Виртуальные лабораторные работы по физике. Лабораторные работы по физике

Лабораторная работа № 1

Движение тела по окружности под действием силы тяжести и упругости.

Цель работы: проверить справедливость второго закона Ньютона для движения тела по окружности под действием нескольких.

1)груз, 2)нить, 3)штатив с муфтой и кольцом, 4) лист бумаги, 5)Измерительная лента, 6)часы с секундной стрелкой.

Теоретическое обоснование

Экспериментальная установка состоит из груза, привязанного на нити к кольцу штатива (рис.1). На столе под маятником располагают лист бумаги, на котором нарисована окружность радиусом 10 см. Центр О окружности находится на вертикали под точкой подвеса К маятника. При движении груза по окружности, изображённой на листе, нить описывает коническую поверхность. Поэтому такой маятник называют коническим.

Спроецируем (1) на координатные оси X и Y .

(Х), (2)

(У), (3)

где - угол, образуемый нитью с вертикалью.

Выразим из последнего уравнения

и подставим в уравнение (2). Тогда

Если период обращения Т маятника по окружности радиусом К известен из опытных данных, то

период обращения можно определить, измерив время t , за которое маятник совершает N оборотов:

Как видно из рисунка 1,

, (7)

Рис.1

Рис.2

где h =OK – расстояние от точки подвеса К до центра окружности О .

С учётом формул (5) – (7) равенство (4) можно представить в виде

. (8)

Формула (8) – прямое следствие второго закона Ньютона. Таким образом, первый способ проверки справедливости второго закона Ньютона сводиться к экспериментальной проверке тождественности левой и правой частей равенства(8).

Сила сообщает маятнику центростремительное ускорение

С учётом формул (5) и (6) второй закон Ньютона имеет вид

. (9)

Сила F измеряется с помощью динамометра. Маятник оттягивают от положения равновесия на расстояние, равное радиусу окружности R , и снимают показания динамометра (рис.2) Масса груза m предполагается известной.

Следовательно, ещё один способ проверки справедливости второго закона Ньютона сводится к экспериментальной проверке тождественности левой и правой частей равенства(9).

    порядок выполнения работы

    Соберите экспериментальную установку(см. рис. 1), выбирая длину маятника около 50 см.

    На листе бумаги начертите окружность радиусом R = 10 c м.

    Лист бумаги расположите так, чтобы центр окружности находился под точкой подвеса маятника по вертикали.

    Измерьте расстояние h между точкой подвеса К и центром окружности О сантиметровой лентой.

h =

5.Приведите в движение конический маятник вдоль начерченной окружности с постоянной скоростью. Измерьте время t , в течение которого маятник совершает N = 10 оборотов.

t =

6. Вычислите центростремительное ускорение груза

    Вычислите

Вывод.

Лабораторная работа № 2

Проверка закона Бойля-Мариотта

Цель работы: экспериментально проверить закон Бойля – Мариотта путем сравнения параметров газа в двух термодинамических состояниях.

Оборудование, средства измерения : 1) прибор для изучения газовых законов, 2) барометр (одни на класс), 3) штатив лабораторный, 4) полоска миллиметровой бумаги размеров 300*10 мм, 5) измерительная лента.

Теоретическое обоснование

Закон Бойля – Мариотта определяет взаимосвязь давления и объема газа данной массы при постоянной температуре газа. Чтобы убедиться в справедливости этого закона или равенства

(1)

достаточно измерить давление p 1 , p 2 газа и его объем V 1 , V 2 в начальном и конечном состоянии соответственно. Увеличение точности проверки закона достигается, если вычесть из обеих частей равенства (1) произведение . Тогда формула (1) будет иметь вид

(2)

или

(3)

Прибор для изучения газовых законов состоит из двух стеклянных трубок 1 и 2 длиной 50 см, соединенных друг с другом резиновым шлангом 3 длиной 1 м, пластинки с зажимами 4 размером 300*50*8 мм и пробки 5 (рис. 1, а). К пластинке 4 между стеклянными трубками прикреплена полоска миллиметровой бумаги. Трубку 2 снимают с основания прибора, опускают вниз и укрепляют в лапке штатива 6. Резиновый шланг заполнен водой. Атмосферное давление измеряется барометром в мм рт. ст.

При фиксации подвижной трубки в начальном положении (рис. 1, б) цилиндрический объем газа в неподвижной трубке 1 может быть найден по формуле

, (4)

где S – площадь поперечного сечения трубки 1ю

Начальное давление газа в ней, выраженное в мм рт. ст., складывается из атмосферного давления и давления столба воды высотой в трубке 2:

мм.рт.ст. (5).

где - разность уровней воды в трубках (в мм.). В формуле (5) учтено, что плотность воды в 13,6 раза меньше плотности ртути.

При подъеме вверх трубки 2 и фиксации ее в конечном положении (рис. 1, в) объем газа в трубке 1 уменьшается:

(6)

где - длина воздушного столба в неподвижной трубке 1.

Конечное давление газа находится по формуле

мм. рт. ст. (7)

Подстановка начальных и конечных параметров газа в формулу (3) позволяет представить закон Бойля – Мариотта в виде

(8)

Таким образом, проверка справедливости закона Бойля – Мариотта сводится к экспериментальной проверке тождественности левой Л 8 и правой П 8 частей равенства (8).

Порядок выполнения работы

7.Измерьте разность уровней воды в трубках.

    Поднимите еще выше подвижную трубку 2 и зафиксируйте ее (см. рис. 1, в).

    Повторите измерения длины столба воздуха в трубке 1 и разности уровней воды в трубках. Запишите результаты измерений.

10.Измерьте атмосферное давление барометром.

11.Вычислите левую часть равенства (8).

    Вычислите правую часть равенства (8).

13. Проверьте выполнение равенства (8)

ВЫВОД:

Лабораторная работа № 4

Исследование смешанного соединения проводников

Цель работы : экспериментально изучить характеристики смешанного соединения проводников.

Оборудование, средства измерения: 1) источник питания, 2) ключ, 3) реостат, 4) амперметр, 5) вольтметр, 6) соединительные провода, 7) три проволочных резистора сопротивлениями 1 Ом, 2 ОМ и 4 ОМ.

Теоретическое обоснование

Во многих электрических цепях используется смешанное соединение проводников, являющееся комбинацией последовательного и параллельного соединений. Простейшее смешанное соединение сопротивлений = 1 Ом, = 2 Ом, = 4 Ом.

а) Резисторы R 2 и R 3 соединены между собой параллельно, поэтому сопротивление между точками 2 и 3

б) Кроме того, при параллельном соединении суммарная сила тока , втекающего в узел 2, равна сумме сил токов, вытекающих из него.

