Свойство делимости произведения. Составление системы уравнений


Приведем пример, подтверждающий справедливость свойства деления суммы двух натуральных чисел на данное натуральное число. Покажем, что равенство (18+36):6=18:6+36:6 верное. Сначала вычислим значение выражения из левой части равенства. Так как 18+36=54 , то (18+36):6=54:6 . Из таблицы умножения находим 54:6=9 (смотрите раздел теории деление при помощи таблицы умножения). Переходим к вычислению значения выражения 18:6+36:6 . Из таблицы умножения имеем 18:6=3 и 36:6=6 , поэтому 18:6+36:6=3+6=9 . Следовательно, равенство (18+36):6=18:6+36:6 верное.

Еще следует обратить внимание на тот факт, что это свойство, а также сочетательное свойство сложения натуральных чисел позволяют выполнять деление суммы трех и большего количества натуральных чисел на данное натуральное число. Например, частное (14+8+4+2):2 равно сумме частных следующего вида 14:2+8:2+4:2+2:2 .

Свойство деления разности двух натуральных чисел на натуральное число.

Аналогично предыдущему свойству формулируется свойство деления разности двух натуральных чисел на данное натуральное число: разделить разность двух чисел на данное число – это все равно, что отнять от частного уменьшаемого и данного числа частное вычитаемого и данного числа .

С помощью букв это свойство деление можно записать так: (a-b):c=a:c-b:c , где a , b и c – такие натуральные числа, что a больше или равно b , а также и a и b можно разделить на c .

В качестве примера, подтверждающего рассматриваемое свойство деления, покажем справедливость равенства (45-25):5=45:5-25:5 . Так как 45-25=20 (при необходимости изучите материал статьи вычитание натуральных чисел), то (45-25):5=20:5 . По таблице умножения находим, что полученное частное равно 4 . Теперь вычислим значение выражения 45:5-25:5 , стоящего в правой части равенства. Из таблицы умножения имеем 45:5=9 и 25:5=5 , тогда 45:5-25:5=9-5=4 . Следовательно, равенство (45-25):5=45:5-25:5 верно.

Свойство деления произведения двух натуральных чисел на натуральное число.

Если увидеть связь между делением и умножением , то будет видно и свойство деления произведения двух натуральных чисел на данное натуральное число, равное одному из множителей. Его формулировка такова: результат деления произведения двух натуральных чисел на данное натуральное число, которое равно одному из множителей, равен другому множителю . Приведем буквенный вид этого свойства деления: (a·b):a=b или (a·b):b=a , где a и b – некоторые натуральные числа.

Например, если разделить произведение чисел 2 и 8 на 2 , то получим 8 , а (3·7):7=3 .

Теперь будем считать, что делитель не равен ни одному из множителей, образующих делимое. Сформулируем свойство деления произведения двух натуральных чисел на данное натуральное число для этих случаев. При этом будем считать, что хотя бы один из множителей можно разделить на данное натуральное число. Итак, разделить произведение двух натуральных чисел на данное натуральное число – это все равно, что разделить на это число один из множителей и результат умножить на другой множитель .

Озвученное свойство, мягко говоря, не очевидно. Но если вспомнить, что умножение натуральных чисел по сути является сложением некоторого количества равных слагаемых (об этом написано в разделе теории смысл умножения натуральных чисел), то рассматриваемое свойство следует из .

Запишем это свойство с помощью букв. Пусть a , b и c – натуральные числа. Тогда, если a можно разделить на c , то справедливо равенство (a·b):c=(a:c)·b ; если b можно разделить на c , то справедливо равенство (a·b):c=a·(b:c) ; а если и a , и b можно разделить на c , то имеют место оба равенства одновременно, то есть, (a·b):c=(a:c)·b=a·(b:c) .

К примеру, в силу рассмотренного свойства деления произведения двух натуральных чисел на данное натуральное число справедливы равенства (8·6):2=(8:2)·6 и (8·6):2=8·(6:2) , которые можно записать в виде двойного равенства вида (8·6):2=(8:2)·6=8·(6:2) .

Свойство деления натурального числа на произведение двух натуральных чисел.

Давайте разберем следующую ситуацию. Пусть нужно поровну разделить a призов между участниками b команд по c человек в каждой команде (будем считать, что натуральные числа a , b и c таковы, что указанное деление возможно провести). Как это можно сделать? Рассмотрим два случая.

