Тепловые потери через печные заграждения. Расчет температуры наружной поверхности обмуровки котла

Работа теплогенерирующей установки сопровождается потерями теплоты, выраженными обычно в долях, %:

q i = (Q i / Q р р) ⋅ 100.

1. Потери теплоты с уходящими топочными газами теплогенератора

q 2 = (Q 2 / Q р р) ⋅ 100, %.

В теплогенераторе это, чаще всего, наибольшая часть тепловых потерь. Потери теплоты с уходящими топочными газами можно понизить за счет:

Снижения объема дымовых топочных газов, путем поддержания требуемого коэффициента избытка воздуха в топке α т и уменьшения присосов воздуха;

Снижения температуры уходящих топочных газов, для чего применяют хвостовые поверхности нагрева: водяной экономайзер, воздухоподогреватель, контактный теплообменник.

Температура уходящих топочных газов (140…180 °С) считается рентабельной и во многом зависит от состояния внутренней и внешней поверхности нагрева труб котла, экономайзера. Отложение накипи на внутренней поверхности стенок труб котла, а также сажи (летучей золы) на внешней поверхности нагрева существенно ухудшают коэффициент теплопередачи от топочных газов к воде и пару. Увеличение поверхности экономайзера, воздухоподогревателя для более глубокого охлаждения дымовых газов не является целесообразным, так как при этом уменьшается температурный напор ΔТ и увеличивается металлоемкость.

Повышение температуры уходящих топочных газов может произойти в результате неправильного процесса эксплуатации и сжигания топлива: большой тяги (топливо догорает в кипятильном пучке); наличия неплотности в газовых перегородках (газы напрямую идут по газоходам котельного агрегата, не отдавая теплоты трубам – поверхностям нагрева), а также при большом гидравлическом сопротивлении внутри труб (за счет отложения накипи и шлама).

2. Химический недожог

q 3 = (Q 3 / Q р р) ⋅ 100, %.

Потери теплоты от химической неполноты сгорания топлива определяются по результатам анализа летучих горючих веществ Н 2 , СО, СН 4 в уходящих дымовых топочных газах. Причины химической неполноты сгорания: плохое смесеобразование, недостаток воздуха, низкая температура в топке.

3. Механический недожог

q 4 = (Q 4 / Q р р) ⋅ 100, %.

Потери теплоты от механической неполноты сгорания топлива характерны для твердого топлива и зависят от доли провала топлива через колосниковую решетку в систему шлакозолоудаления, уноса частичек несгоревшего топлива с дымовыми газами и шлаком, который может оплавить частицу твердого топлива и не дать ей полностью сгореть.

4. Потери теплоты от наружного охлаждения ограждающих конструкций

q 5 = (Q 5 / Q р р) ⋅ 100, %.

Возникают ввиду разности температуры наружной поверхности теплогенератора и окружающего наружного воздуха. Они зависят от качества изолирующих материалов, их толщины. Для поддержания q 5 в заданных пределах необходимо, чтобы температура наружной поверхности теплогенератора – его обмуровки не превышала 50 °С.

Потери теплоты q 5 уменьшаются по ходу движения топочных газов по газовому тракту, поэтому для теплогенератора введено понятие коэффициента сохранения теплоты

φ = 1 − 0,01q 5 .

5. Потери с физической теплотой шлака

q 6 = (Q 6 / Q р р) ⋅ 100, %.

Возникают за счет высокой температуры шлаков порядка 650 °С, и характерны только при сжигании твердого топлива.

Таблицы расчета тепловых потерь, коэффициента полезного действия брутто, натурального, расчетного и условного расхода топлива теплогенератора приведены в справочной литературе.

Лекция 4

Топочные и горелочные устройства

Топочные устройства

Топка – устройство, предназначенное для сжигания топлива с целью получения теплоты. Топка выполняет функцию горения и теплообменного аппарата – теплота одновременно передается от факела горения излучением и от продуктов сгорания конвекцией к экранным поверхностям, по которым циркулирует вода. Доля лучистого теплообмена в топке, где температура топочных газов порядка 1000 °С, больше чем конвективного, поэтому, чаще всего, поверхности нагрева в топке называют радиационными .

Для сжигания природного газа, мазута и пылевидного твердого топлива используются камерные топки, в конструкции которых можно выделить три основных элемента: топочную камеру, экранную поверхность, горелочное устройство.

1. Топочная камера или топочный объем – пространство, отделенное обмуровкой от окружающей среды.

Обмуровкой называют ограждения, отделяющие топочную камеру и газоходы теплогенератора от внешней среды. Обмуровку в котельном агрегате выполняют из красного или диатомового кирпича, огнеупорного материала или из металлических щитов с огнеупорами.

Внутренняя часть обмуровки топки – футеровка , со стороны топочных газов и шлаков, выполняется из огнеупорных материалов: шамотного кирпича, шамотобетона и других огнеупорных масс. Обмуровка и футеровка должны быть достаточно плотными, особо высокоогнеупорными, стойкими к химическому воздействию шлаков и иметь малый коэффициент теплопроводности.

Обмуровка может опираться непосредственно на фундамент, на металлические конструкции (каркас) или крепиться на трубах экранов топочной камеры и газоходов. Поэтому существуют три конструкции обмуровки: массивная – имеет свой фундамент; накаркасная (облегченная) – фундамента не имеет, крепится на металлический каркас; натрубная – крепится к экранным поверхностям.

Рис. 6.1. Фронтальный и боковой разрез водогрейного котла с топкой и обмуровкой из шамотного кирпича

Каркас служит для крепления и поддержания всех элементов котельного агрегата (барабанов, поверхностей нагрева, трубопроводов, обмуровки, лестниц и площадок) и представляет собой металлические конструкции обычно рамного типа, соединенные с помощью сварки или закрепленные болтами на фундаменте.

2. Экранная радиационная поверхность нагрева выполнена из стальных труб диаметром 51…76 мм, установленных с шагом 1,05…1,1. Экраны воспринимают теплоту за счет радиации и конвекции и передают ее воде или пароводяной смеси, циркулирующим по трубам. Экраны защищают обмуровку от мощных тепловых потоков.

В вертикально-водотрубных котлах (рис. 6.2а) поверхность нагрева состоит из развитого пучка кипятильных труб 2, ввальцованных в верхний 1 и нижний 3 барабаны, топочных экранов 6, питаемых водой из котельных барабанов через опускные трубы 7 и соединительные 4 из камер (коллекторов 5). Испарительные поверхности нагрева котельных агрегатов экранного типа (рис. 6.2б) состоят из барабана 1, системы экранных труб 6 с нижними 8 и 9 и верхними 5 экранными коллекторами, систем опускных 7 и соединительных 10 труб.

Рис. 6.2. Экранные поверхности нагрева котлов:

а – вертикально-водотрубных, б – экранного типа

1 и 3 – верхний и нижний барабаны, 2 и 7 – кипятильные и опускные трубы, 4 и 10 – соединительные трубы, 5, 8 и 9 – коллекторы, 6 – топочные экраны

3. Горелочные устройства устанавливаются на одной или двух противоположных (встречных) поверхностях нагрева, на поду, или в углах топки. На стенах топки котла устраивают амбразуру – отверстие в обмуровке, обмурованное огнеупорным материалом, куда устанавливают воздушный регистр и горелочное устройство.

При любом виде топлива (газообразное, жидкое или пылевидное) воздух в основном (кроме инжекционных горелок) нагнетается дутьевым вентилятором в топку через воздушные регистры или воздухонаправляющие аппараты, что обеспечивает интенсивное завихрение и выход (подачу) топливновоздушной смеси в наиболее узком сечении амбразуры топки со скоростью 25…30 м/с.

Воздухонаправляющее устройство представляет собой лопаточный завихритель осевого типа с подвижными, поворачивающимися вокруг своей оси лопатками. Возможна и установка неподвижных профильных лопаток под углом 45…50° к потоку воздуха. Завихрение потока воздуха интенсифицирует процессы смесеобразования и горения, но при этом увеличивается сопротивление по воздушному тракту. Направляющие аппараты удобны для автоматического регулирования производительности вентиляторов и дымососов.