в) Учитывая, что сопротивления R 1 и эквивалентное сопротивление соединены последовательно.

, (3)

а общее сопротивление цепи между точками 1 и 3.

.(4)

Электрическая цепь для изучения характеристик смешанного соединения проводников состоит из источника питания 1, к которому через ключ 2 подключены реостат 3, амперметр 4 и смешанное соединение трех проволочных резисторов R 1, R 2 и R 3. Вольтметром 5 измеряют напряжение между различными парами точек цепи. Схема электрической цепи приведена на рисунке 3. Последующие измерения силы тока и напряжения в электрической цепи позволят проверить соотношения (1) – (4).

Измерения силы тока I , протекающего через резистор R 1, и равности потенциалов на нем позволяет определить сопротивление и сравнить его с заданным значением.

. (5)

Сопротивление можно найти из закона Ома, измерив вольтметром разность потенциалов :

.(6)

Этот результат можно сравнить со значением , полученным из формулы (1). Справедливость формулы (3) проверяется дополнительным измерением с помощью вольтметра напряжения (между точками 1 и 3).

Это измерение позволит также оценить сопротивление (между точками 1 и 3).

.(7)

Экспериментальные значения сопротивлений, полученных по формулам (5) – (7), должны удовлетворять соотношению 9;) для данного смешанного соединения проводников.

Порядок выполнения работы

    Соберите электрическую цепь

3. Запишите результат измерения силы тока .

4. Подключите вольтметр к точкам 1 и 2 и измерьте напряжение между этими точками.

5.Запишите результат измерения напряжения

6. Рассчитайте сопротивление .

7. Запишите результат измерения сопротивления = и сравните его с сопротивлением резистора =1 Ом

8. Подключите вольтметр к точкам 2 и 3 и измерьте напряжения между этими точками

    проверьте справедливость формул (3) и (4).

Ом

Вывод:

Мы экспериментально изучили характеристики смешанного соединения проводников.

Проверим:

    Дополнительное задание. Убедиться в том, что при параллельном соединении проводников справедливо равенство:

Ом

Ом

2 курс.

Лабораторная работа № 1

Изучение явления электромагнитной индукции

Цель работы : доказать экспериментально правило Ленца, определяющее направление тока при электромагнитной индукции.

Оборудование, средства измерения: 1) дугообразный магнит, 2) катушка-моток, 3) миллиамперметр, 4) полосовой магнит.

Теоретическое обоснование

Согласно закону электромагнитной индукции (или закону Фарадея-Максвелла), ЭДС электромагнитной индукции E i в замкнутом контуре численно равна и противоположна по знаку скорости изменения магнитного потока Ф через поверхность, ограниченную этим контуром.

E i = - Ф ’

Для определения знака ЭДС индукции (и соответственно направления индукционного тока) в контуре это направление сравнивается с выбранным направлением обхода контура.

Направление индукционного тока (так же как и величина ЭДС индукции) считается положительным, если оно совпадает с выбранным направлением обхода контура, и считается отрицательным, если оно противоположно выбранному направлению обхода контура. Воспользуемся законом Фарадея – Максвелла для определения направления индукционного тока в круговом проволочном витке площадью S 0 . Предположим, что в начальной момент времени t 1 =0 индукция магнитного поля в области витка равна нулю. В следующий момент времени t 2 = виток перемещается в область магнитного поля, индукция которого направлена перпендикулярно плоскости витка к нам (рис.1 б)

За направление обхода контура выберем направление по часовой стрелке. По правилу буравчика вектор площади контура будет направлен от нас перпендикулярно площади контура.

Магнитный поток пронизывающий контур в начальном положении витка, равен нулю (=0):

Магнитный поток в конечном положении витка

Изменение магнитного потока в единицу времени

Значит, ЭДС индукции, согласно формуле (1), будет положительной:

E i =

Это значит, что индукционный ток в контуре будет направлен по часовой стрелке. Соответственно, согласно правилу буравчика для контурных токов, собственная индукция на оси такого витка будет направлена против индукции внешнего магнитного поля.

Согласно правилу Ленца, индукционный ток в контуре имеет такое направление, что созданный им магнитный поток через поверхность ограниченную контуром препятствует изменению магнитного потока, вызвавшего этот ток.

Индукционный ток наблюдается и при усилении внешнего магнитного поля в плоскости витка без его перемещения. Например, при в двигании полосового магнита в виток возрастает внешнее магнитное поле и магнитный поток, его пронизывающий.

Направление обхода контура

Ф 1

Ф 2

ξ i

(знак)

(напр.)

I А

B 1 S 0

B 2 S 0

-(B 2 –B 1)S 0 <0

15 мА

Порядок выполнения работы

1. Катушку – маток 2 (см. рис. 3) подключите к зажимам миллиамперметра.

2. Северный полюс дугообразного магнита внесите в катушку вдоль ее оси. В последующих опытах полюса магнита перемещайте с одной и той же стороны катушки, положение которой не изменяется.

Проверьте соответствие результатов опыта с таблицей 1.

3. Удалите из катушки северный полюс дугообразного магнита. Результаты опыта представьте в таблице.

Направление обхода контура измерить показатель преломления стекла с помощью плоскопараллельной пластинки.

Оборудование, средства измерения: 1) плоскопараллельная пластинка со скошенными гранями, 2) линейка измерительная, 3) угольник ученический.

Теоретическое обоснование

Метод измерения показателя преломления с помощью плоскопараллельной пластинки основан на том, что луч, прошедший плоскопараллельную пластинку, выходит из нее параллельно направлению падения.

Согласно закону преломления показатель преломления среды

Для вычисления и на листе бумаги проводят две параллельные прямые AB и CD на расстоянии 5-10 мм друг от друга и кладут на них стеклянную пластинку так, чтобы ее параллельные грани были перпендикулярны этим линиям. При таком расположении пластинки параллельные прямые не смещаются (рис.1, а).

Располагают глаз на уровне стола и, следя за прямыми AB и CD сквозь стекло, поворачивают пластинку вокруг вертикальной оси против часовой стрелки (рис. 1, б). Поворот осуществляют до тех пор, пока луч QC не будет казаться продолжением BM и MQ .

Для обработки результатов измерений обводят карандашом контуры пластинки и снимают ее с бумаги. Через точку M проводят перпендикуляр O 1 O 2 к параллельным граням пластинки и прямую MF .

Затем на прямых ВМ и МF откладывают равные отрезки МЕ 1 =МL 1 и опускают с помощью угольника из точек Е 1 и L 1 перпендикуляры L 1 L 2 и Е 1 Е 2 на прямую О 1 О 2 . Из прямоугольных треугольников L

а) сначала ориентируйте параллельные грани пластинки перпендикулярно АВ и СD . Убедитесь, что параллельные линии при этом не смещаются.