  • Во-первых, можно узнать общее количество участников (для этого нужно вычислить произведение b·c ), после чего провести деление всех a призов на всех b·c участников. Математически этому процессу соответствует a:(b·c) .
  • Во-вторых, a призов можно разделить на b команд, после чего полученное количество призов в каждой команде (оно будет равно частному a:b ) разделить на c участников. Математически этот процесс описывается выражением (a:b):c .

Понятно, что и при первом и при втором варианте деления, каждый участник получит одно и то же количество призов. То есть, будет справедливо равенство вида a:(b·c)=(a:b):c , которое представляет собой буквенную запись свойства деления натурального числа на произведение двух натуральных чисел. Следует заметить, что в силу переместительного свойства умножения натуральных чисел полученное равенство можно записать в виде a:(b·c)=(a:c):b .

Осталось лишь привести формулировку рассматриваемого свойства деления: разделить натуральное число на произведение – это все равно что разделить это число на один из множителей, после чего полученное частное разделить на другой множитель .

Приведем пример. Покажем справедливость равенства 18:(2·3)=(18:2):3 , что будет подтверждать свойство деления натурального числа на произведение двух натуральных чисел. Так как 2·3=6 , то частное 18:(2·3) равно 18:6=3 . Теперь вычислим значение выражения (18:2):3 . Из таблицы умножения находим, что 18:2=9 , а 9:3=3 , тогда (18:2):3=3 . Следовательно, 18:(2·3)=(18:2):3 .

Свойство деления нуля на натуральное число.

Мы приняли условность, что число нуль (напомним, что нуль не относится к натуральным числам) означает отсутствие чего-либо. Таким образом, деление нуля на натуральное число – это есть деление «ничего» на несколько частей. Очевидно, что в каждой из полученных частей также будет «ничто», то есть нуль. Итак, 0:a=0 , где a – любое натуральное число.

Полученное выражение представляет собой буквенную запись свойства деления нуля на натуральное число, которое формулируется так: результатом деления нуля на произвольное натуральное число является нуль .

К примеру, 0:105=0 , а частное от деления нуля на 300 553 тоже равно нулю.

Натуральное число делить на нуль нельзя.

Почему же натуральное число нельзя делить на нуль? Давайте разберемся с этим.

Предположим, что некоторое натуральное число a можно разделить на нуль, и результатом деления является другое натуральное число b , то есть, справедливо равенство a:0=b . Если вспомнить о связи деления с умножением, то записанное равенство a:0=b означает справедливость равенства b·0=a . Однако свойство умножения натурального числа и нуля утверждает, что b·0=0 . Сопоставление двух последних равенств указывает на то, что a=0 , чего быть не может, так как мы сказали, что a – некоторое натуральное число. Таким образом, наше предположение о возможности деления натурального числа на нуль приводит к противоречию.

Итак, натуральное число нельзя делить на нуль .

Список литературы.

  • Математика. Любые учебники для 1, 2, 3, 4 классов общеобразовательных учреждений.
  • Математика. Любые учебники для 5 классов общеобразовательных учреждений.

Свойство делимости. «Делимость суммы и произведения на данное число. Задачи повышенной трудности».
Тип урока: урок обобщения и систематизации знаний
Технологии: здоровьесбережения, развитие исследовательских умений, развивающего обучения, проблемного обучения, самодиагностики и самокоррекции результатов.
Элементы содержания: Верные рассуждения, справедливое утверждение, признак делимости произведения, признак делимости суммы.
Виды деятельности: математический диктант, работа у доски и в тетрадях, фронтальная работа с классом.
Планируемые результаты (УУД):
Уметь: – доказать и применять при решении, что если хотя бы один из множителей не делится на некоторое число, то и все произведение делится на это число;
– доказать и применять при решении, что если каждое слагаемое делится на некоторое число, то и сумма делится на это число;
– вступать в речевое общение, участвовать в диалоге;
– правильно оформлять работу, отражать в письменной форме свои решения, выступать с решением проблемы.

Ход урока.
Проверочный диктант.
Записать формулу чисел кратных: а) 17; б) 41.
Записать формулу чисел, которые при делении на 17 дают остаток 3; при делении на 41 – остаток 3.
Указать два разных признака, характеризующих данное множество 6; 12; 18; 24; 30; 36; 42; 48; 54; 60; 66; 72; 78; 84; 90; 96.
Найти общие кратные чисел 5 и 4.
По какому признаку составлены формулы
а) 15n + 13; б) 4n +3; в)17k + 8?
Комментарий учителя. Тетради собираются на проверку, а решения комментируются.