Горелочные устройства

В зависимости от вида сжигаемого топлива различают множество конструкций горелочных устройств.

1. При сжигании твердого пылевидного топлива применяют горелки смешивающего типа. В амбразуре топочной камеры устанавливают улитку, в которой пылевоздушная смесь (пылевидное топливо с первичным воздухом) закручивается и по кольцевому каналу транспортируется к выходу горелки, откуда поступает в топку в виде закрученного короткого факела. Вторичный воздух, через другую аналогичную улитку, подается в топку со скоростью 18…30 м/с, в виде мощного закрученного потока, где интенсивно перемешивается с пылевоздушной смесью. Производительность горелок – 2…9 т/ч угольной пыли.

2. При сжигании мазута применяют форсунки и мазутные горелки: механические, ротационные и паровоздушные (паромеханические).

Механическая форсунка . Подогретый примерно до 100 °С мазут под давлением 2…4 МПа поступает в канал, перемещается в насадок (распыливающую головку), где установлен завихритель-распылитель.

Механические центробежные форсунки подразделяются на нерегулируемые и с регулируемым сливом. Следует отметить, что это деление весьма условное: можно изменять подачу у обеих форсунок. К нерегулируемым относят форсунки с малой глубиной регулирования и такие, у которых изменение подачи связано с их выключением, выемкой из топочного устройства и заменой распыливающего элемента.

Механические центробежные форсунки, различающиеся компоновкой распыливающих элементов, дополнительно иногда подразделяют на форсунки со сменными и постоянно работающими на всех режимах распылителями, что обусловлено в основном условиями эксплуатации котла.

Рис. 6.3. Механическая нерегулируемая центробежная форсунка

Механическая регулируемая центробежная форсунка отечественных вспомогательных котлов (рис. 6.3) состоит из корпуса 6 с ручкой 7, ствола 5, представляющего собой толстостенную трубу со штуцером на конце, стопорной втулки 4, распределителя (сопла) 3, распыливающей шайбы 2 и головки 1. Топливо от топливно-форсуночного насоса по отверстиям в корпусе и каналу ствола через сверления в стопорной втулке и распределителе поступает к распыливающей шайбе. Распыливающая шайба у данной конструкции имеет четыре канала 8, расположенных тангенциально к окружности вихревой камеры. По ним топливо устремляется к центру и в вихревую камеру 9, где интенсивно раскручивается. Из нее топливо входит в топку через центральное отверстие 10 в виде вращающегося конуса мелко распыленных частиц.

Поверхности соприкосновения распыливающей шайбы 2 и распределителя 3 тщательно обрабатывают, полируют и при сборке головки прижимают одну к другой стопорной втулкой 4.

Распыливающие шайбы изготавливают из высоколегированных хромоникелевых или хромовольфрамовых сталей. В зависимости от подачи форсунки число тангенциальных каналов может быть от двух до семи.

Форма факела форсунки зависит от отношения f k /f o , в котором f k -суммарная площадь всех тангенциальных каналов, f o - площадь сечения центрального отверстия. Чем меньше это отношение, тем угол конуса распыливания будет больше, а длина факела меньше.

Шайбы изготавливаются обычно под номерами. Каждый номер соответствует определенной подаче, которая указывается в технической документации. Иногда на шайбах указываются числа, соответствующие значениям диаметра центрального отверстия и отношения f k /f o , при этом иностранные фирмы наносят условные обозначения в виде индексов (рис. 6.4). Например: буква X обозначает, что передняя торцевая стенка шайбы изготовлена плоской, буква W - сферической формы; цифра слева - условный номер сверла для изготовления центрального отверстия, цифра справа - отношение f k /f o , увеличенное в 10 раз.

Рис. 6.4. Распыливающая шайба

Ротационная форсунка . Топливо подается через канал и сопло на вращающуюся чашу, дробится и сбрасывается в топочную камеру.

Рис. 6.5. Устройство ротационной газомазутной

горелки РГМГ-10 (-20, -30):

1 – газопровод; 2 – воздушный короб; 3 – кольцо рамы; 4 – газовая труба;

5 , 6 – труба установки запального защитного устройства (ЗЗУ) и фотодатчика; 7 – газовая камера; 8 – переднее кольцо воздухонаправляющего устройства; 9 – конический керамический туннель (амбразура); 10 – завихрители воздухонаправляющего устройства; 11 – ротационная форсунка;

12 – газовые выпускные отверстия; 13 – рамка для центровки завихрителя вторичного воздуха; 14 – опорная труба; 15 – подшипник направляющей рамы; 16 – направляющая рама; 17 – воздушный шибер; 18 – окно для подвода воздуха к завихрителю; 19 – крышка горелки

Давление топлива – мазута составляет 0,15…1 МПа, а чаша вращается со скоростью 1500…4500 об/мин. Воздух поступает вокруг чаши через конус, охватывает вращающийся поток капель и перемешивается с ним. Достоинства: не требуются мощные нефтенасосы и тонкая очистка мазута от примесей; широкий диапазон регулирования (15…100 %). Недостатки: сложная конструкция и повышенный уровень шума.

Паровоздушная или паромеханическая форсунка . Топливо подается в канал, по внешней поверхности которого поступает распыливающая среда – пар или сжатый воздух (давлением 0,5…2,5 МПа).

Пар выходит из канала со скоростью до 1000 м/с и распыливает топливо (мазут) на мельчайшие частички.

Воздух нагнетается вентилятором через амбразуру.

Рис. 6.6. Паромеханическая форсунка

Рис. 6.7. Распыливающая шайба паромеханической форсунки

В паромеханической (рис. 6.6), как и в механической форсунке топливо под давлением подводится в кольцевой канал 3, откуда через шесть тангенциальных каналов 9 распылителя 2 поступает в вихревую камеру 4, закручивается в ней и через центральное отверстие 5 в виде конусной пленки выходит в топку. В паровой части 1 распылителя имеется также кольцевая камера 6, куда по тангенциальным каналам 7 подается пар, закручивается в ней и по кольцевому зазору 8 выходит в топку у самого корня конусной пленки топлива, которая таким образом получает дополнительную энергию и распыляется на мелкие капли. Далее эти капли проходят вторичное дробление за счет сил сопротивления.

Любая мазутная форсунка должна иметь устройство для хорошего перемешивания топлива с воздухом, что достигается использованием разного вида завихряющих приспособлений – регистров. Комплект форсунки с регистром и другими вспомогательными приспособлениями называется мазутной горелкой .

3. Газовые горелки.

Рис. 6.8. Горелка газовая ГГ-1

(предназначены для сжигания природного газа в топках паровых и водогрейных котлов типов Е или КВ-ГМ):

1-воздушный короб; 2-газовый коллектор; 3- завихритель; 4- конфузор; 5-шибер; 6-сектор; 7-электромагнит; 8-регулировочный винт; 9-штуцер; 10-ниппель

Газогорелочные устройства (горелки) предназначены для подачи к месту горения (в топку) газовоздушной смеси или раздельно газа и воздуха, устойчивого сжигания и регулирования процесса горения. Основной характеристикой горелки является ее тепловая мощность, т.е. количество теплоты, выделяемое при полном сжигании газа, поданного через горелку, и определяется произведением расхода газа на его низшую теплоту сгорания.

Основные параметры горелок: номинальная тепловая мощность, номинальное давление газа (воздуха) перед горелкой, номинальная относительная длина факела, коэффициенты предельного и рабочего регулирования горелки по тепловой мощности, удельная металлоемкость, давление в камере сгорания, шумовая характеристика.

Существуют три основных метода сжигания газа:

1) Диффузионный – в топку газ и воздух в необходимых количествах подают раздельно, и смешение происходит в топке.

2) Смешанный – в горелку подают хорошо подготовленную смесь газа с воздухом, содержащую только часть (30…70 %) воздуха, необходимого для горения. Этот воздух называют первичным. Остальной (вторичный) воздух поступает к факелу (устью горелки) путем диффузии. К этой же группе относят горелки, у которых газовоздушная смесь содержит весь воздух, необходимый для горения, и смешение происходит и в горелке, и самом факеле.