б)расположите глаз на уровне стола и, следя за линиями АВ и СD сквозь стекло, поворачивайте пластинку вокруг вертикальной оси против часовой стрелки до тех пор, пока луч QC не будет казаться продолжением ВМ и МQ .

2. Обведите карандашом контуры пластинки, после чего снимите ее с бумаги.

3. Через точку М (см. рис. 1,б) проведите с помощью угольника перпендикуляр О 1 О 2 к параллельным граням пластинки и прямую МF (продолжение МQ ).

4. С центром в точке М проведите окружность произвольного радиуса, отметьте на прямых ВМ и МF точки L 1 и Е 1 (МЕ 1 =МL 1)

5. Опустите с помощью угольника перпендикуляры из точек L 1 и Е 1 на прямую О 1 О 2 .

6. Измерьте линейкой длину отрезков L 1 L 2 и Е 1 Е 2.

7. Рассчитайте показатель преломления стекла по формуле 2.

Наглядная физика предоставляет педагогу возможность находить наиболее интересные и эффективные методы обучения, делая занятия интересными и более насыщенными.

Главным преимуществом наглядной физики, является возможность демонстрации физических явлений в более широком ракурсе и всестороннее их исследование. Каждая работа охватывает большо й объем учебного материала, в том числе из разных разделов физики. Это предоставляет широкие возможности для закрепления межпредметных связей, для обобщения и систематизации теоретических знаний.

Интерактивные работы по физике следует проводить на уроках в форме практикума при объяснении нового материала или при завершении изучения определенной темы. Другой вариант – выполнение работ во внеурочное время, на факультативных, индивидуальных занятиях.

Виртуальная физика (или физика онлайн ) это новое уникальное направление в системе образования. Ни для кого не секрет, что 90% информация поступают к нам в мозг через зрительный нерв. И не удивительно, что пока человек сам не увидит, он не сможет четко уяснить природу тех или иных физических явлений. Поэтому процесс обучения обязательно должен подкрепляться наглядными материалами. И просто замечательно, когда можно не только увидеть статичную картинку изображающую какое-либо физическое явление, но и посмотреть на это явление в движении. Данный ресурс позволяет педагогам в легкой и непринужденной форме, наглядно показать не только действия основных законов физики, но и поможет провести онлайн лабораторные работы по физике по большинству разделов общеобразовательной программы. Так например, как можно на словах объяснить принцип действия p-n перехода? Только показав анимацию этого процесса ребенку, ему сразу всё становится понятным. Или можно наглядно показать процесс перехода электронов при трении стекла о шелк и после этого у ребенка уже будет меньше вопросов о природе этого явления. Помимо этого, наглядные пособия охватывают практически все разделы физики. Так например, хотите объяснить механику? Пожалуйста, тут вам анимации показывающие второй закон Ньютона, закон сохранения импульса при соударении тел, движение тел по окружности под действием сил тяжести и упругости и т.д. Хотите изучать раздел оптики, нет ничего проще! Наглядно показаны опыты по измерению длины световой волны с помощью дифракционной решетки, наблюдение сплошного и линейчатых спектров испускания, наблюдение интерференции и дифракции света и многие другие опыты. А как же электричество? И этому разделу уделено не мало наглядных пособий, так например есть опыты по изучению закона Ома для полной цепи, исследованию смешанного соединения проводников, электромагнитная индукция и т.д.

Таким образом процесс обучения из «обязаловки», к которой мы все с вами привыкли, превратится в игру. Ребенку будет интересно и весело разглядывать анимации физических явлений и это не только упростит, но и ускорит процесс обучения. Помимо всего прочего может удастся ребенку дать даже больше информации, чем он мог бы принять при обычной форме обучения. К тому же многие анимации могут полностью заменить те или иные лабораторные приборы , таким образом это идеально подходить для многих сельских школ, где к сожалению не всегда можно встретить даже электрометр Брауна. Да что там говорить, многих приборов нет даже в обычных школах крупных городов. Возможно введя такие наглядные пособия в обязательную программу образования, после окончания школы мы будем получать людей интересующихся физикой, которые в итоге станут молодыми учеными, некоторые из которых способны будут совершить великие открытия! Таким образом будет возрождена научная эра великих отечественных ученых и наша страна вновь, как и в советские времена, создаст уникальные технологии обгоняющие свое время. Поэтому я считаю надо популяризировать такие ресурсы как можно больше, сообщать о них не только педагогам, но и самим школьникам, ведь многим из них будет интересно изучить физические явления не только на уроках в школе, но и дома в свободное время и этот сайт дает им такую возможность! Физика онлайн это интересно, познавательно, наглядно и легко доступно!

Как выполнить и оформить лабораторную работу

При изучении физики учащиеся должны научиться выполнять и правильно оформлять лабораторные работы. Главное на первых уроках физики научить учащихся знакомиться с основными приемами проведения физических измерений и правилами обработки результатов. При этом должны быть выработаны определенные навыки, что является предпосылкой дальнейшей успешной работы на уроках физики. Целью лабораторных работ является более глубокое осознание учащимися физических явлений и законов. Эта задача может быть успешно решена только в том случае, если лабораторные работы выполняются с достаточным пониманием сущности исследуемых явлений. Поэтому домашняя подготовка к выполнению лабораторной работы является одним из важнейших этапов.

Подготовка к лабораторной работе.

При подготовке к работе рекомендуется придерживаться следующего плана.

    Прочитать описание работы от начала до конца, не задерживаясь на выводе формул. Задача первого прочтения состоит в том, чтобы выяснить, какова цель лабораторной работы, какой физический закон или явление изучается в данной работе и каким методом она проводится.

    Прочитать по учебнику материал, относящийся к данной работе. Разобрать вывод формулы по учебнику (если это необходимо). Найти ответы на контрольные вопросы, приведенные в конце описания работы (если они имеются).

    Рассмотреть по учебнику устройство и принцип работы приборов, которые будут использоваться в работе.

    Выяснить, какие физические величины и с какой точностью будут непосредственно измеряться и каковы их наименования.

    Рассмотреть в описании лабораторной работы в учебнике принципиальную схему эксперимента и таблицу, в которую будут заноситься результаты измерений. Если таблицы в работе нет, составить ее.

    Продумать, какой окончательный результат и вывод должен быть получен в данной лабораторной работе.

Выполнение лабораторной работы.

