Когда люди полетят к звездам. Межзвездные перелеты: несбыточная мечта или реальная перспектива? Ракеты на ядерном синтезе

Сможем ли мы на самом деле добраться до неведомых планет за пределами Солнечной системы? Как это вообще возможно?

Фантасты и кинематографисты, конечно, молодцы, хорошо поработали. В красочные истории, где человек покоряет самые дальние уголки космоса, действительно хочется верить. К сожалению, прежде чем эта картинка станет явью, нам придется преодолеть немало ограничений. Например, законы физики, какими мы их видим сейчас.

Но! В последние годы появилось несколько волонтерских и финансируемых частными лицами организаций (Фонд Tau Zero , проект Icarus , проект Breakthrough Starshot), каждая из которых ставит целью создание транспорта для межзвездных полетов и приблизить человечество к покорению Вселенной. Их надежду и веру в успех укрепляют позитивные новости, например, на орбите звезды Проксима-Центавра планеты размером с Землю.

Создание межзвездного космического аппарата станет одной из тем для обсуждения на Всемирном саммите BBC Future «Идеи, которые меняют мир» в Сиднее в ноябре. Сможет ли человек отправиться в другие галактики? И если да, то какие виды космических кораблей нам для этого понадобятся?

Куда бы нам отправиться?


А куда лететь не стоит? Во Вселенной звезд больше , чем песчинок на Земле — около 70 секстиллионов (это 22 нуля после семерки) — и, по оценкам ученых, миллиарды из них имеют на орбитах от одной до трех планет в так называемой «зоне Златовласки»: на них не слишком холодно и не слишком жарко. В самый раз .

С самого начала и до сих пор лучшим претендентом для первого межзвездного полета является наш ближайший сосед — тройная звездная система Альфа Центавра. Она находится на расстоянии 4,37 световых лет от Земли. В этом году астрономы Европейской южной обсерватории обнаружили планету размером с Землю, вращающуюся вокруг красного карлика Проксима Центавра из этого созвездия. Масса планеты, названной Проксима b, как минимум в 1,3 раза больше земной, и она имеет очень короткий период обращения вокруг своей звезды - всего 11 земных дней. Но все равно эта новость чрезвычайно взволновала астрономов и охотников за экзопланетами, ведь температурный режим Проксимы b подходит для существования воды в жидком виде, а это - серьезный плюс к возможной обитаемости.

Но есть и недостатки: мы не знаем, имеет ли Проксима b атмосферу, и, учитывая ее близость к Проксима Центавра (ближе, чем Меркурий к Солнцу), она, вероятно, будет подвергаться воздействию выбросов звездной плазмы и радиации. И она так заперта приливными силами, что всегда обращена к звезде одной стороной. Это, конечно, может полностью изменить наши представления о дне и ночи.

И как мы туда попадем?


Это вопрос на 64 триллиона долларов. Даже на максимальной скорости, которую позволяют развить современные технологии, нам до Проксимы Б 18 тысяч лет. И высока вероятность, что добравшись до цели мы встретим там… наших потомков в Земли, которые уже колонизировали новую планету и забрали всю славу себе. Поэтому глубокие умы и бездонные карманы ставят себе амбициозную задачу: найти более быстрый способ пересекать огромные расстояния.

Breakthrough Starshot - это космический проект с бюджетом в размере 100 миллионов долларов, он финансируется российским миллиардером Юрием Мильнером. Breakthrough Starshot сосредоточился на создании крошечных беспилотных зондов со световыми парусами, подгоняемых мощным наземным лазером. Идея в том, что космический аппарат достаточно малого веса (едва ли 1 грамм) со световым парусом можно будет регулярно ускорять мощным световым лучом с Земли примерно до скорости в одну пятую от скорости света. Такими темпами нанозонды достигнут Альфа Центавра примерно за 20 лет.