3) Кинетический – в горелку подают полностью подготовленную газовоздушную смесь с избыточным количеством воздуха. Воздух смешивается с газом в смесителях, и смесь быстро сгорает в коротком слабосветящемся пламени при обязательном наличии стабилизатора горения.

Наличие устойчивого пламени является важнейшим условием надежной и безопасной работы агрегата. При неустойчивом горении пламя может проскочить внутрь горелки или оторваться от нее, что приведет к загазованности топки и газоходов и взрыву газовоздушной смеси при последующем повторном розжиге. Скорость распространения пламени для различных газов неодинакова: наибольшая 2,1 м/с

– для смеси водорода с воздухом, а наименьшая 0,37 м/с – смеси метана с воздухом. Если скорость газовоздушного потока окажется меньше скорости распространения пламени, происходит проскок пламени в горелке, а если больше – отрыв пламени.

По способу подачи воздуха для горения различают следующие конструкции горелок:

1. Горелки с поступлением воздуха к месту горения за счет разрежения в топке, создаваемого дымовой трубой или дымососом, или конвекции. Смешение газа с воздухом происходит не в горелке, а за ней, в амбразуре или топке, одновременно с процессом горения. Такие горелки называют диффузионными , они равномерно прогревают всю топку, имеют простую конструкцию, работают бесшумно, факел устойчив по отношению к отрыву, проскок пламени невозможен.

2. Горелки с инжекцией воздуха газом, или инжекционные . Струя газа, поступающего из газопровода под давлением, выбрасывается из одного или нескольких сопл с большой скоростью, в результате в инжекторе смесителя создается разрежение, а воздух подсасывается (инжектируется) в горелку и при движении вдоль смесителя смешивается с газом. Газовоздушная смесь проходит через горло смесителя (самая узкая часть), выравнивающее струю смеси, и поступает в его расширяющуюся часть – диффузор, где скорость смеси снижается, а давление возрастает. Далее газовоздушная смесь поступает или в конфузор (где скорость увеличивается до расчетной) и через устье – к месту горения, или в коллектор с огневыми отверстиями, где сгорает в виде маленьких голубовато-фиолетовых факелов.

3. Горелки с инжекцией газа воздухом. В них для подсоса газа используется энергия струй сжатого воздуха, создаваемого вентилятором, а давление газа перед горелкой поддерживается постоянным с помощью специального регулятора. Достоинства: подача газа в смеситель возможна со скоростью, близкой к скорости воздуха; возможность использования холодного или нагретого воздуха с переменным давлением. Недостаток: использование регуляторов.

4. Горелки с принудительной подачей воздуха без предварительной подготовки газовоздушной среды. Смешение газа с воздухом происходит в процессе горения (т.е. вне горелки), и длина факела определяет путь, на котором это смешение заканчивается. Для укорочения факела газ подают в виде струек, направленных под углом к потоку воздуха, осуществляют закручивание потока воздуха, увеличивают разницу в давлениях газа и воздуха и т.п. По методу подготовки смеси данные горелки являются диффузионными (проскок пламени невозможен), они применяются как резервные при переводе одного топлива на другое в котлах ДКВР, в виде подовых и вертикально-щелевых.

5. Горелки с принудительной подачей воздуха и предварительной подготовкой газовоздушной смеси, или газомазутные горелки . Они имеют наибольшее распространение и обеспечивают заранее заданное количество смеси до выхода в топку. Газ подается через ряд щелей или отверстий, оси которых направлены под углом к потоку воздуха. Для интенсификации процесса смесеобразования и горения топлива воздух к месту смешения с газом подают закрученным потоком, для чего используются: лопаточные аппараты с постоянным или регулируемым углом установки лопаток, улиточная форма корпуса горелки, тангенциальная подача или тангенциальные лопаточные закручиватели.

Введение

При расчетах теплового баланса металлургических печей часто возникает задача определения тепловых потерь через печные заграждения. Минимизация тепловых потерь способствует экономии топлива и электроэнергии, снижает себестоимость продукции. Кроме того, для правильного выбора материалов при конструировании печи необходимо знать температурное поле в стенке, с целью соблюдения ограничений на рабочую температуру материалов. Поэтому при проектировании печи инженер должен просчитать несколько вариантов конструкции стенки и выбрать из них наилучший. В данной статье будет рассмотрена методика расчета тепловых потерь через плоскую многослойную стенку теплового агрегата, описано программное обеспечение для автоматизации данного расчета, а также проведен анализ зависимости тепловых потерь от различных факторов.

Теоретические основы

Печь – огражденное от окружающего пространства тепловое технологическое оборудование, в котором происходит генерация тепла из того или иного первичного вида энергии и передача тепла материалу, подвергаемому тепловой обработке в технологических целях (плавлению, нагреву, сушке, обжигу и т.д.). При этом часть выделяемой тепловой энергии расходуется на осуществление технологического процесса, а часть - бесполезно теряется, нагревая окружающую среду. Уменьшение тепловых потерь позволяет повысить эффективность работы печей, снизить потребление энергии.

Часть тепла в печах теряется путем передачи теплопроводностью через огнеупорную кладку. Теплопроводность – процесс переноса теплоты (внутренней энергии), происходящий при непосредственном соприкосновении тел (или частей тела) с различной температурой. Обмен энергией осуществляется микрочастицами, из которых состоят вещества: молекулами, атомами, свободными электронами. Плотность теплового потока теплопроводности зависит от температурного поля и коэффициента теплопроводности вещества.

Совокупность значений температуры для всех точек тела в данный момент времени называется температурным полем . При этом, если температура не изменяется во времени, поле считается стационарным, а если изменяется – нестационарным. Наиболее простым является случай одномерного стационарного температурного поля.

Теплота переносится теплопроводностью из более нагретых слоев тела к менее нагретым, т.е. в сторону убывания температуры. Количество теплоты, переданной через какую-либо поверхность в единицу времени, называется тепловым потоком Q. Тепловой поток, отнесенный к единице поверхности, характеризует плотность теплового потока q. Согласно закону Фурье плотность теплового потока пропорциональна градиенту температуры:

q = -λ grad t     (1.1)

где q – плотность теплового потока, Вт/м2
λ – коэффициент теплопроводности материала, Вт/(м*К)
grad t – градиент температуры, К/м

Множитель пропорциональности λ в уравнении (1.1) представляет собой коэффициент теплопроводности материала и характеризует способность его проводить теплоту. Наименьшие значения коэффициентов теплопроводности имеют газы, наибольшие – металлы. В конструкциях печей применяются материалы, имеющие относительно низкий коэффициент теплопроводности: огнеупорные и теплоизоляционные материалы.

Огнеупорными называют неметаллические материалы, предназначенные для использования в условиях высоких температур в тепловых агрегатах и имеющие огнеупорность не ниже 1580°С. Огнеупоры выполняют функцию удержания теплоты в ограниченном объеме рабочего пространства печи, в связи с чем они должны обладать низкой теплопроводностью и способностью выдерживать воздействие высоких температур. Многообразие условий службы обусловило необходимостью создания большого ассортимента огнеупоров с различными свойствами. Наиболее распространенные огнеупоры: шамот, динас, магнезит, хромомагнезит.

Для уменьшения теплового потока теплопроводности через кладку печей применяют теплоизоляционные материалы, т. е. материалы с низкой теплопроводностью. Примерами теплоизоляционных материалов являются асбест, диатомит, шлаковая вата, огнеупорные легковесы. При этом кладку выполняют из нескольких слоев: внутренние слои делают из материалов с высокой термической стойкостью (огнеупоры), а внешние слои – из менее стойких материалов, обладающих более низкой теплопроводностью (тепловая изоляция). При проектировании печи необходимо выбрать конструкцию стенок печи так, чтобы величина тепловых потерь была минимальна и были соблюдены ограничения по тепловой стойкости материалов.

Методика расчета

Математическая модель задачи строится на основе методики расчета потерь теплоты через ограждения тепловых установок, описанной в работе «Расчет тепловых потерь через печные ограждения» (В. Б. Кутьин, С. Н. Гущин, Б. А. Фетисов).

Суть расчета состоит в определении теплового потока через стенку при стационарном режиме с граничными условиями III рода. Принимается, что передача теплоты через стенку осуществляется теплопроводностью, а теплоотдача от наружной стенки окружающей среде осуществляется излучением и естественной конвекцией. При расчете учитывается зависимость коэффициента теплопроводности материала слоев от температуры.