При выполнении работы вначале следует ознакомиться с приборами. Нужно установить их соответствие описанию, выполнить рекомендованную в описании прибора последовательность действий по подготовке прибора к работе. Определить цену деления шкалы прибора и его погрешность измерений. Далее следует провести предварительный опыт с тем, чтобы пронаблюдать качественно изучаемое явление, оценить, в каких пределах находятся измеряемые величины. После проведенной подготовки можно приступать к измерениям. Следует помнить, что всякое измерение, если только это возможно сделать, должно выполняться больше, чем один раз.

Производимые по приборам измерения записываются сразу же после их выполнения в том виде как они считаны со шкалы прибора - без каких-либо пересчетов на множитель шкалы (при наличии таковой) или систему единиц. Единицы измерений (множитель) должны быть записаны в заголовке соответствующей таблицы или в столбце с результатами измерений. Все записи при выполнении лабораторной работы должны вестись исключительно в тетради для лабораторных работ (можно и на черновике или специально подготовленном бланке (протоколе) для черновых записей. Данный бланк является черновиком, а тетрадь - чистовиком. Ее следует вести самым аккуратнейшим образом. В тетради для лабораторных работ оформляется выполненная работа согласно указаний по ее выполнению.

Оформление лабораторной работы.

Неграмотно оформленные рабочие записи порядка выполнения лабораторной работы и результаты измерений может свести на нет всю проделанную работу.

Правильно оформлять в тетради выполнение лабораторной работы научиться нетрудно, нужно только внимательно выполнять некоторые элементарные требования. Записи результатов при выполнении лабораторной работы допускается делать как в тетради, так и на отдельных подписанных листках.

При выполнении лабораторной работы очень важно сразу же записывать всё проделанное. Все результаты прямых измерений следует записывать немедленно и без какой либо обработки только ручкой. Из этого правила нет исключений. Записи должны быть такими, чтобы их без особых затруднений можно было понять спустя некоторое время. Примеры обычных ошибок - неясность и двусмысленность. Буквы и цифры необходимо писать отчётливо.

Привычка к исправлениям цифр - враг ясности. Не заставляйте своего учителя, проверяющего ваши записи в тетради, да и себя тоже, ломать голову над исправленными цифрами.

Не проводите никаких, даже самых простейших вычислений в уме, прежде чем записать результат измерений.

Не забудьте сделать в тетради рисунок или схему установки когда это необходимо. Есть древняя китайская пословица: "Один рисунок лучше тысячи слов". Рисунок и надписи к нему нужно делать карандашом, чтобы можно было воспользоваться ластиком для исправлений ошибок.

Если есть возможность провести предварительные расчёты без погрешностей, то это нужно сделать, чтобы убедиться в правильности выполнения эксперимента. Если в работе возможно построить график, это необходимо сделать. На графиках по горизонтали обычно откладывается причина, а по вертикали следствие.

Итак, правильно оформленная должна содержать в себе следующие разделы.

Название работы и её №.

Оборудование.

Данные для расчёта погрешности измерений.

Цель работы (можно и не писать. Она сформулирована в учебнике).

Рисунок или схема установки с используемыми в работе символами измеряемых величин (при необходимости).

Порядок выполнения работы.

Результаты всех прямых измерений.

а) записи результатов измерений не должны допускать различных толкований;

б) кажущиеся ошибочными записи зачёркивать так, чтобы их при необходимости можно было прочитать;

в) не допускать подтёртостей и замалёвываний записей, не допускать переписывания выполнения работы. Это приводит к возможной потере информации и исключает вероятность подделки результатов.

Результаты измерений и вычислений (без погрешностей) в виде таблиц.

Графики.

Вывод (должен соответствовать цели работы). В выводе указать о погрешности измерения.

Критерии оценивания лабораторной работы.

Оценка «5» ставится, если учащийся выполняет работу в полном объеме с соблюдение6м необходимой последовательности проведения опытов и измерений, самостоятельно и рационально монтирует необходимое оборудование, все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов, соблюдает требования правил техники безопасности, правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, правильно выполняет анализ погрешностей.

Оценка «4» ставится, если выполнены все требования к оценке «5», но было допущено два- три недочета, не более одной негрубой ошибки и одного недочета

Оценка «3» ставится, если работа выполнена не полностью, но объем выполненной ее части позволяет получить правильный результат и вывод, или если в ходе проведения опыта и измерения были допущены ошибки

Оценка «2» ставится, если работа выполнена не полностью, или объем выполненной части работы не позволяет сделать правильных выводов, или если опыты, измерения, вычисления, наблюдения производились неправильно.

Во всех случаях оценка снижается, если ученик не соблюдал правила техники безопасности!

Грубые ошибки:

незнание определений основных понятий, законов, правил, основных положений теории, формул, общепринятых символов обозначения физических величин, единиц их измерения;

неумение выделять в ответе главное;

неумение применять знания для решения задач и объяснения физических явлений, неправильно сформулированные вопросы задачи или неверные объяснения хода ее решения, незнание приемов решения задач, аналогичных ранее решенным в классе, ошибки, показывающие неправильное понимание условия задачи или неправильное истолкования решения;

неумение читать и строить графики и принципиальные схемы;

неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты, или использовать полученные данные для выводов;

небрежное отношение к лабораторному оборудованию и измерительным приборам;

неумение определять показание измерительного прибора;

нарушение требований правил безопасного труда при выполнении эксперимента.

Негрубые ошибки:

неточность формулировок, определений, понятий, законов, теорий, вызванные неполнотой охвата основных признаков определяемого понятия, ошибки, вызванные несоблюдением условий проведения опыта или измерений;

ошибки в условных обозначениях на принципиальных схемах, неточности чертежа, графиков, схем;

пропуск или неточное написание наименований единиц измерения физических величин;

нерациональный выбор хода решения.

Погрешности измерений.

Выполнение лабораторных и практических работ по физике связано с измерением различных физических величин и последующей обработкой их результатов. Измерением называется операция сравнения величины исследуемого объекта с величиной единичного объекта (или Измерение - нахождение значения физической величины опытным путем с помощью средств). Так, например, за единицу длины принят метр, и в результате измерения длины некоторого отрезка определяется, сколько метров содержится в этом отрезке. В физике и технике не существует абсолютно точных приборов и других средств измерения, следовательно, нет и абсолютно точных результатов измерения. Однако измерять все же приходится. На сколько можно доверять полученным результатам?