Разработчики проекта Breakthrough Starshot рассчитывают на миниатюризацию всех технологий, ведь крошечный космический зонд должен нести с собой камеру, подруливающие устройства, источник питания, средства связи и навигационное оборудование. Все для того, чтобы по прибытии сообщить: «Смотрите, я здесь. А она совсем не вертится». Миллер надеется, что это сработает и заложит основу для следующего, более сложного этапа межзвездных передвижений: путешествия человека.

А что же варп-двигатели?

Да, в сериале Star Trek это все выглядит очень просто: включил варп-двигатель и полетел быстрее скорости света. Но все, что мы в настоящее время знаем о законах физики, говорит нам: путешествия со скоростью выше скорости света, или даже равной ей, невозможны . Но ученые не сдаются: NASA вдохновилось другим захватывающим двигателем из научной фантастики и запустило проект NASA Evolutionary Xenon Thruster (сокращено NEXT) — ионный двигатель, который сможет ускорять космические корабли до скорости 145 тысяч км/ч, используя лишь одну фракцию топлива для обычной ракеты.

Но даже на таких скоростях мы не сможем улететь далеко от Солнечной системы за одну человеческую жизнь. Пока мы не разберемся, как работать с пространством-временем, межзвездные путешествия будет протекать очень, очень медленно. Возможно, уже пора начать воспринимать то время, которое галактические странники проведут на борту межзвездного корабля, просто как жизнь, а не как поездку на «космическом автобусе» от пункта А к пункту Б.

Как мы выживем в межзвездном путешествии?


Варп-двигатели и ионные моторы - это, конечно, очень круто, но во всем этом будет мало проку, если наши межзвездные странники погибнут от голода, холода, обезвоживания или отсутствия кислорода еще до того, как покинут пределы Солнечной системы. Исследователь Рейчел Армстронг утверждает, что нам пора задумываться о создании настоящей экосистемы для межзвездного человечества.

«Мы переходим от индустриального взгляда к экологическому видению реальности», — заявляет Армстронг.

Армстронг — профессор экспериментальной архитектуры в Университете Ньюкасла в Великобритании — говорит о таком понятии как «worlding»: «Это о пространстве обитания, а не только о дизайне объекта». Сегодня внутри космического корабля или станции все стерильно и выглядит как промышленный объект. Армстронг считает, что вместо этого мы должны подумать об экологической составляющей космических судов: о растениях, которые мы сможем выращивать на борту, и даже о видах почв, которые возьмем с собой. В будущем, как она предполагает , космолеты будут выглядеть как гигантские биомы, полные органической жизни, а не сегодняшние холодные, металлические ящики.

А мы не можем просто проспать всю дорогу?


Криосон и гибернация - это, конечно хорошее решение довольно неприятной проблемы: как сохранить людей живыми во время путешествия, которое длится гораздо дольше, чем сама человеческая жизнь. По крайней мере, в кино так делают . И в мире полно крио-оптимистов: Фонд продления жизни Алькор хранит множество крио-консервированных тел и голов людей, которые надеются, что наши потомки научатся безопасно размораживать людей и избавляться от неизлечимых ныне заболеваний, но в настоящее время таких технологий не существует.

В фильмах типа «Интерстеллар» и в книгах наподобие «Seveneves» Нила Стивенсона озвучивается идея отправить в космос замороженные эмбрионы, которые могли бы пережить даже самый длительный полет, потому что ни есть, ни пить, ни дышать им не нужно. Но это поднимает проблему «курицы и яйца»: кто-то ведь должен ухаживать за этим зарождающимся человечеством в несознательном возрасте.

Так это все реально?

«С самого зарождения человечества мы смотрели на звезды и обращали к ним наши надежды и страхи, тревоги и мечты», — говорит Рэйчел Армстронг .

С запуском новых инженерных проектов, таких как Breakthrough Starshot, «мечта становится реальным экспериментом».