Исходные данные для расчета приведены в таблице 1.

Таблица 1 – Исходные данные

Расчет осуществляется методом последовательных приближений. Первоначально задается произвольное температурное поле. Затем определяются тепловые сопротивления слоев по формуле:

Определяется коэффициент теплоотдачи от внешней поверхности по формуле:

Рассчитывается общая плотность теплового потока по формуле:

Плотность теплового потока, передаваемого через стенку теплопроводностью, определяется по формуле:

Плотность теплового потока, отдаваемого внешней поверхностью в окружающую среду, определяется по формуле:

Уточненное температурное поле определяется по формуле:

Итерационный процесс продолжается, пока относительная погрешность не становится меньше заданного значения. В завершение вычисляется величина тепловых потерь в единицу времени:

Программное обеспечение для расчета тепловых потерь

Для автоматизации расчета тепловых потерь через плоскую многослойную стенку печи была разработана . Программа обладает удобным графическим интерфейсом, позволяющим интерактивно задать требуемую конструкцию огнеупорной стенки и сохранить ее данные в файле для последующего использования. Результаты расчетов представляются в виде таблиц, графиков и тепловых карт. Данные о коэффициентах теплопроводности материалов программа берет из базы данных, которая может пополнятся пользователем.

Исследование тепловых потерь

С помощью удобных средств графического интерфейса программы можно провести анализ влияния различных факторов на тепловые потери в агрегате.

Зависимость тепловых потерь от толщины слоя футеровки

Для исследования зависимости тепловых потерь от толщины слоя футеровки было подготовлено несколько вариантов исходных данных, отличающихся только толщиной слоя футеровки. Материал футеровки – высокоглиноземистый огнеупор, материал слоя теплоизоляции – шамот-легковес. Остальные параметры приведены в таблице 2.

Конструкция стенки для исследования

Таблица 2 – Вариант исходных данных

Исследование здесь и далее проводилось с помощью встроенной в программу возможность сравнения результатов расчета. Результаты сравнения представлены на рисунке 1. Видно, что тепловые потери уменьшаются при увеличении толщины футеровки, но незначительно.

Рисунок 1 – Зависимость тепловых потерь от толщины футеровки

Зависимость тепловых потерь от толщины слоя теплоизоляции

Для исследования зависимости тепловых потерь от толщины слоя теплоизоляции было подготовлено несколько вариантов исходных данных, отличающихся только толщиной слоя теплоизоляции. Конструкция стенки приведена на рисунке 2, прочие параметры такие же, как в предыдущем исследовании (таблица 2).

Рисунок 2 – Конструкция стенки для исследования

Результаты исследования представлены на рисунке 3. Видно, что тепловые потери резко уменьшаются при увеличении толщины слоя тепловой изоляции.

Рисунок 3 – Зависимость тепловых потерь от толщины теплоизоляции

Зависимость тепловых потерь от материала тепловой изоляции

Для исследования влияния материала тепловой изоляции рассмотрим несколько вариантов конструкции стенки, отличающихся только материалом тепловой изоляции. Конструкция стенки для исследования приведена на рисунке 4, а прочие параметры см. в таблице 2.

Рисунок 4 – Конструкция стенки для исследования

Результаты исследования представлены на рисунке 5. Из диаграммы можно сделать вывод, что тепловые потери могут значительно колебаться в зависимости от материала тепловой изоляции, поэтому правильный выбор последнего очень важен при проектировании печей. Из выбранных материалов наилучшими теплоизолирующими свойствами обладает минеральная вата.

Рисунок 5 – Зависимость тепловых потерь от материала тепловой изоляции

На рисунках 6, 7 показаны более подробные результаты для двух вариантов расчета. Видно, что при использовании более совершенной тепловой изоляции снижаются не только тепловые потери, но и температура внешней поверхности стенки, что улучшает условия работы обслуживающего персонала печи.

Рисунок 6 – Результаты расчета для одного варианта исходных данных

Рисунок 7 – Результаты расчета для второго варианта исходных данных

Зависимость тепловых потерь от степени черноты внешней поверхности стенки

В большинстве случаев внешняя поверхность стенки печи представлена кожухом из малоуглеродистой стали, с той или иной степенью коррозии. Влияние кожуха на передачу тепла теплопроводностью мало, но на передачу теплоты излучением можно воздействовать, применяя покрытия с разной степенью черноты. Для исследования этого влияния рассмотрим несколько вариантов исходных данных, отличающихся только степенью черноты внешней поверхности. Конструкция исследуемой стенки приведена на рисунке 8, прочие параметры см. в таблице 2.

Рисунок 8 – Конструкция стенки для исследования

На рисунке 9, а также в таблице 3 представлены результаты исследования. На легенде указан материал кожуха и в скобках – его степень черноты. Видно, что тепловые потери уменьшаются при снижении степени черноты внешней поверхности в незначительной степени. Однако, учитывая что затраты на покраску кожуха печи меньше, чем на введение дополнительной тепловой изоляции, покрытие кожуха светлой алюминиевой краской можно рекомендовать для снижения тепловых потерь.

Таблица 3 – Зависимость тепловых потерь от степени черноты внешней поверхности

Рисунок 9 – Зависимость тепловых потерь от степени черноты внешней поверхности

Отрицательный эффект тепловой изоляции

Рассмотрим влияние тепловой изоляции на температурное поле в стенке высокотемпературной печи. Для этого рассмотрим два варианта конструкции стенки. В первом стенка состоит из слоя магнезита, а во втором – из слоя магнезита и слоя шлаковой ваты в качестве тепловой изоляции. Температурные поля для этих случаев представлены на рисунках 10, 11.

Рисунок 10 – Температурное поле при отсутствии тепловой изоляции

Рисунок 11 – Температурное поле при наличии тепловой изоляции

При отсутствии тепловой изоляции температура в рабочем слое футеровки изменяется от 472 до 1675 градусов, а при наличии слоя тепловой изоляции – от 1519 до 1698. Отсюда следует, что введение тепловой изоляции приводит к повышению температуры в слое футеровки, что должно отрицательно повлиять на ее стойкость.

Отрицательное влияние тепловой изоляции на службу футеровки особенно проявляется для высокотемпературных печей: дуговых сталеплавильных, ферросплавных и т. п. В книге «Электротермические процессы и установки» (Алиферов А. И.) отмечается, что тепловая изоляция стен и сводов дуговых сталеплавильных печей (ДСП) не получила распространения. Обычно такая изоляция приводит к увеличению температур в рабочем слое футеровки и резкому падению ее стойкости, особенно на крупных ДСП. Потери из-за простоев ДСП на ремонт футеровки намного превышают экономию от снижения расхода электроэнергии за счет уменьшения теплового потока через стенку. Поэтому тепловая изоляция стен и сводов ДСП, как правило, является экономически невыгодной. (Это положение не распространяется на конструкцию подины ДСП, для которой применяется тепловая изоляция).

В связи с неудовлетворительной стойкостью огнеупоров на крупных мощных ДСП футеровку заменяют водоохлаждаемыми панелями. Несмотря на увеличение плотности теплового потока, снимаемого с водоохлаждаемых поверхностей, по сравнению с плотностью теплового потока через футерованные поверхности расход электроэнергии существенно увеличивается только на печах небольшой емкости. Применение водоохлаждаемых панелей позволяет повысить срок службы огнеупорной футеровки.

Выводы

На основании проведенного исследования можно сделать вывод, что основными мероприятиями по снижению тепловых потерь через кладку будут следующие:

Увеличение толщины слоя тепловой изоляции
- Применение теплоизоляционных материалов с низкой теплопроводностью
- Окраска кожуха светлой алюминиевой краской (или покрытие другим материалом с низкой степенью черноты)

Для высокотемпературных печей вместо применения тепловой изоляции целесообразно использовать водоохлаждаемые панели корпуса, которые позволяют продлить срок службы футеровки и сэкономить на уменьшении простоев на ее ремонт.