Выполнение упражнений на делимость суммы и произведения
(Устно). Делится ли сумма на 3:
а) 450 + 160;
б) 150 +225;
в) 28422 + 22050;
Формулируется вывод:
Если каждое из слагаемых делится на какое-то число, то и сумма их обязательно делится на это же число.
Если каждое слагаемое, кроме одного делится на какое-нибудь число, а одно не делится, то сумма не делится на это число.

2. Истинно ли утверждение: если сумма делится на 3, то и каждое слагаемое делится на 3?
3. Делится ли на 3 произведение:
а) 6
·23
·75;
б) 6
·23
·14;
в) 37
·121
·19?
Формулируется вывод: Если хоть один из сомножителей делится на какое-нибудь число, то и произведение их также разделится на это число.
3. Используя свойства делимости и данные о делимости на число к каждого слагаемого, определите, делится ли на к сумма или произведение.
1 число
2 число
3 число
Сумма
Произведение

Решение.
1 число
2 число
3 число
Сумма
Произведение

д
д
д
д
д

н
д
д
н
д

д
н
д
н
д

д
д
н
н
д

н
н
д
Может делиться,
K°может не делиться
д

н
д
н
Может делиться,
может не делиться
д

д
н
н
Может делиться,
может не делиться
д

н
н
н
Может делиться,
может не делиться
н

Практикум
Все упражнения решаются с записью на доске.
Не производя вычислений, установите, делятся ли на 4 выражения: а) 132 + 360 + 536; б) 540 – 332; в) 2512·127.
Решение.
а) так как на 4 делится каждое слагаемое, то сумма 132 + 360 + 536 делится на 4;
б) так как уменьшаемое 540 делится на 4 и вычитаемое 332 делится на 4, то и разность 540 – 332 делится на 4;
в) так как число 2512 делится на 4, то и произведение 2512·127 делится на 4.
Составьте формулу чисел, при которых выражение:
а) 25 + х делится на 25;
б) 78 + х делится на 78.
3. При каких значениях переменной произведение:
а) 7
· а делится на 7,
б) 17
· b делится на b.
4. В кафе завезли 4 коробки мороженного. Может ли быть так, что мы должны заплатить за это 224 руб.?

Творческие задания
Доказать, что при всех натуральных значениях переменной выражение:
а) 56
· (а+b) делится на 14;
б) 144 а + 12b делится на 12;
в) 100 а – 40а делится на 30.
2. Укажите какие-нибудь пять делителей числа, равного произведению: 32 ·24 ·21.
3. Укажите, какие из следующих утверждений ложные.
а) Если слагаемые не делятся на какое-то число, то и сумма не делится на это число.
б) Если произведение двух чисел делится на какое-либо число, то хотя бы один из множителей делится на это число.
в) Если множители не делятся на какое-нибудь число, то и произведение не делится на это число.
г) Если разность делится на какое-нибудь число, то и уменьшаемое, и вычитаемое делится на это число.
Решение.
а) Ложное. Пример: 7+3 = 10; 7 и 3 не делятся на 5, а 10 делится на 5.
б) Ложное. Пример: 6 (10 = 60; 60 делится на 15, а ни 6, ни 10 не делятся.
в) Ложное. Пример: 6 (10 = 60; ни 6, ни 10 не делятся на 15, а 60 делится на 15.
г) Ложное. Пример: 23 - 21 = 2. Разность 2 делится на 2, а 23 и 21 на 2 не делятся.

5. Подведение итогов
Повторение свойств делимости произведения, суммы и разности чисел. Постановка домашнего задания. Комментирование оценок.

13 PAGE \* MERGEFORMAT 14115

kђЗаголовок 115


Приложенные файлы

  • выработка навыка решения заданий на применение свойств делимости суммы и произведения;
  • включение каждого учащегося в осознанную учебную деятельность;
  • Развивать творческие способности, математическую культуру, умение выявлять закономерности, обобщать.
  • Оборудование: доска, таблица, учебная литература, компьютер, проектор, экран.

