделей производить расчеты динамических систем и получать результаты в виде таблиц, графиков переходных процессов и частотных характерис­тик, а также комплексных показателей качества регулирования.

Структурная схема набирается на рабочем поле основного окна пакета SV (рис. 3.1) с помощью блоков, которые для удобства работы объединены в четыре библиотеки. Блоки суммирования и умножения выполнены отдельно.



Рисунок 3.1 – Основное окно System View

Библиотеки элементов расположены в левой части рабочего окна SV и содержат в своём составе набор различных функциональных и динамических элементов. Графически элементы представляются в виде прямоугольника с вхо­дами и выходами. В верхнем левом углу записывается порядковый номер элемента в структурной схеме, в центре в виде рисунка - тип элемента.

Виды математических моделей

В зависимости от того, какими средствами, при каких условиях и по отношению к каким объектам познания реализуется способность моде­лей отображать действительность, возникает их большое разнообразие, а вместе с ним - классификации. Путем обобщения существующих клас­сификаций выделим базовые модели по применяемому математическому аппарату, на основе которых получают раз­витие специальные модели (рисунок 8.1).

Рисунок 8.1 - Формальная классификация моделей

Математические модели отображают изучаемые объекты (процессы, системы) в виде явных функциональных соотношений: алгебраических равенств и неравенств, интегральных и дифферен­циальных, конечно-разностных и других математических выражений (закон распределения случайной величины, регрессионные модели и т.д.), а также отношений математической логики.

В зависимости от двух фундаментальных признаков построения математической модели - вида описания причинно-следственных связей и изменений их во вре­мени - различают детерминистические и стохастические, статические и динамические модели (рисунок 8.2).

Цель схемы, представленной на рисунке, - отобразить следующие особенности:

1) математические модели могут быть и детерминистическими, и стохастическими;

2) детерминистические и стохастические модели могут быть и статическими, и динамическими.

Математическая модель называется детерминистической (детерминированной) , если все ее параметры и переменные являются однозначно определяемыми ве­личинами, а также выполняется условие полной определенности ин формации. В противном случае, в условиях неопределенности инфор­мации, когда параметры и переменные модели - случайные величи­ны, модель называется стохастической (вероятностной) .

Рисунок 8.2 – Классы математических моделей

Модель называется динами­ческой , если как минимум одна переменная изменяется по периодам времени, и статической , если принимается гипотеза, что переменные не изменяются по периодам времени.

В простейшем случае балансовые модели выступают в виде уравнения баланса, где в левой части располагается сумма каких-либо поступлений, а в правой - расходная часть также в виде суммы. Например, в таком виде представляется годовой бюджет организации.

На основе статистических данных могут строиться не только балан­совые, но и корреляционно-регрессионные модели.

Если функция Y зависит не только от переменных х 1 , х 2 , … х n , но и от других факторов, связь между Y и х 1 , х 2 , … х n является неточной или корреляционной в отличие от точной или функциональной связи. Корреляционными, например, в большинстве случаев являются связи, наблюда­ющиеся между выходными параметрами ОПС и факторами ее внутренней и внешней среды (см. тему 5).

Корреляционно-регрессионные модели получают при исследовании влияния целого комплекса факторов на величину того или иного признака путем примене­ния статистического аппарата. При этом ставится задача не только установить корреляционную связь, но и выразить эту связь аналитически, то есть подобрать уравнения, описываю­щие данную корреляционную зависимость (уравнение регрессии).

Для нахождения численного значения параметров уравне­ния регрессии пользуются методом наименьших квадратов. Суть этого метода состоит в том, чтобы выбрать такую линию, при которой сумма квадратов отклонений от нее ординат Y отдель­ных точек была бы наименьшей.

Корреляционно-регрессионные модели часто используются при исследовании явлений, когда возникает необходимость установить зависимость между соответствующими характеристиками в двух и более рядах. При этом преимущественно используется парная и множественная линейная регрессия вида

y = a 1 x 1 + a 2 x 2 + … + a n x n + b .