Как только на город опускается тьма, мы поднимаем головы вверх и смотрим на звёзды. Они ведь есть, хоть и где-то далеко. Такие призрачные и настолько реальные одновременно. Смогут ли люди когда-то отправятся к этим сгусткам энергии или навсегда останутся прикованными к поверхности родной планеты?

Чего мы добились в покорении Вселенной?

На сегодняшний день у человека весьма сомнительные достижения в плане освоения космоса:

  • Не было ни одной пилотируемой мисси к другой планете;
  • Нога человека ступила только на спутник Земли и никуда более;
  • На ближайшее время нет даже запланированных программ по покорению нашей звёздной системы;
  • Подавляющее большинство космических стартов связано с запуском грузов на околоземную орбиту;
  • В окружающем пространстве действует не более десятка исследовательских зондов, посылающих информацию на Землю.

Выходит, что где-то полвека назад человечество думало покорять Луну, но уже на том этапе ретировалось к границам собственной орбиты. Мы запустили международную станцию и периодически доставляем туда космонавтов и всё им необходимое.

Ещё о спутниках можно упомянуть - да здравствует надёжный интернет и навигация. И метеорология ещё, куда без неё. Но ведь всё это лишь игрушки - мы лишь вплотную подобрались к самому космическому пространству, но так и не решились сделать хоть ещё один шаг вперёд.

Почему сворачиваются исследовательские миссии

Как ни странно, космические программы, это очень дорогое удовольствие :

  1. Почти никакой финансовой отдачи космические агентства не получают;
  2. Большинство ракет и кораблей строятся для всего одного использования;
  3. Учитывая необходимый уровень качества и надёжности - производство одной ракеты обходится в десятки миллионов долларов;
  4. Сами путешествия в космосе - прямая угроза для жизни космонавтов, что добавляет дополнительные риски;
  5. Полученная теоретическая информация далеко не всегда имеет практическое применение на Земле.

Короче говоря - готовить космонавтов слишком долго и дорого, а ещё каждый из них может погибнуть в любой момент. Корабль неудачно стартовал, и вся команда сгорела в огромном огненном шаре - перспектива вполне реальная, такое уже случалось.

Да и сами корабли, вместе с ракетоносителями, не только дорого стоят, но ещё и отправляются на свалку истории уже после первого пуска. Представьте, что вы летите на частном самолёте. Каждый раз на новом, ведь после посадки воздушное судно самоуничтожается или это происходит при самой посадке, а вы вынуждены приземляться в спасательной капсуле. Долго сможете полетать, в таких условиях, когда постоянно необходимо покупать не самые дешёвые в мире самолёты?

Непреодолимый барьер

Но это всё лирика, ведь основной ограничитель заключается в другом ‒ до ближайшей звезды несколько световых лет. Чтобы было понятно - свет движется с максимальной скоростью, которая только существует во Вселенной. И даже у него уйдёт несколько лет на преодоление этого маршрута.

Сегодня лишь «Вояджер» является единственным рукотворным предметом, покинувшем пределы Солнечной системы. На это у него ушло порядка 40 лет и это лишь выход за пределы системы, на достижение другой уйдут десятки тысяч лет, при нынешних скоростях. К сожалению, человек смертен и попросту не может ждать столько времени. Цивилизации на Земле существуют примерно столько же, сколько придётся лететь .

Можно заявить, что проблема заключается лишь в текущем уровне развития. И это действительно так, но понимание пришло много десятков лет назад, и за это время не было сделано ничего для разрешения сложившейся ситуации. Да, имеются огромные межзвёздные пространства, но не существует никакого технического решения для их преодоления. И в обозримом будущем, откровенно говоря, они и не появятся.

Физики активно эксплуатируют теорию «кротовых дыр», о том, что отдалённые точки в пространстве могут соприкасаться при определённых условиях. Только на практике ни одной такой кротовой дыры мы так и не обнаружили, да и вероятность подобного «подарка» именно в нашей звёздной системе - не особо велика.