Принято различать прямые и косвенные измерения . При прямом измерении производится непосредственное сравнение величины измеряемого объекта с величиной единичного объекта. Другими словами - это такое измерение, в котором результат находится непосредственно в процессе считывания со шкалы (или показаний цифрового прибора). В результате искомая величина находится прямо по показаниям измерительного прибора, например, объем - по уровню жидкости в измерительном цилиндре (мензурке), вес - по растяжению пружины динамометра и т.д. Погрешность прямого измерения (обозначается значком ) зависит только от качества измерительного прибора. В учебнике по физике для седьмого класса автором А.В. Перышкиным вводится понятие погрешности измерений (стр. 11 учебника): погрешность измерений ∆а равна половине цены деления измерительного прибора и, что при записи измеряемой величины, с учетом погрешности, следует пользоваться формулой

А = арезультат измерений + ∆а.

В 10 классе это понятие формулируется иначе: погрешность прямого измерения складывается из инструментальной погрешности прибора ∆и А и погрешности отсчета ∆о А . Вероятно, автор учебника 7 класса использовал так называемое правило "ничтожных погрешностей": обе составляющее погрешности прямого измерения следует учитывать лишь в том случае, если они близки друг к другу. Любым из этих слагаемых можно пренебречь, если оно не превосходит 1/3 - 1/4 от другого.

Инструментальная

погрешность

+

Линейка ученическая

До 30 см

1 мм

1 мм

Линейка чертежная

До 50 см

1 мм

0,2 мм

Линейка инструментальная (стальная)

До 30 см

1 мм

0,1 мм

Линейка демонстрационная

100 см

1 см

0,5 см

Лента измерительная

150 см

0,5 см

0,25 см

Измерительный цилиндр

До 250 мл

1 мл

1 мл

Штангенциркуль

150 мм

0,1 мм

0,05 мм

Микрометр

25 мм

0,01 мм

0,005 мм

Динамометр учебный

4 Н

0,1 Н

0,05 Н

Секундомер механический

0-30 мин

0,2 с

1 с за 30 мин

Секундомер электронный

100 с

0,01 с

0,01 с

Барометр-анероид

720-780 мм.рт.ст

1 мм.рт.ст.

3 мм.рт.ст.

Термометр спиртовой

0-100 оС

1 оС

1 оС

Амперметр школьный

2 А

0,1 А

0,05 А

Вольтметр школьный

6 В

0,2 В

0,1

Наверное, следовало бы в 7 классе ввести понятие погрешности измерения иначе: погрешность измерений ∆а равна инструментальной погрешности измерительного прибора. Так как в проводимых измерениях на лабораторных работах в 7 классе используются пусть простые, но все же измерительные приборы (линейка, измерительная лента, измерительный цилиндр, динамометр и т.д.),

Инструментальная погрешность измерительных приборов, например, для линейных размеров обычно указывается на самом приборе в виде абсолютной погрешности или в виде цены деления. Если на приборе этого нет, то она принимается равной половине цены наименьшего деления. Как правило, цена деления шкалы приборов согласована с инструментальной погрешностью. Для приборов с цифровым отсчетом измеряемых величин метод вычисления погрешности приводится в паспортных данных прибора. Если эти данные отсутствуют, то в качестве абсолютной погрешности принимается значение, равное половине последнего цифрового разряда индикатора. Погрешность отсчета ∆оА связана с тем, что указатель прибора не всегда точно совпадает с делениями шкалы (например, стрелка на шкале динамометра, вольтметра). В этом случае погрешность отсчета не превосходит половины цены деления шкалы и погрешность отсчета принимают также за половину цены деления ∆о А = с/2, где с - цена деления шкалы измерительного прибора. Погрешность отсчета надо учитывать только тогда, когда при измерении указатель прибора находится между нанесенными на шкалу прибора делениями. Совсем не имеет смысла говорить и тем более пытаться учитывать погрешности отсчета у цифровых приборов. Обе составляющее погрешности прямого измерения следует учитывать лишь в том случае, если они близки друг к другу.
В школьной лабораторной практике методы математической статистики при измерении практически не используются. Поэтому при выполнении лабораторных работ необходимо определять максимальные погрешности измерения физических величин.

Однако гораздо чаще измерения проводят косвенно, например, площадь прямоугольника определяют по измерению длин его сторон, - по измерениям массы и объема и т.д. Во всех этих случаях искомое значение измеряемой величины получается путем соответствующих расчетов. Косвенное измерение - определение значения физической величины по формуле, связывающей ее с другими физическими величинами, определяемыми прямыми измерениями.

Результат всякого измерения всегда содержит некоторую погрешность. Поэтому в задачу измерений входит не только нахождение самой величины, но также и оценка допущенной при измерении погрешности. Если оценка погрешности результата физического измерения не сделана, то можно считать, что измеряемая величина вообще неизвестна, поскольку погрешность может, вообще говоря, быть того же порядка, что и сама измеряемая величина или даже больше. В этом состоит отличие физических измерений от бытовых или технических, в которых в результате практического опыта заранее известно, что выбранный измерительный инструмент обеспечивает приемлемую точность, а влияние случайных факторов на результат измерений пренебрежимо мало по сравнению с ценой деления применяемого прибора.

Погрешности физических измерений принято подразделять на систематические, случайные и грубые. Систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Систематические погрешности скрыты в неточности самого инструмента и неучтенных факторах при разработке метода измерений. Обычно величина систематической погрешности прибора указывается в его техническом паспорте. Что же касается метода измерений, то здесь все зависит от квалификации экспериментатора. Хотя суммарная систематическая погрешность во всех измерениях, проводимых в рамках данного эксперимента, будет приводить всегда либо к увеличению, либо к уменьшению правильного результата, знак этой погрешности неизвестен. Поэтому на эту погрешность нельзя внести поправку, а приходится приписывать эту погрешность окончательному результату измерений.

Случайные погрешности обязаны своим происхождением ряду причин, действие которых неодинаково в каждом опыте и не может быть учтено. Они имеют различные значения даже для измерений, выполненных одинаковым образом, то есть носят случайный характер. Допустим, что сделано n повторных измерений одной и той же величины. Если они выполнены одним и тем же методом, в одинаковых условиях и с одинаковой степенью тщательности, то такие измерения называются равноточными.

Третий тип погрешностей, с которыми приходится иметь дело - грубые погрешности или промахи. Под грубой погрешностью измерения понимается погрешность, существенно превышающая ожидаемую при данных условиях. Она может быть сделана вследствие неправильного применения прибора, неверной записи показаний прибора, ошибочно прочитанного отсчета, не учета множителя шкалы и т.п.

Вычисление погрешностей.

Введем обозначения: A,B, .... - физические величины. Aпр - приближенное значение физической величины , т.е. значение, полученное путем прямых или косвенных измерений. Напомним, что абсолютной погрешностью приближенного числа называется разность между этим числом (Аизмеренное) и его точным значением (Аистинное) , причем ни точное значение, ни абсолютная погрешность принципиально неизвестны и подлежат оценке по результатам измерений.