В результате применения метода наименьших квадратов ус­танавливаются значения параметров a или a 1 , a 2 , …, a n и b, а затем выполняются оценки точности аппроксимации и значимости полученного уравнения регрессии.

В особую группу выделяют графоаналитиче­ские модели . Они используют различные графические изображения и поэтому обладают хорошей наглядностью.

Теория графов - одна из теорий дискретной математики, изучает графы, под которыми понимается совокупность точек и линий их соединяющих. Граф - это самостоятельный математи­ческий объект (впервые ввел Кёниг Д.). На основе теории гра­фов наиболее часто строят древовидные и сетевые модели.

Древовидная модель (дерево) - это неориентированный связ­ный граф, не содержащий петель и циклов. Примером такой модели является дерево целей.

Сетевые модели нашли широкое применение в управлении производством работ. Сетевые модели (графики) отражают последовательность выполнения работ и продолжи­тельность каждой работы (рисунок 8.3).

Рисунок 8.3 - Сетевая модель производства работ

Каждая линия сетевого графика - это некоторая работа. Цифра рядом с ней означает продолжительность ее выполнения.

Сетевые модели позволяют найти так называемый критический путь и оптимизировать график производства работ по времени при ограничениях на другие ресурсы.

Сетевые модели могут быть детерминированными и стоха­стическими. В последнем случае продолжительности выполнения работ задаются законами распределения случайных величин.

Оптимизационные модели служат для определения оптимальной траектории достижения системой поставленной цели при наложении некоторых ограничений на управление ее поведениям и движением. В этом случае оптимизационные модели описывают различного рода задачи нахождения экстремума некоторой целевой функции (критерия оптимизации).

Для выявления оптимального способа достижения цели управления в условиях ограниченных ресурсов – технических, материальных, трудовых и финансовых – применяют методы исследования операций. К ним относятся методы математическо­го программирования (линейное и нелинейное, целочисленное, ди­намическое и стохастическое программирование), аналитические и вероятностно-статистические методы, сетевые методы, методы тео­рии массового обслуживания, теории игр (теории конфликтных си­туаций) и др.

Оптимизационные модели применяются для объемного и календар­ного планирования, управления запасами, распределения ресурсов и работ, замены, параметризации и стандартизации оборудования, рас­пределения потоков товарных поставок на транспортной сети и дру­гих задач управления.



Одним из основных достижений теории исследования операций считается типизация моделей управления и методов решения задач. Например, для решения транспортной задачи, в зависимости от ее раз­мерности, разработаны типовые методы - метод Фогеля, метод по­тенциалов, симплекс-метод. Также при решении задачи управления запасами, в зависимости от ее постановки, могут использоваться ана­литические и вероятностно-статистические методы, методы динами­ческого и стохастического программирования.

В управлении особое значение придается сетевым методам плани­рования. Эти методы позволили найти новый и весьма удобный язык для описания, моделирования и анализа сложных многоэтапных работ и проектов. В исследовании операций значительное место отво­дится совершенствованию управления сложными системами с при­менением методов теории массового обслуживания (см. раздел8.3) и аппарата марков­ских процессов.

Модели марковских случайных процессов - система дифференци­альных уравнений, описывающих функционирование системы или ее процессов в виде множества упорядоченных состояний на некоторой траектории поведения системы. Этот класс моделей широко исполь­зуется при математическом моделировании функционирования слож­ных систем.

Модели теории игр служат для выбора оптимальной стратегии в ус­ловиях ограниченной случайной информации или полной неопреде­ленности.

Игра - математическая модель реальной конфликтной си­туации, разрешение которой ведется по определенным правилам, алгоритмам, описывающим некоторую стратегию поведения лица, принимающего решение в условиях неопределенности.

Различают «игры с природой» и «игры с противником». Исходя из ситуации опре­деляются методы и критерии оценки принятия решений. Так, при «играх с природой» применяют критерии: Лапласа, максиминный (кри­терий Вальда) и минимаксный, Гурвица и Сэвиджа и ряд других алго­ритмических правил. При «играх с противником» для принятия реше­ний используются платежные матрицы, максиминный и минимаксный критерии, а также специальные математические преобразования в свя­зи с тем, что лицу, принимающему решение, противостоит недобро­желательный противник.