    Ход урока

    1. Организационный момент

    2. Актуализация опорных знаний

    Математический диктант

    1 вариант 2 вариант

    а) если число а делится на 6, то оно делится на 12*;

    б) если число а не делится на 6, то оно не делится на 12

    1. Какие из высказываний верные:

    а) если число а делится на 12, то оно делится на 6;

    б) если число а не делится на 12, то оно не делится на 6

    а) любое число, кратное 90

    2. Пусть F – множество чисел, кратных 33. Принадлежит ли множеству F:

    а) любое число, кратное 11

    3. Найдите пересечения:

    а) множества четных чисел и множества чисел, кратных 4

    3. Найдите пересечения:

    а) множества чисел, кратных 3, и множества чисел, кратных 7

    3. Усвоение новых знаний

    Учащиеся делятся на 4 группы. Каждая группа изучает одно из свойств, доказательство этого свойства.

    Рассмотрим некоторые свойства делимости суммы и произведения.

    1. Если в сумме целых чисел каждое слагаемое делится на некоторое число, то и сумма делится на это число.

    Доказательство проведем для трех слагаемых. Если числа a, b , и c делятся на p, то a=pk, b=pm, c=pn, где k,m и n – целые числа. Тогда

    a+b+c=pk+pm+pn=p(k+m+n),

    и так как k +m+n – целое число, то a+b+c делится на p.

    В случае произвольного числа слагаемых прием доказательства остается тем же. Очевидно, что обратное утверждение неверно.

    2. Если два целых числа делятся на некоторое число, то их разность делится на это число.

    Это свойство следует из предыдущего, так как разность a-b всегда можно представить в виде суммы a+(-b) .

    3. Если в сумме целых чисел все слагаемые, кроме одного делятся на некоторое число, то сумма не делится на это число.

    Пусть числа a и b делятся на p, а число c не делится на p. Докажем, что сумма a+b+c не делится p. Предположим противное: пусть a+b+c делится на p. Тогда в разности (a+b+c)-(a+b) уменьшаемое делится на p по предположению, а вычитаемое делится на p по свойству 1, и поэтому по свойству 2 разность делится на p. Однако эта разность равна c и на p по условию не делится. Мы пришли к противоречию. Следовательно, сделанное нами предположение неверно и сумма a+b+c делится на р, что и требовалось доказать.

    Заметим, что так как разность a-b можно рассматривать как сумму a+(-b), то доказанные свойства суммы относятся к любой алгебраической сумме чисел.

    4. Если в произведении целых чисел один из множителей делится на некоторое число, то произведение делится на это число.

    Если а делится на с, то a=ck, где k –целое число. Тогда ab=(ck)b т.е ab=c(kb), причем kb – целое число, так как произведение целых чисел является целым числом. Значит ab делится на с.

    При решении задач на делимость часто бывают полезными свойства, связанные с последовательным расположением целых чисел. Например:

    Одно из п последовательных целых чисел делится на п;

    Одно из двух последовательных четных чисел делится на 4;

    Произведение трех последовательных целых чисел делится на 6;

    Произведение двух последовательных четных чисел делится на 8.

    Решение задач с применением свойств делимости суммы и произведения.

    Пример 1

    Докажите, что сумма 333 555 + 555 333 делится на 37.

    333 555 + 555 333 = (3*111) 555 +(5*111) 333 = 111*(3 555 *111 554 + 5 333 *111 332). Так как 111 делится на 37, то данное выражение делится на 37.

    Пример 2

    Выясним, принадлежит ли графику уравнения 15х + 25 y= 114 хотя бы одна точка, координатами которой являются целые числа.

    Допустим, что график проходит через точку М (а; в), где а и в целые числа. Тогда верным является равенство 15а + 25в =114. В левой части этого равенства записана сумма, которая делится на 5, так как каждое слагаемое 15а и 25в делятся на 5. ТО число 114 на 5 не делится. Полученное противоречие показывает, что предположение неверно и на графике уравнения 15х + 25y = 114 нет ни одной точки с целочисленными координатами.

    Пример 3

    Выясним, может ли целое число а, не равное нулю и не являющееся делителем 240, быть корнем уравнения 17х 3 –10х 2 -6х + 240 =0.

    Допустим, что а – целый корень уравнения. Тогда верно равенство

    17а 3 – 10а 2 – 6а + 240 =0.

    Левая часть представляет собой сумму, в которой каждое слагаемое, кроме одного, делится на а, и поэтому эта сумма не делится на а. Правая часть этого равенства делится на а, так как 0 делится на любое число, отличное от нуля. Полученное противоречие показывает, что предположение неверно и число а не может быть корнем данного уравнения.