А = Аизм - Аист

Относительной погрешностью (εа) приближенного числа (измерения физической величины) называется отношение абсолютной погрешности приближенного числа к самому этому числу.

εА = ∆А /Аизм

Максимальная абсолютная погрешность прямых измерений складывается из абсолютной инструментальной погрешности и абсолютной погрешности отсчета при отсутствии других погрешностей:
∆A = ∆иA + ∆иA

иA - абсолютная инструментальная погрешность , определяемая конструкцией прибора (погрешность средств измерения). Находится по таблицам.
∆иA -
абсолютная погрешность отсчета (получающаяся от недостаточно точного отсчета показаний средств измерения), она равна в большинстве случаев половине цены деления; при измерении времени - цене деления секундомера или часов.

Абсолютную погрешность измерения обычно округляют до одной значащей цифры (∆A ~ 0.18 = 0.20). Численное значение результата измерений округляют так, чтобы его последняя цифра оказалась в том же разряде, что и цифра погрешности (А ~ 12,323 = 12.30).

Формулы расчета относительных погрешностей для различных случаев приведены в таблице.

Как пользоваться этой таблицей?

Пусть, например, физическая величина ρ рассчитывается по формуле:

ρ = m/V . Значения m и V найдены прямыми измерениями во время проведения лабораторной работы. Их абсолютные погрешности соответственно равны ∆m = ∆ и m + ∆оm и ∆V = ∆ и V + ∆оV . GjПодставляя полученные значения ∆m и ∆V, m и V в формулу, получим приближенное значение ∆ρ = ∆m/∆V. Подставив аналогично m и V в формулу, получим значение ρпр . Далее следует рассчитать относительную погрешность результата ερ . Это можно сделать, воспользовавшись соответствующей формулой из четвертой строки таблицы. ερ = εm + εV = ∆m/m + ∆V/V

Поскольку из-за наличия случайных погрешностей результаты измерений по своей природе представляют собой тоже случайные величины, истинного значения ρист измеряемой величины указать нельзя. Однако можно установить некоторый интервал значений измеряемой величины вблизи полученного в результате измерений значения ρ пр , в котором с определенной вероятностью содержится ρист . ρпр - ∆ρ ≤ ρист ≤ ρпр + ∆ρ.

Тогда окончательный результат измерений плотности можно записать в следующем виде:

ρист = ρпр ± ∆ρ

Задача наилучшей оценки значения ρист и определения пределов интервала по результатам измерений является предметом математической статистики. Но это отдельный разговор…

О числовых расчетах

При вычислениях обычно пользуются микрокалькулятором, в результате на индикаторе в ответе автоматически получается столько цифр, сколько их вмещается на нем. При этом создается впечатление об избыточной точности результата. В то же время результаты измерений являются приближенными числами. Напомним (см., например, М.Я.Выгодский, Справочник по элементарной математике), что для приближенных чисел отличают запись 2,4 от 2,40, запись 0,02 от 0,0200 и т.д. Запись 2,4 означает, что верны только цифры целых и десятых, истинное же значение числа может быть, например, 2,43 или 2,38. Запись 2,40 означает, что верны и сотые доли, истинное число может быть 2,403 или 2,398, но не 2,421 и не 2,382. То же отличие проводится и для целых чисел. Запись 382 означает, что все цифры верны. Если же за последнюю цифру ручаться нельзя, то число округляется, но записывается не в виде 380, а в виде 38·10. Запись же 380 означает, что последняя цифра (ноль) верна. Если в числе 4720 верны лишь первые две цифры, его нужно записать в виде 47·102 или 4,7·103. В тех случаях, когда численные значения физических величин много больше либо много меньше единицы, их принято записывать в виде числа между 1 и 10, умноженного на соответствующую степень десяти.

Число знаков в окончательном результате устанавливается по следующим правилам. Сначала ограничивается число значащих цифр погрешности. Значащими цифрами называются все верные цифры числа кроме нулей, стоящих впереди числа. Например, в числе 0,00385 три значащие цифры, в числе 0,03085 четыре значащие цифры, в числе 2500 - четыре, в числе 2,5·103 - две. Погрешность записывается всегда с одной или двумя значащими цифрами. При этом руководствуются следующими соображениями.

Величина случайной погрешности, полученная из обработки результатов некоторого числа измерений, сама является случайным числом, т.е., если проделать это же число измерений еще раз, то, вообще говоря, будет получен не только другой результат для измеряемой величины, но и другая оценка для погрешности. Поскольку погрешность оказывается случайным числом, то, пользуясь законами математической статистики, можно и для нее найти доверительный интервал. Соответствующие расчеты показывают, что даже при довольно большом числе измерений этот доверительный интервал оказывается весьма широким, т.е. величина погрешности оценивается достаточно грубо. Так при 10 измерениях относительная погрешность у погрешности превышает 30%. Поэтому для нее следует приводить две значащие цифры, если первая из них 1 или 2, и одну значащую цифру, если она равна или больше 3. Это правило легко понять, если учесть, что 30% от 2 составляет 0,6, а от 4 уже 1,2. Таким образом, если погрешность выражается, например, числом, начинающимся с цифры 4, то это число содержит неточность (1,2), превышающую единицу первого разряда.

После того, как погрешность записана, значение результата должно быть округлено таким образом, чтобы его последняя значащая цифра была того же разряда, что и у погрешности. Пример правильного представления окончательного результата: t = (18.7± 1.2)·102с.

Правила построения графиков

Графики строятся на миллиметровой бумаге, на которую прежде всего наносятся координатные оси. На концах осей указываются откладываемые физические величины и их размерности. Затем на оси наносят масштабные деления так, чтобы расстояние между делениями составляло 1, 2, 5 единиц (или 0.1, 0.2, 0.5, или 10, 20, 50 и т.д.). Обычно порядок масштаба, т.е. 10±n выносится на конец оси. Например, для пути, пройденного телом, вместо 1000, 1100, 1200 и т.д. метров около масштабных делений пишут 1.0, 1.1, 1.2, а в конце оси физическую величину обозначают как S, 103 м или S·10-3, м. Точка пересечения осей не обязательно должна соответствовать нулю по каждой из осей. Начало отсчета по осям и масштабы следует выбирать так, чтобы график занял всю координатную плоскость. После построения осей на миллиметровку наносят экспериментальные точки. Их обозначают маленькими кружками, квадратиками и т.д. Если на одной координатной плоскости строится несколько графиков, то для точек выбираются разные обозначения. Затем от каждой точки вверх, вниз и вправо, влево откладывают отрезки, соответствующие погрешностям точек в масштабах осей. Если погрешность по одной из осей (или по обеим осям) оказывается слишком малой, то предполагается, что она отображается на графике размером самой точки.