Рассмотренные типы математических моделей не охватыва­ют всего их возможного многообразия, а лишь характеризуют отдельные виды в зависимости от принятого аспекта классифи­кации. В.А.Кардашем была предпринята попытка создания сис­темы классификации моделей по четырем аспектам детализации (рисунок 8.4).

А - модели без пространственной дифференциации параметров;

В - модели с пространственной дифференци­ацией параметров

Рисунок 8.4 - Классификация моделей по четырем аспектам детализации

С развитием вычислительных средств одним из распространенных методов принятия решений выступает деловая игра, представляющая собой численный эксперимент с активным участием человека. Существуют сотни деловых игр. Они применяются для изу­чения целого ряда проблем управления, экономики, теории организа­ции, психологии, финансов и торговли.

Математическая модель - приближенное описание объекта моделирования, выраженное с помощью математической символики .

Математические модели появились вместе с математикой много веков назад. Огромный толчок развитию математического моделирования придало появление ЭВМ. Применение вычислительных машин позволило проанализировать и применить на практике многие математические модели, которые раньше не поддавались аналитическому исследованию. Реализованная на компьютере математическая модель называется компьютерной математической моделью , а проведение целенаправленных расчетов с помощью компьютерной модели называется вычислительным экспериментом .

Этапы компьютерного математического моделирования изображены на рисунке. Первый этап - определение целей моделирования . Эти цели могут быть различными:

1) модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром (понимание);

2) модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);

3) модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).

Поясним на примерах. Пусть объект исследования - взаимодействие потока жидкости или газа с телом, являющимся для этого потока препятствием. Опыт показывает, что сила сопротивления потоку со стороны тела растет с ростом скорости потока, но при некоторой достаточно высокой скорости эта сила скачком уменьшается с тем, чтобы с дальнейшим увеличением скорости снова возрасти. Что же вызвало уменьшение силы сопротивления? Математическое моделирование позволяет получить четкий ответ: в момент скачкообразного уменьшения сопротивления вихри, образующиеся в потоке жидкости или газа позади обтекаемого тела, начинают отрываться от него и уноситься потоком.

Пример совсем из другой области: мирно сосуществовавшие со стабильными численностями популяции двух видов особей, имеющих общую кормовую базу, “вдруг” начинают резко менять численность. И здесь математическое моделирование позволяет (с известной долей достоверности) установить причину (или по крайней мере опровергнуть определенную гипотезу).

Выработка концепции управления объектом - другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.

Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом в несложных физических системах, так и чрезвычайно сложным - на грани выполнимости - в системах биолого-экономических, социальных. Если ответить на вопрос об изменении режима распространения тепла в тонком стержне при изменениях в составляющем его сплаве относительно легко, то проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства несравненно труднее. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительную помощь.

Второй этап : определение входных и выходных параметров модели; разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием, или разделением по рангам (см. Формализация и моделирование ”).

Третий этап : построение математической модели. На этом этапе происходит переход от абстрактной формулировки модели к формулировке, имеющей конкретное математическое представление.

Математическая модель - это уравнения, системы уравнений, системы неравенств, дифференциальные уравнения или системы таких уравнений и пр.

Четвертый этап : выбор метода исследования математической модели. Чаще всего здесь используются численные методы, которые хорошо поддаются программированию. Как правило, для решения одной и той же задачи подходит несколько методов, различающихся точностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса моделирования.

Пятый этап : разработка алгоритма, составление и отладка программы для ЭВМ - трудно формализуемый процесс. Из языков программирования многие профессионалы для математического моделирования предпочитают FORTRAN: как в силу традиций, так и в силу непревзойденной эффективности компиляторов (для расчетных работ) и наличия написанных на нем огромных, тщательно отлаженных и оптимизированных библиотек стандартных программ математических методов. В ходу и такие языки, как PASCAL, BASIC, C, - в зависимости от характера задачи и склонностей программиста.