Источники

1. Маркин В.П. Расчеты по теплообмену / В. П. Маркин, С. Н. Гущин, М. Д. Казяев. – Екатеринбург: УГТУ-УПИ, 1998. – 46 с.
2. Воронов Г. В. Огнеупорные материалы и изделия в промышленных печах и объектах вспомогательного назначения / Г. В. Воронов, В. А. Старцев. – Екатеринбург: УГТУ-УПИ, 2006. – 303 с.
3. Кутьин В.Б. Расчет тепловых потерь через печные ограждения / В. Б. Кутьин, С. Н. Гущин, Б. А. Фетисов. – Екатеринбург: УГТУ-УПИ, 1996. – 17с.
4. Огнеупорные материалы. Структура, свойства, испытания. Справочник / Й. Алленштейн и др.; под ред. Г. Роучка, Х. Вутнау. – М.: Интермет Инжиниринг, 2010. – 392 с.
5. Зобнин В. Ф., Теплотехнические расчеты металлургических печей / В. Ф. Зобнин, М. Д. Казяев, Б. И. Китаев и др. – М.: Металлургия, 1982. – 360 с.
6. Алиферов А. И. Электротермические процессы и установки: Учебное пособие / А. И. Алиферов и др.; под ред. В.Н. Тимофеева, Е.А. Головенко, Е.В. Кузнецова – Красноярск: Сибирский федеральный университет, 2007. – 360 с.

Этот поток тепла описывается уравнением:

Q * =

T 1− T 2

ln(R 02

/ R 01 )

2πλL

Удобной характеристикой интенсивности теплового потока для трубы, не зависящей от радиуса цилиндрической поверхности, является линейная (погонная) плотность теплового потока q л :

q л=

T − T

ln(R 02 /R 01 )

ln(R

/ R )

– линейное

тепловое сопротивление трубы.

Для многослойной трубы

q л=

T 1− T n +1

ln(R 0,i +1

/ R 0, i )

i =1

2πλi

Для процесса теплопередачи плотность теплового потока q л , проходящего через многослойную трубу, определяется уравнением:

q л=

T ср1

− Т ср2

+ ∑

0, i + 1

2π R 01α 1i =1

2πλi

R 0,i

2πR 02 α2

– внешние тепловые сопротивления.

2πR α

2πR

Если ввести обозначение:

K л=

+ ∑

0, i

2π R 01α 1i =1

2πλi

R 0,i

2πR 02 α2

то уравнение (5.6) примет вид:

q л= К л(T ср,1− Т ср,2) ,

где К л – линейный коэффициент теплопередачи [Вт/(м·К)]. Температурный напор между средой и контактирующей

поверхностью определяется уравнениями:

− T

2πR α

− T

2πR 02 α1

П Р И М Е Р Ы

1. Обмуровка топки парового котла состоит из двух слоев.

Внутренний слой выполнен из шамотного кирпича: δ 1 = 400 мм,λ 1 = 1,4 Вт/(м·К), а наружный – из красного кирпича:δ 2 = 200 мм,

λ 2 =0,58 Вт/(м·К). Температуры внутренней и

наружной поверхности

обмуровки соответственно Т 1 =

900° С и Т 3 = 90° С.

Определить потери тепла

через обмуровку и наибольшую

температуру Т 2 красного кирпича.

Р е ш е н и е.

Для определения

тепла q воспользуемся уравнением

(5.1) для n = 2,0:

T 1− T 3

900 - 90

1292 Вт/м2 .

400 × 10- 3

200 × 10- 3

λ 1λ 2

Для определения температуры на границе наружного и внутреннего слоя обмуровки (Т 2 ) воспользуемся уравнением (5.2):

T − T

Отсюда T

T −

δ 1 q = 900-

400.10- 3

× 1292= 530о С.

2. Определить потерю теплаQ [Вт] через стенку из красного

кирпича [λ =

длиной l = 5 м, высотойh = 4 м и

толщиной δ = 510 мм, если температура воздуха внутри помещения

Т ср2 = – 30° С, коэффициент теплоотдачи от наружной поверхности стенкиα 2 = 20 Вт/(м2 ·К). Вычислить также температуры на поверхностях стеныТ п1 иТ п2 .

Р е ш е н и е.

Пользуясь уравнением

(5.3) для п =

1, находим плотность

теплового потока:

T ср1− T ср2

18 - (- 30)

58,5 Вт/м2 .

510 × 10- 3

α1 λ α2

Следовательно, потери тепла через стенку будут равны:

Q = q·S = 58,5·5·4 = 1170 Вт.

Для определения температур поверхностей стенки воспользуемся уравнениями (5.4). Из них следует:

q = 18-

× 58,5= 10,4о С

q = -30 -

× 58,5= - 27,1о С.

3. Определить расход тепла q л через стенку трубы (d 1 /d 2 =

= 20/30 мм) из жаропрочной стали, коэффициент теплопроводности

которой λ = 17,4 Вт/(м·К), а температуры внешней и внутренней поверхностейТ 1 = 600° С,Т 2 = 450° С.

Р е ш е н и е.

Для определения расхода тепла через стенку трубы воспользуемся уравнением (5.5) для п = 1:

T 1− T 2

600 - 450

40750 Вт/м.

ln(R 02 /R 01 )

× 10- 2

× 3,14

× 17,4

× 10

4. Вычислить потерю тепла с 1 м неизолированного трубо-

диаметром d 1 /d 2 = 300/330 мм, проложенного на открытом

воздухе, если внутри трубы протекает вода со средней температурой Т ср1 = 90° С. Температура окружающего воздухаТ ср2 = – 15° С. Коэффициент теплопроводности материала трубыλ = 50 Вт/(м·К), коэффициент теплоотдачи от воды к стенке трубыα 1 = 1000 Вт/(м2 ·К) и от трубы к окружающему воздухуα 2 = 12 Вт/м2 ·К. Определить также температуры на внутренней и внешней поверхностях трубы.

Р е ш е н и е.

Потери тепла с 1,0 м

трубопровода

находим воспользовав-

шись уравнением (5.6) для n = 1:

q л=

T ср1− Т ср2

2πR α

2πR α

90 - (- 15)

16,5 × 10- 2

2 × 3,14× 15× 10−2 × 103

2 × 3,14× 50

15 × 10- 2

2 × 3,14× 16,5× 10- 2 × 12

652 Вт/м.

× 652

89,8о С,

ср1 2π R 01 α 1

2π × 15× 10- 2 × 103

а из (5.5) находим:

ln(R

/ R ) =89,8 -

16,5 × 10- 2

× 652= 89,6o С.

2 π × 50

15 × 10- 2

З А Д А Ч И

Определить коэффициент теплопроводности

кирпичной

стенки толщиной

δ = 390 мм, если температура на

внутренней

поверхности стенки Т 1 = 300° С и на наружнойТ 2 = 60° С.

Потери тепла через стенку

q = 178 Вт/м2 .

5.2. Через плоскую металлическую стенку топки котла

толщиной δ = 14 мм от газов к кипящей воде проходит удельный тепловой потокq = 25000 Вт/м2 . Коэффициент теплопроводности сталиλ = 50 Вт/(м·К).

Определить перепад температур на поверхностях стенки.

5.3. Определить удельный тепловой поток через бетонную стенку толщиной δ = 300 мм, если температуры на внутренней и наружных поверхностях стенки соответственно равныТ 1 = 15° С и

Т 2 = – 15° С.

Коэффициент теплопроводности бетона λ = 1,0 Вт/(м·К).

5.4. Определить потерю тепла q через свод пламенной печи,

5.5. Определить расход тепла Q [ВТ ] через кирпичную стенку толщинойδ = 250 мм на площади 3× 5 м2 , если температуры

поверхностей стенки

T 1=

и Т 2

а коэффициент

теплопроводности кирпича λ = 1,16 BT / (м·К).

5.6. Вычислить плотность теплового потока q

через плоскую

однородную станку, толщина

значительно меньше шири-

ны и высоты, если

выполнена:

а) из стали λ ст = 40 Вт/(м·К); из

λ б = 1,1 Вт/(м·К); в) из

диатомитового кирпича λ к = 0,11 Вт/(м·К). Во всех случаях толщина

Внутренний слой выполнен из огнеупорного кирпича толщиной δ 1 = 350 мм, а наружный из красного кирпича толщинойδ 2 = 250 мм.