    Пример 4

    Докажем, что если n - простое число, большее чем 3, то разность n 2 - 1 делится на 24.

    Имеем n 2 - 1 =(n-1)(n+1) . Из трех последовательных чисел n-1, n , n+1 хотя бы одно делится на 3. Однако число n на 3 не делится, значит, на 3 делится одно из чисел n-1 и n+1и, следовательно, их произведение (n-1)(n+1). Из условия ясно, что число n нечетное. Значит, n-1 и n+1 – два последовательных четных числа. Одно из таких чисел делится на 2, а другое - на 4, и поэтому их произведение делится на 8.

    Итак, разность n 2 -1, где n – простое число и n>3, делится на 3 и на 8. А так как 3 и 8 взаимно простые, то эта разность делится на 24.

    Решение №108, 110, 111(а),116(а), 119, 123.

    4. Подведение итогов

    5. Домашнее задание

    Тема урока: Делимость суммы и произведения.

    Тип урока: урок «открытия» новых знаний.

    Цели урока:

    1. Предметные: Расширить знания учащихся о простейших элементах теории делимости натуральных чисел; показать способы использования в вычислениях свойства делимости суммы и произведения натуральных чисел.

    2. Метапредметные: развитие умений учащегося проводить несложные доказательные рассуждения в ходе исследования; развитие умений учащихся организовывать сотрудничество и совместную деятельность с учителем и сверстниками, работать индивидуально, в группах, аргументировать и отстаивать свое мнение.

    3. Личностные: Способствовать развитию коммуникативной компетентности в общении и сотрудничестве со сверстниками при групповой работе; содействовать формированию устойчивого интереса к предмету; развивать личностные качества: ответственность, целеустремленность.

    приёмы и методы:

    Рефлективные приёмы;

    Приёмы создания ситуации успеха и индивидуального выбора;

    Методы самодиагностики;

    Частично-поисковый метод;

    Работа с учебником.

    Формы работы учащихся:

    Индивидуальная

    Работа в парах

    Фронтальная.

    Планируемые результаты:

    Учащиеся узнают свойства делимости суммы и произведения;

    Приобретение навыков у учащихся к использованию в вычислениях свойств делимости суммы и произведения.

    Применяемые образовательные технологии:

    Системно-деятельностный подход;

    Технология проблемного обучения.

    Ход урока

    1. Мотивация к учебной деятельности.

    Здравствуйте, товарищи кадеты.

    Ребята, сегодня наш урок мне хотелось бы начать с немного смешного, но на мой взгляд, очень поучительного фрагмента мультипликационного фильма моего детства «Вовка в тридевятом царстве»

    Посмотрите, пожалуйста, его очень внимательно. (Просмотр и обсуждение фрагмента мультфильма).

    На что рассчитывал Вовка в начале? (Что работу за него выполнят «Двое из ларца»)

    Что из этого вышло?(Они все перепутали, и Вовке все равно пришлось делать все самому)

    А почему Вовка остался голодный?

    Благодаря чему он смог сделать корыто для старухи?

    Как вы думаете, сможет Вовка построить избу? Почему вы в этом уверены?

    Я с вами абсолютно согласна. Никто за вас не выполнит вашу работу, а от ее качества будет зависеть результат. Если захотеть, то научиться можно всему.

    Сегодня у нас урок открытия новых знаний. И я желаю вам успехов в их поиске, в этом вам обязательно помогут накопленные вами хоть небольшие но все же очень важные знания!

    2. Актуализация знаний и пробное учебное действие.

    А) устный счет(лесенка)

    Чтобы вам работалось на протяжении всего урока легко, давайте выполним небольшую разминку для мозга.

    У вас на парте в файле с заданиями есть карточки, на которых изображена лесенка. (Слайд 1) Найдите их. (по вариантам). Подпишите. Вам необходимо будет за 2 минуты подняться по ступенькам лестницы как можно выше, записывая на каждой ступени результат вычисления.

    Время вышло, заканчиваете. Обменяйтесь карточками.

    Проверьте результат друг друга по образцу на слайде (Слайд 2)

    Если задание выполнено полностью и без ошибок, поставьте «пятерку»

    Верните карточки.

    Поднимите руку, у кого «Пятерка». Молодцы!

    А кто допустил ошибки, задумайтесь почему?