Шестой этап : тестирование программы. Работа программы проверяется на тестовой задаче с заранее известным ответом. Это - лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. Обычно тестирование заканчивается тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.

Седьмой этап : собственно вычислительный эксперимент, в процессе которого выясняется, соответствует ли модель реальному объекту (процессу). Модель достаточно адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментально полученными характеристиками с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.

Классификация математических моделей

В основу классификации математических моделей можно положить различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.). Можно классифицировать по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.). Наконец, если исходить из общих задач моделирования в разных науках безотносительно к математическому аппарату, наиболее естественна такая классификация:

· дескриптивные (описательные) модели;

· оптимизационные модели;

· многокритериальные модели;

· игровые модели.

Поясним это на примерах.

Дескриптивные (описательные) модели . Например, моделирование движения кометы, вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.

Оптимизационные модели используются для описания процессов, на которые можно воздействовать, пытаясь добиться достижения заданной цели. В этом случае в модель входит один или несколько параметров, доступных влиянию. Например, меняя тепловой режим в зернохранилище, можно задаться целью подобрать такой режим, чтобы достичь максимальной сохранности зерна, т.е. оптимизировать процесс хранения.

Многокритериальные модели . Нередко приходится оптимизировать процесс по нескольким параметрам одновременно, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, нужно организовать питание больших групп людей (в армии, детском летнем лагере и др.) физиологически правильно и, одновременно с этим, как можно дешевле. Ясно, что эти цели совсем не совпадают, т.е. при моделировании будет использоваться несколько критериев, между которыми нужно искать баланс.

Игровые модели могут иметь отношение не только к компьютерным играм, но и к весьма серьезным вещам. Например, полководец перед сражением при наличии неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный раздел современной математики - теория игр, - изучающий методы принятия решений в условиях неполной информации.

В школьном курсе информатики начальное представление о компьютерном математическом моделировании ученики получают в рамках базового курса. В старших классах математическое моделирование может глубоко изучаться в общеобразовательном курсе для классов физико-математического профиля, а также в рамках специализированного элективного курса.

Основными формами обучения компьютерному математическому моделированию в старших классах являются лекционные, лабораторные и зачетные занятия. Обычно работа по созданию и подготовке к изучению каждой новой модели занимает 3–4 урока. В ходе изложения материала ставятся задачи, которые в дальнейшем должны быть решены учащимися самостоятельно, в общих чертах намечаются пути их решения. Формулируются вопросы, ответы на которые должны быть получены при выполнении заданий. Указывается дополнительная литература, позволяющая получить вспомогательные сведения для более успешного выполнения заданий.

Формой организации занятий при изучении нового материала обычно служит лекция. После завершения обсуждения очередной модели учащиеся имеют в своем распоряжении необходимые теоретические сведения и набор заданий для дальнейшей работы. В ходе подготовки к выполнению задания учащиеся выбирают подходящий метод решения, с помощью какого-либо известного частного решения тестируют разработанную программу. В случае вполне возможных затруднений при выполнении заданий дается консультация, делается предложение более детально проработать указанные разделы в литературных источниках.

Наиболее соответствующим практической части обучения компьютерному моделированию является метод проектов. Задание формулируется для ученика в виде учебного проекта и выполняется в течение нескольких уроков, причем основной организационной формой при этом являются компьютерные лабораторные работы. Обучение моделированию с помощью метода учебных проектов может быть реализовано на разных уровнях.
Первый - проблемное изложение процесса выполнения проекта, которое ведет учитель.
Второй - выполнение проекта учащимися под руководством учителя.
Третий - самостоятельное выполнение учащимися учебного исследовательского проекта.

Результаты работы должны быть представлены в численном виде, в виде графиков, диаграмм. Если имеется возможность, процесс представляется на экране ЭВМ в динамике. По окончанию расчетов и получению результатов проводится их анализ, сравнение с известными фактами из теории, подтверждается достоверность и проводится содержательная интерпретация, что в дальнейшем отражается в письменном отчете.