Определить температуру на внутренней поверхности стенки Т 1 и на внутренней стороне красного кирпичаТ 2 , если на наружной стороне температура стенкиТ 3 = 90° С, а потеря тепла через 1 м2 поверхности стенки равна 1 кВт. Коэффициенты теплопроводности огнеупорного и красного кирпича соответственно равны:

кирпича и диатомитовой засыпки между ними. Диатомитовая засыпка имеет толщину δ 2 = 50 мм иλ 2 = 0,14 Вт/(м·К), а красный кирпич имеетδ 3 = 250 мм иλ 3 = 0,7 Вт/(м·К).

Во сколько раз необходимо увеличить толщину красного кирпича для того, чтобы обмуровка печи без диатомитовой засыпки имела такое же внутреннее термическое сопротивление, как и с засыпкой?

5.9. Определить поток тепла q через поверхность стальной стенки котла [δ 1 =20 мм,λ 1 = 58 Вт/(м·К)], покрытую слоем накипи

[δ 2 = 2 мм,λ 2 = 1,16 Вт/(м·К)]. Наибольшая температура поверхности стенки равна 250° С, а наименьшая температура накипи 100° С. Определить также наибольшую температуру накипи.

5.10. Вычислить тепловой поток через 1 м2 чистой поверхности нагрева парового котла и температуры на поверхностях стенки, если заданы следующие величины: температура дымовых газовТ ср1 = =1000° С, температура кипящей водыT ср2 = 200° С, коэффициенты теплоотдачи от газов к стенкеα 1 = 100 Вт/(м2 ·К) и от стенки к кипящей водеα 2 = 5000 Вт/(м2 ·К). Коэффициент теплопроводности материала стенкиλ = 50 Вт/(м·K) и толщина стенкиδ = 12 мм.

5.11. Решить задачу 10 при условии, что в процессе эксплуатации поверхность нагрева парового котла со стороны дымовыx газов покрылась слоем сажи толщиной δ с = 1 мм

[ λ с = 0,08 Вт/(м·К)], а со стороны воды – слоем накипи толщинойδ н = 2 мм [λ н = 0,8 Вт/(м·К)]. Вычислить тепловой поток через 1 м2

загрязненной поверхности нагрева и температуры на поверхностях соответствующих слоев Т п1 , Т п2 , Т п3 иТ п4 .

Сравнить результаты расчета с ответом задачи 10 и определить уменьшение тепловой нагрузки q (в %).

5.12. Определить плотность теплового потока q [Вт/м2 ] через кирпичную стенку толщиной 510 мм с коэффициентом теплопроводностиλ к = 0,8 Вт/(м·К), покрытую снаружи слоем теплоизоляции

теплоотдачи от наружной поверхности α 2 = 20 Вт/(м2 ·К). Вычислить также температуры на поверхностях стеныТ п1 , Т п2 и на поверхности слояТ п3 .

5.13. Змеевики пароподогревателя выполнены из труб жароупорной стали диаметром d 1 /d 2 = 32/42 мм с коэффициентом

Вычислить удельный тепловой поток через стенку на единицу длины трубы q л .

5.14. Железобетонная дымовая труба покрыта с внутренней стороны слоем огнеупорной футеровки λ1 = 0,5 Вт/(м·К).

Определить толщину футеровки δ 1 и температуру наружной поверхности трубыТ 3 при условии, чтобы потери тепла не превышалиq л = 2000 Вт/м, а наибольшие температуры футеровки и бетона не превышалиТ 1 = 421° С иТ 2 = 200° С.

5.15. Стальной паропровод покрыт двумя слоями тепловой изоляции одинаковой толщины [δ = 50 мм, λ2 = 0,07 Вт/(м·К), λ3 = 0,14Вт/(м·К)].

Определить потери тепла q л [Вт/м] и температуруТ 3 на границе соприкосновения этих слоев. Повторить эти расчеты при условии, что изоляция первого слоя установлена на место второго.

Температура Т 4 на внешней

поверхности в обоих случаях одина-

кова и равна 50° С.

Определить температуру на границах слоев трехслойной

изоляции трубы. Внутренний диаметр трубы d = 245 мм.

слоев и коэффициенты теплопроводности изоляционных

материалов

соответственно

равны: δ1 = 100 мм, δ2 = 20 мм, δ3 = 30

мм, λ1 =

0,03 Вт/(м·К),

0,06 Вт/(м·К)

и λ3 = 0,12 Вт/(м·К).

Температура

внутренней

поверхности трубопровода 250° С,

наружной поверхности изоляции 65° С.

Определить

тепловой поток

через поверхность

паропровода (d 1 /d 2 =140/150), изолированного двумя слоями тепловой

а на наружной поверхности изоляции T 4 = 55° С.

Как изменится потеря тепла через изолированную стенку,

изоляционные слои поменять местами?

5.18. Трубопровод диаметром d 1 /d 2

44/51 мм, по которому

течет масло, покрыт

толщиной δ2 = 80

Коэффициенты теплопроводности материала трубопровода и бетона

масла к стенке α1 = 100 Вт/(м2 ·К) и от поверхности бетона к воздуху

α2 = 10 Вт/(м2 ·К).

Определить потери тепла с 1 м трубопровода, покрытого бетоном. 5.19. Плоский алюминиевый лист толщиной 0,8 мм пластин-

водности стенки λ = 203,5 Вт/(м·К). Определить удельный тепловой поток, переданный через стенку.

5.20. Оценить тепловые потери с 1,0 м трубопровода диаметром d 1 /d 2 = 150/165 мм, покрытого слоем изоляции толщиной δ1 = 60 мм, если трубопровод проложен на воздухе сT ср2 = – 15° С и по нему течет вода со средней температуройT ср1 = 90° С. Коэффициенты теплопроводности материала трубы и изоляции соответственно равны λ1 = 50 Вт/(м·К), λ2 = 0,15 Вт/(м·К), а коэффициенты теплоотдачи от поверхности изоляции к окружающему воздуху α2 = 8 Вт/(м2 ·К), а от воды к стенке трубы α1 = 1000 Вт/(м2 ·К). Вычислить также

температуру на внешней поверхности трубы и внешней поверхности изоляции.

5.21. Определить необходимую мощность радиаторов отопления аудитории, если кладка ее наружной стены (8 × 4,5 м, δ = 500 мм) выполнена из красного кирпича (λ = 0,7 Вт/м·К), а температуры поверхностейТ ] = 12° С иТ 2 = −15° С. (Окна условно отсутствуют). Какова глубина промерзания стены.

5.22. Окно в аудитории имеет сдвоенные рамы с зазором между стеклами 60 мм. Вычислить тепловые потери через оконный проем 5 × 3 м, если толщина стекол δ = 4 мм, а температуры их соот-

ветствующих поверхностей Т 1 = 10°C иТ 4 = −18° С.λ ст = 0,74 и

λ возд = 0,0244 Вт/м·К.

5.23 Вычислить линейную плотность теплового потока через стенку змеевика из труб (d 1 /d 2 = 40 / 47 мм) жароупорной стали

(λ = 16,5 Вт/(м·К)), если температуры ее внутренней и наружной поверхностей составляют 400° С и 600° С соответственно. При каком значении радиуса трубы температура в стенке равна 500° С.

5.24. Стальной паропровод (d 2 = 100 иδ = 5 мм) проложен на открытом воздухеТ ср2 = 20° С. Тепловая изоляция паропровода выполнена из двух слоев - минеральной ваты и асбеста (δ мв =δ ас = = 50 мм; λмв = 0,047 и λас = 0,11 Вт/м·К).

Вычислить потери тепла с погонного метра паропровода и температуры на его границах, если температура пара Т ср1 = 300°C, а коэффициенты теплоотдачи от пара к внутренней поверхности паропровода и с внешней поверхности второго слоя изоляции к воздуху соответственно 90 и 15 Вт/(м2 ·К).