Первые шаги в вопросах колонизации

Теоретически, для достижения любой цели необходимо хоть что-то делать, а не сидеть на месте. Первыми шагами в освоении космоса может быть покорение Марса - планета вполне пригодна для существования, в условиях закрытых ферм и при наличии скафандров. Во всяком случае, до масштабного изменения климата, создания атмосферы и прочих проектов, которые на данный момент кажутся нереальными.

Для начала необходимо создать хоть какой-то форпост в космосе. Можно сказать, что уже сейчас существует станция на орбите, где постоянно обитают астронавты. Но опять-таки, это слишком близко к поверхности Земли. Речь идёт о Луне, а в идеале - о Марсе. Именно с покорения этой планеты может начаться экспансия человечества в другие миры. При условии, что колоссальные пустоты в межзвёздном пространстве будут хоть как-то преодолены.

Прогресс и романтика

Всего несколько столетий назад человек считал, что на облаках расположен рай. За такой незначительный промежуток времени представление об окружающей действительности значительно изменилось и учёные создали множество механизмов, которые наши предки даже представить себе не могли.

Возможно, это ожидает и наших потомков - удивление тем фактом, почему мы сами так поздно додумались до тех или иных технологий.

Свет звёзд: этот образ используется как в романтической литературе, так и в фантастике. Неизменно одно заявление - мы видим отражение, частицу прошлого и свет умерших миров. В этом есть доля правды, если учесть, что от далёких звёзд свет может идти десятки тысяч лет. Но разве это способно остановить стремление человечества к покорению окружающего пространства?

Фантасты дали нам образ - гигантские корабли, движущиеся в межзвёздном пространстве на протяжении десятилетий и даже столетий. Пассажиры, спящие в условиях анабиоза. Для них это путешествие происходит не только в пространстве, но и во времени. Возможно, когда-то будет реализовано нечто подобное. Но скорее всего, учитывая уровень технологий и низкую заинтересованность - космос останется непокорённым.

Мы родились слишком рано, чтобы осваивать звёзды. За будущие поколения говорить сложно, но на своем веку мы вряд ли увидим значимых открытий в этой области. Разве что, если вдруг произойдёт контакт с внеземной цивилизацией.

Видео: что будет, если все население Земли поднимется?

В данном ролике Лев Прокопьев расскажет, что может произойти, если все люди на планеты одновременно покинут Землю:

Если использовать существующие технологии, времени, чтобы отправить ученых и астронавтов в межзвездную миссию, потребуется очень и очень много. Путешествие будет мучительно долгим (даже по космическим меркам). Если мы хотим осуществить такое путешествие хотя бы за одну жизнь, ну или за поколение, нам нужны более радикальные (читай: сугубо теоретические) меры. И если червоточины и подпространственные двигатели на текущий момент являются абсолютно фантастическими, много лет существовали другие идеи, в реализацию которых мы верим.

Ядерная силовая установка

Ядерная силовая установка - это теоретически возможный «двигатель» для быстрого космического путешествия. Концепцию первоначально предложил Станислав Улам в 1946 году, польско-американский математик, принимавший участие в Манхэттенском проекте, а предварительные расчеты сделали Ф. Райнес и Улам в 1947 году. Проект «Орион» был запущен в 1958 году и просуществовал до 1963-го.

Под руководством Теда Тейлора из General Atomics и физика Фримена Дайсона из Института перспективных исследований в Принстоне, «Орион» должен был использовать силу импульсных ядерных взрывов, чтобы обеспечить огромную тягу с очень высоким удельным импульсом.

В двух словах, проект «Орион» включает крупный космический аппарат, который набирает скорость за счет поддержки термоядерных боеголовок, выбрасывая бомбы позади и ускоряясь за счет взрывной волны, которая уходит в расположенный сзади «пушер», панель для толчка. После каждого толчка сила взрыва поглощается этой панелью и преобразуется в движение вперед.