Если результаты удовлетворяют ученика и учителя, то работа считается завершенной, и ее конечным этапом является составление отчета. Отчет включает в себя краткие теоретические сведения по изучаемой теме, математическую постановку задачи, алгоритм решения и его обоснование, программу для ЭВМ, результаты работы программы, анализ результатов и выводы, список использованной литературы.

Когда все отчеты составлены, на зачетном занятии учащиеся выступают с краткими сообщениями о проделанной работе, защищают свой проект. Это является эффективной формой отчета группы, выполняющей проект, перед классом, включая постановку задачи, построение формальной модели, выбор методов работы с моделью, реализацию модели на компьютере, работу с готовой моделью, интерпретацию полученных результатов, прогнозирование. В итоге учащиеся могут получить две оценки: первую - за проработанность проекта и успешность его защиты, вторую - за программу, оптимальность ее алгоритма, интерфейс и т.д. Учащиеся получают отметки и в ходе опросов по теории.

Существенный вопрос - каким инструментарием пользоваться в школьном курсе информатики для математического моделирования? Компьютерная реализация моделей может быть осуществлена:

· с помощью табличного процессора (как правило, MS Excel);

· путем создания программ на традиционных языках программирования (Паскаль, Бейсик и др.), а также на их современных версиях (Delphi, Visual Basic for Application и т.п.);

· с помощью специальных пакетов прикладных программ для решения математических задач (MathCAD и т.п.).

На уровне основной школы первое средство представляется более предпочтительным. Однако в старшей школе, когда программирование является, наряду с моделированием, ключевой темой информатики, желательно привлекать его в качестве инструмента моделирования. В процессе программирования учащимся становятся доступными детали математических процедур; более того, они просто вынуждены их осваивать, а это способствует и математическому образованию. Что же касается использования специальных пакетов программ, то это уместно в профильном курсе информатики в качестве дополнения к другим инструментам.

Математическое моделирование – процесс установления соответствия реальной системе S мат модели M и исследование этой модели, позволяющее получить хар-ки реальной системы. Применение мат модел-ния позволяет иссл-ть объекты, реальные эксперименты над которыми затруднены или невозможны.

Аналит-е моделирование - процессы функц-ия элем-в записываются в виде мат-х соотношений (алгебр-х, интегральных, диффер-х, логич-х и т.д.). Мат. модель может вообще не содержать в явном виде искомых величин. Ее необходимо преобразовать в систему соотношений относ-но искомых величин, допускающую получение нужного результата чисто анал-ми методами. Под этим понимается получения явных формул вида

<искомая величина> =<аналитическое выражение>, либо получение урав-й известного вида, решение которых также известно. В некоторых случаях возможно качественное исследование модели, при котором в явном виде можно найти лишь некоторые свойства решения.

Численное мод-е использует методы вычис-й матем-ки и позволяет получить лишь приближенные решения. Решение задачи бывает менее полным, чем в анал-м мод-и. Принципиальный недостаток численного мод-я закл-ся в автом-й реализации выбранного численного метода. Моделирующий алгоритм в большей степени отражает именно численный метод, чем особенности модели. Поэтому при смене численного метода приходится заново перерабатывать алгоритм моделирования.

Имит-е мод-ие - воспроизведение на ЭВМ (имитация) процесса функц-я исследуемой системы с соблюдением логической и временной послед-ти реальных событий. Для имит- мод-я характерно воспроизведение событий , происходящих в системе (описываемых моделью) с сохр их логической структуры и временной последовательности . Оно позволяет узнать данные о состоянии системы или отдельных ее элементов в опред-е моменты времени. Имитационное моделирование аналогично экспериментальному исследованию процессов на реальном объекте, т.е. на натуре.

12.Получение случайных чисел с произвольным законом распределения методом обратных функций. М-д обр ф-ий наиболее общий и универсальный способ получения чисел, подчиненных заданному закону. Стандартный метод моделирования основан на том, что интегральная функция распределения
любой непрерывной случайной величины равномерно распределена в интервале (0;1), т.е. для любой случайной величины X с плотностью распределения f (x ) случайная величина равномерно распределена на интервале (0;1).