Экспериментальные точки, как правило, не соединяются между собой ни отрезками прямой, ни произвольной кривой. Вместо этого строится теоретический график той функции (линейной, квадратичной, экспоненциальной, тригонометрической и т.д.), которая отражает проявляющуюся в данном опыте известную или предполагаемую физическую закономерность, выраженную в виде соответствующей формулы. В лабораторном практикуме встречаются два случая: проведение теоретического графика преследует цель извлечения из эксперимента неизвестных параметров функции (тангенса угла наклона прямой, показателя экспоненты и т.д.) либо делается сравнение предсказаний теории с результатами эксперимента.

В первом случае график соответствующей функции проводится "на глаз" так, чтобы он проходил по всем областям погрешности возможно ближе к экспериментальным точкам. Существуют математические методы, позволяющие провести теоретическую кривую через экспериментальные точки в определенном смысле наилучшим образом. При проведении графика "на глаз" рекомендуется пользоваться зрительным ощущением равенства нулю суммы положительных и отрицательных отклонений точек от проводимой кривой.

Во втором случае график строится по результатам расчетов, причем расчетные значения находятся не только для тех точек, которые были получены в опыте, а с некоторым шагом по всей области измерений для получения плавной кривой. Нанесение на миллиметровку результатов расчетов в виде точек является рабочим моментом -после проведения теоретической кривой эти точки с графика убираются. Если в расчетную формулу входит уже определенный (или заранее известный) экспериментальный параметр, то расчеты проводятся как со средним значением параметра, так и с его максимальным и минимальным (в пределах погрешности) значениями. На графике в этом случае изображается кривая, полученная со средним значением параметра, и полоса, ограниченная двумя расчетными кривыми для максимального и минимального значений параметра.

Правила построения графиков рассмотрим на следующем примере. Предположим, что в опыте исследовался закон движения некоторого тела. Тело двигалось прямолинейно, и задачей опыта было измерение расстояния, которое тело проходит за различные промежутки времени. После проведения некоторого числа опытов и обработки результатов измерений были найдены средние значения измеряемых величин и их погрешности. Требуется изобразить результаты опыта, представленные в таблице, в виде графика и найти из графика тела, предполагая, что движение равномерное.

Таблица. Зависимость пути, пройденного телом, от времени

Виртуальные лабораторные работы по физике.

Важное место в формировании исследовательской компетенции учащихся на уроках физики отводится демонстрационному эксперименту и фронтальной лабораторной работе. Физический эксперимент на уроках физики формирует у учащихся накопленные ранее представления о физических явлениях и процессах, пополняет и расширяет кругозор учащихся. В ходе эксперимента, проводимого учащимися самостоятельно во время лабораторных работ, они познают закономерности физических явлений, знакомятся с методами их исследования, учатся работать с физическими приборами и установками, то есть учатся самостоятельно добывать знания на практике. Таким образом, при проведении физического эксперимента у учеников формируется исследовательская компетенция.

Но для проведения полноценного физического эксперимента, как демонстрационного, так и фронтального необходимо в достаточном количестве соответствующее оборудование. В настоящее время школьные лаборатории по физике не достаточно оснащены приборами по физике и учебно-наглядными пособиями для проведения демонстрационных и фронтальных лабораторных работ. Имеющееся оборудование не только пришло в негодность, оно также морально устарело.

Но даже при полной укомплектованности лаборатории физики требуемыми приборами реальный эксперимент требует очень много времени на подготовку и его проведение. При этом из-за значительных погрешностей измерений, временных ограничений урока реальный эксперимент часто не может служить источником знаний о физических законах, так как выявленные закономерности имеют лишь приближенный характер, зачастую правильно рассчитанная погрешность превышает сами измеряемые величины. Таким образом, провести полноценный лабораторный эксперимент по физике при имеющихся в школах ресурсах затруднительно.

Ученики не могут представить некоторые явления макромира и микромира, так как отдельные явления, изучаемые в курсе физики средней школы невозможно наблюдать в реальной жизни и, тем более, воспроизвести экспериментальным путем в физической лаборатории, например, явления атомной и ядерной физики и т.д.

Выполнение отдельных экспериментальных заданий в классе на имеющемся оборудовании происходит при заданных определенных параметрах, изменить которые невозможно. В связи с этим невозможно проследить все закономерности изучаемых явлений, что также сказывается на уровне знаний учащихся.

И, наконец, невозможно научить учащихся самостоятельно добывать физические знания, то есть сформировать у них исследовательскую компетенцию, применяя только традиционные технологии обучения. Живя в информационном мире, невозможно проводить процесс обучения без использования информационных технологий. И на наш взгляд на это есть свои причины:

    Главная задача образования в данный момент – формирование у учащихся умений и навыков самостоятельного приобретения знаний. Информационные технологии дают такую возможность.

    Ни для кого не секрет, что в настоящий момент у учащихся пропал интерес к учебе, а в частности к изучению физики. А применение компьютера повышает и стимулирует интерес учащихся к получению новых знаний.

    Каждый ученик – индивидуален. А использование компьютера в обучении позволяет учитывать индивидуальные особенности ученика, дает большой выбор самому ученику в подборе собственного темпа изучения материала, закрепления и оценивания. Оценивание результатов усвоения темы учеником через выполнение тестов на компьютере убирает личностное отношение учителя к ученику.

В связи с этим, появляется идея: Использовать информационные технологии на занятиях по физике, а именно при выполнении лабораторных работ.

Если проводить физический эксперимент и фронтальные лабораторные работы, используя виртуальные модели посредством компьютера, то можно скомпенсировать недостаток оборудования в физической лаборатории школы и, таким образом, научить учащихся самостоятельно добывать физические знания в ходе физического эксперимента на виртуальных моделях, то есть появляется реальная возможность формирования необходимой исследовательской компетенции у учащихся и повышения уровня обученности учащихся по физике.

Применение компьютерных технологий на уроках физики позволяет формирование практических навыков так, как виртуальная среда компьютера позволяет оперативно видоизменить постановку опыта, что обеспечивает значительную вариативность его результатов, а это существенно обогащает практику выполнения учащимися логических операций анализа и формулировки выводов результатов эксперимента. Кроме того можно многократно проводить испытание с изменяемыми параметрами, сохранять результаты и возвращаться к своим исследованиям в удобное время. К тому же, в компьютерном варианте можно провести значительно большее количество экспериментов. Работа с этими моделями открывает перед учащимися огромные познавательные возможности, делая их не только наблюдателями, но и активными участниками проводимых экспериментов.