Хотя по современным меркам эту конструкцию сложно назвать элегантной, преимущество концепции в том, что она обеспечивает высокую удельную тягу - то есть извлекает максимальное количество энергии из источника топлива (в данном случае ядерных бомб) при минимальных затратах. Кроме того, эта концепция может теоретически разгонять очень высокие скорости, по некоторым оценкам, до 5% от скорости света (5,4 х 10 7 км/ч).

Конечно, у этого проекта имеются неизбежные минусы. С одной стороны, корабль такого размера будет крайне дорого строить. По оценкам, которые сделал Дайсон в 1968 году, космический аппарат «Орион» на водородных бомбах весил бы от 400 000 до 4 000 000 метрических тонн. И по крайней мере три четверти этого веса будут приходиться на ядерные бомбы, каждая из которых весит примерно одну тонну.

Скромные подсчеты Дайсона показали, что общая стоимость строительства «Ориона» составила бы 367 миллиардов долларов. С поправкой на инфляцию, эта сумма выливается в 2,5 триллиона долларов, это довольно много. Даже при самых скромных оценкам, аппарат будет крайне дорогим в производстве.

Есть еще небольшая проблема радиации, которую он будет излучать, не говоря уж о ядерных отходах. Считается, что именно по этой причине проект был свернут в рамках договора о частичном запрете испытаний от 1963 года, когда мировые правительства стремились ограничить ядерные испытания и остановить чрезмерный выброс радиоактивных осадков в атмосферу планеты.

Ракеты на ядерном синтезе

Другая возможность использования ядерной энергии заключается в термоядерных реакциях для получения тяги. В рамках этой концепции, энергия должна создаваться во время воспламенения гранул смеси дейтерия и гелия-3 в реакционной камере инерционным удержанием с использованием электронных лучей (подобно тому, что делают в Национальном комплексе зажигания в Калифорнии). Такой термоядерный реактор взрывал бы 250 гранул в секунду, создавая высокоэнергетическую плазму, которая затем перенаправлялась бы в сопло, создавая тягу.

Подобно ракете, которая полагается на ядерный реактор, эта концепция обладает преимуществами с точки зрения эффективности топлива и удельного импульса. По оценке, скорость должна достигать 10 600 км/ч, что намного превышает пределы скорости обычных ракет. Более того, эта технология активно изучалась в течение последних нескольких десятилетий, и было сделано много предложений.

Например, между 1973 и 1978 годами Британское межпланетное общество провело исследование возможности проекта «Дедал». Опираясь на современные знания и технологии термоядерного синтеза, ученые призвали к строительству двухступенчатого беспилотного научного зонда, который смог бы добраться до звезды Барнарда (5,9 светового года от Земли) за срок человеческой жизни.

Первая ступень, крупнейшая из двух, работала бы в течение 2,05 года и разогнать аппарат до 7,1% скорости света. Затем эта ступень отбрасывается, зажигается вторая, и аппарат разгоняется до 12% скорости света за 1,8 года. Потом двигатель второй ступени отключается, и корабль летит в течение 46 лет.

По оценкам проекта «Дедал», миссии потребовалось бы 50 лет, чтобы достичь звезды Барнарда. Если к Проксиме Центавра, то же судно доберется за 36 лет. Но, конечно, проект включает массу нерешенных вопросов, в частности неразрешимых с использованием современных технологий - и большинство из них до сих пор не решены.

К примеру, на Земле практически нет гелия-3, а значит, его придется добывать в другом месте (вероятнее всего, на Луне). Во-вторых, реакция, которая движет аппарат, требует, чтобы испускаемая энергия значительно превышала энергию, затраченную на запуск реакции. И хотя эксперименты на Земле уже превзошли «точку безубыточности», мы еще далеки от тех объемов энергии, что смогут питать межзвездный аппарат.