Б.Я. Каменецкий, ведущий научный сотрудник, ГНУ ВИЭСХ, г. Москва

В слоевых топках с циклической загрузкой топлива обмуровка кроме основной функции снижения потерь тепла играет также еще одну особую роль. В силу своей тепловой инерции обмуровка достаточно долгое время сохраняет свою температуру, что способствует прогреву и воспламенению фракций топлива. При загрузке свежей порции топливо закрывает почти всю поверхность слоя, вследствие чего температура поверхности слоя резко снижается, что видно из рис. 1. Температура газов в топке также снижается, и в этот интервал времени в системе топочного теплообмена температура поверхности обмуровки оказывается самой высокой. Излучение от поверхности обмуровки на слой в эти моменты способствует прогреву и верхнему зажиганию топлива .

С целью исследования тепловых режимов, определения тепловых потоков на внутренней стороне и потерь тепла проведены измерения температурных режимов топочных обмуровок. Работы осуществлялись на отопительном котле с ручной слоевой топкой, у которого обмуровка из шамотного кирпича толщиной 380 мм является одновременно постаментом для двух пакетов котельных секций. Высота постамента - 1,2 м, в том числе 0,5 м - над колосниковой решеткой.

Измерения температуры проводились с помощью зонда - трубки из кварцевого стекла диаметром 8,5 мм с ХА-термопарами, перемещаемой в сквозном отверстии боковой стены обмуровки. В котле сжигали каменный кузнецкий уголь марки 2СС, топочный цикл (время между соседними загрузками) составлял 10 мин.

Результаты измерений нестационарной температуры обмуровки при тепловой нагрузке решетки 0,55 МВт/м 2 (расход топлива - 72 кг/ч) представлены на рис. 2.

Температура на наружной поверхности обмуровки на высоте 0,4 м от уровня колосниковой решетки составила 60 О С, а на внутренней поверхности - 800 О С. По толщине кладки температура снижается к наружной поверхности непропорционально, что свидетельствует о снижении теплового потока через обмуровку в результате растечек (перетоков) тепла в вертикальном направлении. Растечки тепла возникают вследствие неравномерного прогрева обмуровки по высоте: температура кирпича в зольнике ниже температуры колосников и составляет 60-70 О С, а на верхнем торце кладки, соприкасающемся с котельными секциями, - 80-100 О С.

На наружной поверхности обмуровки тепловой поток, рассчитанный как по условиям конвективной теплоотдачи при естественной конвекции воздуха q=α ек (t н -t в), так и по теплопроводности обмуровки q=α*dt/dx дает значение 0,5 кВт/м 2 , а на внутренней поверхности - q=2,7 кВт/м 2 . Тепло вые потери с боковой и нижней поверхности обмуровки составляют значительную величину - 4% от мощности котла 220 кВт даже при толщине обмуровки 380 мм.

Еще большей величины достигают потери тепла в окружающую среду при снижении толщины обмуровки. Например, в топке теплогенератора с шурующей планкой мощностью 2 МВт без тепловоспринимающих экранов неэкранированная кирпичная обмуровка высотой 2 м имеет толщину только 250 мм. Для обеспечения ее надежной работы пришлось увеличить избыток воздуха в топке до значения α=2,6. Тем не менее, температура внутренней поверхности обмуровки составила 1100 О С на уровне 1,8 м от колосниковой решетки и 900 О С на уровне 0,4 м (рис. 3). Средние тепловые потоки через обмуровку возросли до 2,2 кВт/м 2 на уровне 0,4 м, и до 2,6 кВт/м 2 на уровне 1,8 м. В этом случае различие температур по высоте обмуровки, достигает 200 О С на внутренней поверхности и снижается по толщине, что приводит к перетокам тепла от верхних слоев к нижним.

Интересные результаты зафиксированы при остановке этого теплогенератора. При прекращении подачи топлива и продолжающейся работе вентилятора тепловыделение в топке уменьшается, что приводит к быстрому охлаждению обмуровки с внутренней поверхности и монотонному снижению ее температуры (рис. 4). Через 25 мин тепловой поток, направленный из топки на поверхность обмуровки, снижается до 0 и затем меняет свое направление. При дальнейшем охлаждении топки и снижении температуры внутренней поверхности обмуровки возникает максимум в распределении температур по толщине обмуровки. Температура слоев внутри обмуровки даже повышается, и максимум температур перемещается внутрь. Причина такой деформации температурного поля обмуровки связана с более интенсивным охлаждением внутренней поверхности, особенно нижних слоев, приводящим к большим перетокам тепла от верхних центральных слоев. Через 45 мин они еще остаются нагретыми до 300 О С.

Выводы

1. В котлах со слоевыми топками тепловая инерционность обмуровки способствует прогреву и воспламенению загружаемого топлива.

2. Тепловые потери с боковой и нижней поверхности обмуровки (шамотный кирпич) составляют значительную величину - 4% от мощности котла 220 кВт даже при толщине обмуровки 380 мм.

3. Вследствие неравномерного прогрева обмуровки по высоте возникают растечки тепла. В случае прекращения подачи топлива при работающем вентиляторе это приводит к тому, что максимум температур перемещается внутрь обмуровки.

Литература

1. Каменецкий Б.Я. О применимости Нормативного метода расчета топочного теплообмена к слоевым топкам // Теплоэнергетика. 2006. № 2. С. 58-60.

В котлах, как и других отопительных установках, используется не все тепло, которое выделяется при сгорании топлива. Довольно большая часть тепла уходит вместе с продуктами горения в атмосферу, часть теряется через корпус котла и небольшая часть теряется из-за химического или механического недожога. Под механическим недожогом понимаются потери тепла из-за провала или уноса зольных элементов с несгоревшими частицами.

Тепловой баланс котла — это распределение тепла, которое выделяется при сжигании топлива, на полезное тепло, используемое по назначению, и на потери тепла, которые происходят при работе теплового оборудования.

Схема основных источников теплопотерь.

В качестве эталонной величины прихода тепла принимают ту величину, которая могла выделиться при низшей теплоте сгорания всего топлива.

Если в котле используется твердое или жидкое топливо, то тепловой баланс составляют в килоджоулях относительно каждого килограмма израсходованного топлива, а при использовании газа — относительно каждого кубического метра. И в том, и в другом случае тепловой баланс может быть выражен в процентном отношении.
Уравнение теплового баланса
Уравнение теплового баланса котла при сжигании газа можно выразить следующей формулой:

Параметры оптимальной нагрузки обеспечивают высокую производительность отопительной системы.

  • QT=Q1+Q2+Q3+Q4+Q5+Q6;
  • где QT — общее количество термического тепла, которое поступило в топку котла;
  • Q1 — полезное тепло, которое используется для нагрева теплоносителя или получения пара;
  • Q2 — потери тепла, которое уходит вместе с продуктами горения в атмосферу;
  • Q3 — потери тепла, связанные с неполным химическим сгоранием;
  • Q4 — потери тепла из-за механического недожога;
  • Q5 — потери тепла через стенки котла и труб;
  • Q6 — потери тепла из-за удаления золы и шлака из топки.

Как видно из уравнения теплового баланса, при сжигании газообразного или жидкого топлива отсутствуют величины Q4 и Q6, которые характерны только для твердого топлива.

Если же тепловой баланс выразить в процентах от общей теплоты (QT=100%), то данное уравнение принимает вид:

  • 100=q1+q2+q3+q4+q5+q6.

Если разделить каждый член уравнения теплового баланса из левой и правой части на QT и умножить его на 100, то получится тепловой баланс в процентах от общего поступившего количества тепла:

  • q1=Q1*100/QT;
  • q2=Q2*100/QT и так далее.

Если в котле использовано жидкое или газообразное топливо, то потери q4 и q6 отсутствуют, уравнение теплового баланса котла в процентах принимает вид:

  • 100=q1+q2+q3+q5.

Следует рассмотреть каждый вид тепла и уравнения подробнее.

Тепло, которое было использовано по назначению (q1)

Схема принципа работы стационарного теплогенератора.

Теплом, которое используется для прямого назначения, считается то, которое тратится на нагрев теплоносителя, либо получение пара с заданным давлением и температурой, которая считается от температуры поступившей в экономайзер котла воды. Наличие экономайзера значительно увеличивает величину полезного тепла, так как позволяет в большей степени использовать тепло, которое содержится в продуктах горения.