    Есть только две причины, назовите мне их сами. (невнимательность, незнание таб. Умножения)

    Это еще раз говорит о том, что нужно быть более внимательными, а у кого возникли проблемы с таблицей умножения, повторите дома ее еще раз.

    Б) Теперь нам предстоит вспомнить некоторые понятия, которые будем использовать на нашем уроке. Предлагаю для этого разгадать кроссворд. Он находится у вас в файлах. Работаем в парах. Даю вам 3 минуты.

      Как называется результат умножения?

      Как называются числа, которые складывают?

      Как называется число, на которое делят?

      Как называются числа, которые умножают?

      Как называется результат сложения?

      Как называется число, у которого больше двух делителей?

      Как называется число, у которого два делителя?

    Проверьте свои ответы. (Слайд 3)

    На какие вопросы вы не смогли ответить?

    Давайте мы еще раз повторим определения этих понятий.

    Какое определение можно дать понятию по вертикали?

    А сейчас откройте тетради и поставьте на полях «!» на против задания, с которым вы дома справились легко и быстро, а «?», если задание вызвало затруднение, к этим заданиям мы вернемся на следующем уроке.

    Запишите число и классная работа.

    Выполните следующее задание: (Слайд 4)

    В) 1. Выясните является ли число 4 делителем произведения: (3мин)

    2. Выясните является ли число 3 делителем суммы:

    3. Выявление причины затруднения.

    Что вы можете сказать о произведениях?

    О суммах?

    Как вы это выяснили?

    Может кто-то использовал другой способ, и смог ответить на вопрос, не выполняя вычислений? (нет)

    4. Построение проекта выхода из затруднения.

    Так какую цель мы с вами поставим перед собой сегодня на уроке?

    (научиться определять без вычислений делится ли сумма или произведение на некоторое число) (Слайд 5)

    Тема нашего урока: «Свойства делимости произведения и суммы» (Слайд 6)

    Эти свойства вам предстоит сформулировать самостоятельно, и доказать, что они работают на практике.

    Физкультминутка.

    Потрудились – отдохнем,

    Встанем, глубоко вздохнем.

    Руки в стороны, вперед,

    Влево, вправо поворот.

    Три наклона, прямо встать.

    Руки вниз и вверх поднять.

    Руки плавно опустили,

    Всем улыбки подарили.

    Объединитесь в группы по 4 человека.

    Не забывайте о правилах работы в группе.

    Ответьте письменно на вопросы, находящиеся на ваших карточках и сделайте вывод.

    Все справились с заданием?

    Какую закономерность вы увидели для суммы, какой вывод вы можете сделать?(1 и 2 группы)

    Сформулируйте свойство делимости суммы.

    Хорошо, какая закономерность прослеживается для произведения? (3 и 4 группы)

    Сформулируйте свойство делимости произведения.

    5. Реализация построенного проекта

    А теперь вернемся к заданию на слайде и проверим верны ли наши предположения. (да)

    Итак, мы с вами сформулировали свойства делимости суммы и произведения. Проверим правильность сформулированных нами свойств. Откройте учебник на стр.102.

    Ну что вы были правы?(да)

    6. Первичное закрепление.

    Нам осталось только научиться использовать свойства делимости суммы и произведения.

    Учебник (стр.104):

    № 350,357-устно

    № 358(в,г)-доска и тетрадь

    № 359,360(а,б)- дополнительно

    Хорошо, молодцы.

    А теперь еще раз повторим свойства делимости, которые вы сегодня сами открыли, расскажите их друг другу.

    7. Рефлексия деятельности на уроке.

    Наш урок подходит к концу, давайте подведем итоги.

    Какую цель вы перед собой ставили? (научиться определять без вычислений делится ли сумма или произведение на некоторое число)

    Как вы считаете, достигли вы цели?(Да)

    А теперь возьмите в файле карточки для самооценки, подпишите их и оцените свою деятельность на уроке.

    8.Домашнее задание:

    № 356(а), 358(а,б), 360(в,г)

    Ребята, вы сегодня все без исключения очень плодотворно потрудились, спасибо вам за вашу работу.

    Закончить урок я хочу словами вьетнамской народной пословицы: «Узнать можно лишь тогда, когда учишься; дойти можно лишь тогда, когда идешь». Не забывайте об этом.

    Кто получил оценки за устный счет, принесите дневники. А кто выполнил дополнительное задание, подойдите ко мне с тетрадями.