Тогда случайную величину X с произвольной плотностью распределения f (x ) можно рассчитать по следующему алгоритму:1. Необходимо сгенерировать случайную величину r (значение случайной величины R), равномерно распределенную в интервале (0;1). 2. Приравнять сгенерированное случайное число известной функции распределения F(X) и получить уравнение
. 3. Решая уравнение X=F -1 (r), находим искомое значение X

Графическое решение

.

Дополнительно к вопросу 11.

Рассмотрим пример, характеризующий различие рассмотренных видов моделирования.

Имеется система, состоящая из трех блоков.

Система функционирует нормально, если исправен хотя бы один из блоков 1 и 2, а также исправен блок 3. Известны функции распределения времени безотказной работы блоков f1(t),f2(t),f3(t). Требуется найти вероятность безотказной работы системы в момент времени t.

Эквивалентная логическая схема

означает, что отказ системы наступает при обрыве цепи. Это имеет место в следующих случаях:

отказали блоки 1 и 2, исправен блок 3;

отказал блок 3, исправен хотя бы один из блоков 1 и 2.

Вероятность безотказной работы системы P(t)=P1,2(t)*p3(t)=(1-q1(t)*q2(t))*(1-q3(t)) =

Эта формула и есть основа математической модели системы.

Аналитическое моделирование. Оно возможно лишь при условии, что все интегралы выражаются через элементарные функции. Допустим, что

Тогда
=
=
.

С учетом этого модель (1) принимает вид

Это и есть явное аналитическое выражение относительно искомой вероятности; оно справедливо лишь при сделанных допущениях.

Численное моделирование . Необходимость в нем может возникнуть, например, тогда, когда установлено, что интегралы не определяются (т.е. выражены не ч/з элементарные функции). Необходимость в нем может возникнуть, например, тогда, когда установлено, что распределения f1(t),f2(t),f3(t) подчиняются закону Гаусса (нормальному):
.Для вычислений по формуле P(t)=P1,2(t)*p3(t)=(1-q1(t)*q2(t))*(1-q3(t)) = при каждом значении t они должны определяться численно, например, по методу трапеций, Симпсона, Гаусса или другими методами. Для каждого значения t вычисления проводятся заново.

метод прямоугольников, метод трапеций, метод параболы. При методе прямоуг возникает ошибка – неточность вычислений. Но можно разделить на 2 и более интервалов. Появляется множество интегралов, но здесь уже возникает ошибка округления.

метод Гаусса

метод Монте-Карло

Имитационное моделирование. Имитация есть воспроизведение событий, происходящих в системе, т.е. исправной работы либо отказа rаждого элемента. Если время работы системы t, а ti - время безотказной работы элемента с номером i, то: событие ti>t означает исправную работу элемента за время (0; t];

событие ti<=t означает отказ элемента к моменту t.

Заметим, что ti - случайная величина, распределенная по закону fi(t), который известен по условию.

Моделирование случайного события «исправная работа k –го элемента за время (0; t]» заключается:

1)в получении случайного числа ti, распределенного по закону fi(t);

2)в проверке истинности логического выражения ti>t. Если оно истинно, то i-й элемент исправен, если ложно – он отказал.

Алгоритм моделирования таков:

1.Положить n=0, k=0. Здесь n – счетчик числа реализаций (повторений) случайного процесса; k – счетчик числа «успехов».

2.Получить три случайных числа t1,t2,t3, распределенных соответственно по законам f1(t),f2(t),f3(t).

3.Проверить истинность логического выражения L=[(t1>t)∩ (t2>t)∩ (t3>t)] v [(t1>t)∩ (t2<=t)∩ (t3>t)] v [(t1<=t)∩ (t2>t)∩ (t3>t)]

Если L=true, то положить k=k+1 и перейти к шагу 4, иначе перейти к шагу 4.

4.Положить n=n+1.

5.Если n<=N, перейти к шагу 2; иначе вычислить и вывести P(t)=k/N. Здесь N - число реализация случайного процесса; от него зависят точность и достоверность результатов моделирования.

Еще раз подчеркнем: Значение N задают заранее по соображениям обеспечения заданной точности о достоверности статистической оценки искомой величины P(t).