При работе котла увеличивается упругость и давление пара внутри него. От этого процесса зависит и температура кипения воды. Если в обычных условиях температура кипения воды равна 100°С, то при повышении давления пара этот показатель увеличивается. При этом пар, который находится в одном котле вместе с кипящей водой, называют насыщенным, а температура кипения воды при данном давлении насыщенного пара называется температурой насыщения.

Если же в паре отсутствуют капельки воды, то он называется сухим насыщенным паром. Массовая доля сухого насыщенного пара во влажном паре составляет степень сухости пара, выраженную в процентах. В паровых котлах влажность пара колеблется от 0 до 0,1%. Если же влажность превышает данные показатели, котел работает не в оптимальном режиме.

Полезное тепло, которое расходуется на нагрев 1 л воды от нулевой температуры до температуры кипения при постоянном давлении, называется энтальпией жидкости. Тепло, расходуемое на перевод 1 л кипящей жидкости в парообразное состояние, называется скрытой теплотой парообразования. Сумма этих двух показателей составляет общее теплосодержание насыщенного пара.

Потери тепла с продуктами горения, уходящими в атмосферу (q2)
Данный тип потерь в процентном отношении показывает разность энтальпии уходящих газов и холодного воздуха, поступающего в котел. Формулы определения этих потерь отличаются при использовании разных типов топливных веществ.

Сжигание мазута приводит к потерям тепла из-за химического недожога.

При использовании твердого топлива потери q2 составляют:

  • q2=(Iг-αг*Iв)(100-q4)/QT;
  • где Iг — энтальпия уходящих в атмосферу газов (кДж/кг), αг — коэффициент избытка воздуха, Iв — энтальпия воздуха, необходимого для горения, при температуре его поступления в котел (кДж/кг).

Показатель q4 вводится в формулу потому, что должно учитываться тепло, выделяемое при физическом сжигании 1 кг топлива, а не для 1 кг топлива, поступившего в топку.

При использовании газообразного или жидкого топлива эта же формула имеет вид:

  • q2=((Iг-αг*Iв)/QT)*100%.

Потери тепла с уходящими газами зависят от состояния самого отопительного котла и режима работы. К примеру, при ручной загрузке топлива в топку потери тепла этого типа значительно увеличиваются из-за периодического притока свежего воздуха.

Потери тепловой энергии с уходящими в атмосферу дымовыми газами увеличиваются при увеличении их температуры и количества расходуемого воздуха. К примеру, температура уходящих в атмосферу газов при отсутствии экономайзера и воздухоподогревателя составляет 250-350°С, а при их присутствии — всего 120-160°С, что в несколько раз повышает величину полезно используемого тепла.

Схема обвязки котла.

С другой стороны, недостаточная температура уходящих продуктов горения может привести к образованию конденсата водяных паров на поверхностях нагрева, что также влияет на образование ледяных наростов на дымовых трубах в зимнее время.

Количество расходуемого воздуха зависит от типа горелки и режима работы. Если оно увеличено по сравнению с оптимальным значением, то это приводит к высокому содержанию воздуха в уходящих газах, который дополнительно уносит часть тепла. Это неизбежный процесс, который нельзя прекратить, но можно довести до минимальных значений. В современных реалиях коэффициент расхода воздуха не должен превышать 1,08 для горелок с полной инжекцией, 0,6 — для горелок с неполной инжекцией воздуха, 1,1 — для горелок с принудительной подачей и смешением воздуха и 1,15 — для диффузионных горелок с внешним смешением. К увеличению потерь тепла с уходящим воздухом приводит наличие дополнительных подсосов воздуха в топке и трубах котла. Поддержание расхода воздуха на оптимальном уровне позволяет снизить величину q2 до минимума.

Чтобы минимизировать значение q2, необходимо своевременно чистить внешнюю и внутреннюю поверхность котла, следить за отсутствием накипи, которая снижает передачу тепла от сжигаемого топлива к теплоносителю, соблюдать требования к воде, используемой в котле, следить за отсутствием повреждений в котле и соединениях труб, чтобы не допустить притока воздуха. Использование дополнительных электрических поверхностей нагрева в газовом тракте расходует электроэнергию. Однако экономия от оптимального расхода топлива будет гораздо выше стоимости потребляемой электроэнергии.

Потери тепла от химического недожога топлива (q3)

Данный вид схемы обеспечивает защиту системы отопления от перегрева.

Главным показателем неполного химического сгорания топлива является наличие в отработанных газах окиси углерода (при использовании твердого топлива) или окиси углерода и метана (при сжигании газообразного топлива). Потери тепла от химического недожога равны тому теплу, которое могло бы выделиться при сжигании этих остатков.

Неполное сгорание топлива зависит от недостатка воздуха, плохого смесеобразования топлива с воздухом, снижения температуры внутри котла или при соприкосновении пламени горящего топлива со стенками котла. Однако излишнее повышение количества поступающего кислорода не только не гарантирует полное сжигание топлива, но может нарушить работу котла.

Оптимальное содержание окиси углерода на выходе из топки при температуре 1400°С должно составлять не более 0,05% (в пересчете на сухие газы). При таких значения теплопотери от недожога составят от 3 до 7% в зависимости от топлива. Недостаток кислорода может довести это значение до 25%.

Но необходимо добиваться таких условий, чтобы химический недожог топлива отсутствовал. Необходимо обеспечивать оптимальное поступление воздуха в топку, поддерживать постоянную температуру внутри котла, добиться тщательного перемешивания топливной смеси с воздухом. Наиболее экономичная работа котла достигается при содержании углекислого газа в продуктах горения, уходящих в атмосферу, на уровне 13-15% в зависимости от вида топлива. При избытке поступления воздуха содержание двуокиси углерода в уходящем дыме может снизиться на 3-5%, однако потери тепла при этом увеличатся. При нормальной работе отопительного оборудования потери q3 равняются 0-0,5% для пылеугольных и 1% для слоевых топок.

Потери тепла от физического недожога (q4)
Данный вид потерь происходит из-за того, что несгоревшие частицы топлива проваливаются через колосники в зольник или уносятся вместе с продуктами горения через трубу в атмосферу. Потеря тепла от физического недожога напрямую зависит от конструкции котла, расположения и формы колосников, силы тяги, состояния топлива и его спекаемости.

Наиболее значительны потери от механического недожога при слоевом сжигании твердого топлива и излишне сильной тяге. В таком случае большое количество мелких несгоревших частиц уносится вместе с дымом. Особенно хорошо это проявляется при использовании неоднородного топлива, когда в нем чередуются мелкие и крупные куски топлива. Горение каждого слоя получается неоднородным, так как мелкие куски сгорают быстрее и уносятся с дымом. В образовавшиеся промежутки поступает воздух, который охлаждает большие куски топлива. Они при этом покрываются шлаковой коркой и не выгорают полностью.

Потери тепла при механическом недожоге составляют обычно около 1% для пылеугольных топок и до 7,5% для слоевых топок.

Потери тепла непосредственно через стенки котла (q5)
Данный вид потерь зависит от формы и конструкции котла, толщины и качества обмуровки как котла, так и дымоотводных труб, наличия теплоизолирующего экрана. Кроме того, большое влияние на потери оказывает конструкция самой топки, а также наличие дополнительных поверхностей нагрева и электрических нагревателей в дымовом тракте. Эти потери тепла увеличиваются при наличии сквозняков в помещении, где стоит отопительное оборудование, а также от количества и длительности открытия топки и лючков системы. Снижение количества потерь зависит от правильной обмуровки котла и наличия экономайзера. Благоприятно на снижении потерь тепла сказывается теплоизоляция труб, по которым отработанные газы выводятся в атмосферу.

Потери тепла из-за удаления золы и шлака (q6)
Данный тип потерь характерен только для твердого топлива в кусковом и пылевидном состоянии. При его недожоге частицы неостывшего топлива проваливаются в зольник, откуда удаляются, унося с собой часть тепла. Эти потери зависят от зольности топлива и системы шлакоудаления.

Тепловой баланс котла — это величина, которая показывает оптимальность и экономичность работы вашего котла. По величине теплового баланса можно определиться с мерами, которые помогут экономить сжигаемое топливо и увеличить эффективность отопительного оборудования.