В-третьих, остается вопрос стоимости такого судна. Даже по скромным стандартам беспилотного аппарата проекта «Дедал», полностью оборудованный аппарат будет весить 60 000 тонн. Чтобы вы понимали, вес брутто NASA SLS чуть выше 30 метрических тонн, и один только запуск обойдется в 5 миллиардов долларов (по оценкам 2013 года).

Короче говоря, ракету на ядерном синтезе будет не только слишком дорого строить, но и потребуется уровень термоядерного реактора, намного превышающий наши возможности. Icarus Interstellar, международная организация гражданских ученых (некоторые из которых работали в NASA или ЕКА), пытается оживить концепцию с проектом «Икар». Собранная в 2009 году группа надеется сделать движение на синтезе (и другое) возможным в обозримом будущем.

Термоядерный ПВРД

Известный также как ПВРД Буссарда, двигатель впервые предложил физик Роберт Буссард в 1960 году. По своей сути, это улучшение стандартной термоядерной ракеты, которая использует магнитные поля для сжатия водородного топлива до точки запуска синтеза. Но в случае ПВРД, огромная электромагнитная воронка всасывает водород из межзвездной среды и сливает в реактор как топливо.

По мере того как аппарат набирает скорость, реактивная масса попадает в ограничивающее магнитное поле, которое сжимает ее до начала термоядерного синтеза. Затем магнитное поле направляет энергию в сопло ракеты, ускоряя судно. Поскольку никакие топливные баки не будут его замедлять, термоядерный ПВРД может развить скорость порядка 4% световой и отправиться куда угодно в галактику.

Тем не менее у этой миссии есть масса возможных недостатков. К примеру, проблема трения. Космический аппарат полагается на высокую скорость сбора топлива, но вместе с тем будет сталкиваться с большим количеством межзвездного водорода и терять скорость - особенно в плотных регионах галактики. Во-вторых, дейтерия и трития (которые используются в реакторах на Земле) в космосе немного, а синтез обычного водорода, которого много в космосе, пока нам неподвластен.

Впрочем, научная фантастика полюбила эту концепцию. Самым известным примером является, пожалуй, франшиза «Звездный путь», где используются «коллекторы Буссарда». В реальности же наше понимание реакторов синтеза далеко не так прекрасно, как хотелось бы.

Лазерный парус

Солнечные паруса давно считаются эффективным способом покорения Солнечной системы. Помимо того, что они относительно просты и дешевы в изготовлении, у них большой плюс: им не нужно топливо. Вместо использования ракет, нуждающихся в топливе, парус использует давление радиации звезд, чтобы разгонять сверхтонкие зеркала до высоких скоростей.

Тем не менее, в случае межзвездного перелета, такой парус придется подталкивать сфокусированными лучами энергии (лазером или микроволнами), чтобы разгонять до скорости, близкой к световой. Концепцию впервые предложил Роберт Форвард в 1984 году, физик лаборатории Hughes Aircraft.

Его идея сохраняет преимущества солнечного паруса в том, что не требует топлива на борту, а также и в том, что лазерная энергия не рассеивается на расстоянии так же, как и солнечная радиация. Таким образом, хотя лазерному парусу потребуется некоторое время, чтобы разогнаться до околосветовой скорости, он впоследствии будет ограничен только скоростью самого света.

По данным исследования Роберта Фрисби в 2000 году, директора по исследованиям передовых двигательных концепций в Лаборатории реактивного движения NASA, лазерный парус разгонится до половины световой скорости меньше чем за десять лет. Он также рассчитал, что парус диаметром 320 километров мог бы добраться до Проксимы Центавра за 12 лет. Между тем, парус 965 километров в диаметре прибудет на место всего через 9 лет.

Однако строить такой парус придется из передовых композитных материалов, чтобы избежать плавления. Что будет особенно сложно, учитывая размеры паруса. Еще хуже обстоит дело с расходами. По мнению Фрисби, лазерам потребуется стабильный поток в 17 000 тераватт энергии - примерно столько весь мир потребляет за один день.