Ещё один позитивный момент в том, что компьютер предоставляет уникальную, не реализуемую в реальном физическом эксперименте, возможность визуализации не реального явления природы, а его упрощенной теоретической модели, что позволяет быстро и эффективно находить главные физические закономерности наблюдаемого явления. Кроме того, учащийся может одновременно с ходом эксперимента наблюдать построение соответствующих графических закономерностей. Графический способ отображения результатов моделирования облегчает учащимся усвоение больших объемов полученной информации. Подобные модели представляют особую ценность, так как учащиеся, как правило, испытывают значительные трудности при построении и чтении графиков. Также необходимо учитывать, что далеко не все процессы, явления, исторические опыты по физике учащийся способен представить себе без помощи виртуальных моделей (например, диффузию в газах, цикл Карно, явление фотоэффекта, энергию связи ядер и т.д.). Интерактивные модели позволяют ученику увидеть процессы в упрощенном виде, представить себе схемы установок, поставить эксперименты вообще невозможные в реальной жизни.

Все компьютерные лабораторные работы выполняются по классической схеме:

Теоретическое освоение материала;

Изучение готовой компьютерной лабораторной установки или создание на компьютере модели реальной лабораторной установки;

Выполнение экспериментальных исследований;

Обработка результатов эксперимента на компьютере.

Компьютерная лабораторная установка, как правило, представляет собой компьютерную модель реальной экспериментальной установки, выполненную средствами компьютерной графики и компьютерного моделирования. В некоторых работах имеются лишь схема лабораторной установки и ее элементы. В этом случае, прежде чем приступить к выполнению лабораторной работы, лабораторную установку необходимо собрать на компьютере. Выполнение экспериментальных исследований представляет собой непосредственный аналог эксперимента на реальной физической установке. При этом реальный физический процесс моделируется на компьютере.

Особенности ЭОР « Физика. Электричество. Виртуальная лаборатория».

В настоящее время существует достаточно много электронных средств обучения, в которых имеются разработки виртуальных лабораторных работ. Мы в своей работе использовали электронное средство обучения «Физика. Электричество . Виртуальная лаборатория » (далее - ЭСО предназначено для поддержки учебного процесса по теме «Электричество» в общеобразовательных учебных заведениях (рис.1).

Рис.1 ЭСО.

Данное пособие создано группой ученых Полоцкого государственного университета. В использовании данного ЭСО имеются несколько преимуществ.

    Простая установка программы.

    Простой пользовательский интерфейс.

    Приборы, полностью копируют настоящие.

    Большое количество устройств.

    Соблюдаются все реальные правила работы с электрическими цепями.

    Возможность проведения достаточно большого количества лабораторных работ при разных условиях.

    Возможность проведения работ, в том числе для демонстрации последствий не достижимых или нежелательных в натурном эксперименте (перегорание предохранителя, лампочки, электроизмерительного прибора; изменение полярности включения приборов и т.п.).

    Возможность проведения лабораторных работ не в учебном заведении.

Общие сведения

ЭСО разработано для обеспечения компьютерной поддержки преподавания предмета «физика». Главная цель создания, распространения и применения ЭСО – повышение качества обучения за счет эффективного, методически обоснованного, систематического использования всеми участниками образовательного процесса на разных этапах учебной деятельности.

Учебные материалы, входящие в состав данного ЭСО соответствуют требованиям учебной программе по физике. Основу учебных материалов данного ЭСО составят материалы современных учебников физики а также дидактических материалов для выполнения лабораторных работ и экспериментальных исследований.

Понятийный аппарат, используемый в разрабатываемом ЭСО составлен на основе учебного материала действующих учебников по физике, а также рекомендуемых для использования в средней школе справочников по физике.

Виртуальная лаборатория реализуется как отдельное приложение операционной системы Windows .

Данное ЭСО позволяет проводить фронтальные лабораторные работы с использованием виртуальных моделей реальных приборов и устройств (рис.2).

Рис.2 Оборудование.

Демонстрационные опыты дают возможность показать и объяснить результаты тех действий, которые невозможно или нежелательно осуществлять в реальных условиях (рис.3).

Рис.3Нежелательные результаты опыта.

Предоставляется возможность организации индивидуальной работы, когда учащиеся могут самостоятельно ставить эксперименты, а также повторения опыта вне урока, например на домашнем компьютере.

Назначение ЭСО

ЭСО –компьютерный инструмент, используемый в обучении физике, необходимый для решения учебных и педагогических задач..

ЭСО может быть использовано для обеспечения компьютерной поддержки преподавания предмета «физика».

В состав ЭСО входят 8 лабораторных работ по разделу «Электричество» курса физики, изучаемого в VIII и XI классах средней школы.

С помощью ЭСО решаются основные задачи по обеспечению компьютерной поддержки следующих этапов учебной деятельности:

Объяснение учебного материала,

Его закрепление и повторение;

Организация самостоятельной познавательной деятельности учащегося;

Диагностика и коррекция пробелов в знаниях;

Промежуточный и итоговый контроль.

ЭСО может быть использовано в качестве эффективного средства для формирования у учащихся практических умений и навыков в следующих формах организации учебной деятельности:

Для выполнения лабораторных работ (основное назначение);

В качестве средства организации демонстрационного эксперимента, в том числе для демонстрации последствий не достижимых или нежелательных в натурном эксперименте (перегорание предохранителя, лампочки, электроизмерительного прибора; изменение полярности включения приборов и т.п.)

При решении экспериментальных задач;

Для организации учебно-исследовательской работы учащихся, решении творческих задач во внеурочное время, в том числе и в домашних условиях.

ЭСО может также использоваться в следующих демонстрациях, опытах и виртуальных экспериментальных исследованиях: источники тока; амперметр, вольтметр; изучение зависимости силы тока от напряжения на участке цепи; изучение зависимости силы тока в реостате от длины его рабочей части; изучение зависимости сопротивления проводников от их длины, площади поперечного сечения и рода вещества; устройство и действие реостатов; последовательное и параллельное соединение проводников; определение мощности, потребляемой электронагревательным прибором; плавкие предохранители.

о бъем оперативной памяти: 1 Гб;

частота процессора от 1100МГц;

дисковая память - 1 Гб свободного места на диске;

функционирует в операционных системах Windows 98/NT/2000/XP/ Vista ;

в операционной системе дол ж ен быть установлен браузер MS Explorer 6.0/7.0;

для удобства работы пользователя рабочее место должно быть оснащено манипулятором мышь, монитором с разрешением 1024 x 768 и выше;

наличие устройства чтения CD / DVD дисков для инсталляции ЭСО.