Двигатель на антиматерии

Любители научной фантастики хорошо знают, что такое антиматерия. Но если вы забыли, антиматерия - это вещество, состоящее из частиц, которые имеют такую же массу, как и обычные частицы, но противоположный заряд. Двигатель на антиматерии - это гипотетический двигатель, в основе которого лежат взаимодействия между материей и антиматерией для генерации энергии, или создания тяги.

Короче говоря, двигатель на антиматерии использует сталкивающиеся между собой частицы водорода и антиводорода. Испущенная в процессе аннигиляции энергия сравнима по объемам с энергией взрыва термоядерной бомбы в сопровождении потока субатомных частиц - пионов и мюонов. Эти частицы, которые движутся со скоростью одной третьей от скорости света, перенаправляются в магнитное сопло и вырабатывают тягу.

Преимущество такого класса ракет в том, что большую часть массы смеси материи/антиматерии можно преобразовать в энергию, что обеспечивает высокую плотность энергии и удельный импульс, превосходящий любую другую ракету. Более того, реакция аннигиляции может разогнать ракету до половины скорости света.

Такой класс ракет будет самым быстрым и самым энергоэффективным из возможных (или невозможных, но предлагаемых). Если обычные химические ракеты требуют тонны топлива, чтобы продвигать космический корабль к месту назначения, двигатель на антиматерии будет делать ту же работу за счет нескольких миллиграмов топлива. Взаимное уничтожение полукилограмма частиц водорода и антиводорода высвобождает больше энергии, чем 10-мегатонная водородная бомба.

Именно по этой причине Институт перспективных концепций NASA исследует эту технологию как возможную для будущих миссий на Марс. К сожалению, если рассматривать миссии к ближайшим звездным системам, сумма необходимого топлива растет в геометрической прогрессии, и расходы становятся астрономическими (и это не каламбур).

Согласно отчету, подготовленному к 39-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference и Exhibit, двухступенчатая ракета на антивеществе потребует больше 815 000 метрических тонн топлива, чтобы добраться до Проксимы Центавра за 40 лет. Это относительно быстро. Но цена…

Хотя один грамм антивещества производит невероятное количество энергии, производство одного только грамма потребует 25 миллионов миллиардов киловатт-часов энергии и выльется в триллион долларов. В настоящее время общее количество антивещества, которое было создано людьми, составляет меньше 20 нанограммов.

И даже если бы мы могли задешево производить антиматерию, нам потребовался бы массивный корабль, который смог бы удерживать необходимое количество топлива. Согласно докладу доктора Даррела Смита и Джонатана Вебби из Авиационного университета Эмбри-Риддл в штате Аризона, межзвездный корабль с двигателем на антивеществе мог бы набрать скорость в 0,5 световой и достичь Проксимы Центавра чуть больше чем за 8 лет. Тем не менее сам корабль весил бы 400 тонн и потребовал бы 170 тонн топлива из антивещества.

Возможный способ обойти это - создать судно, которое будет создавать антивещество с последующим его использованием в качестве топлива. Эта концепция, известная как Vacuum to Antimatter Rocket Interstellar Explorer System (VARIES), была предложена Ричардом Обаузи из Icarus Interstellar. Опираясь на идею переработки на месте, корабль VARIES должен использовать крупные лазеры (запитанные огромными солнечными батареями), создающие частицы антивещества при выстреле в пустой космос.

Подобно концепции с термоядерным ПВРД, это предложение решает проблему перевозки топлива за счет его добычи прямо из космоса. Но опять же, стоимость такого корабля будет чрезвычайно высокой, если строить его нашими современными методами. Мы просто не в силах создавать антивещество в огромных масштабах. А еще нужно решить проблему с радиацией, поскольку аннигиляция материи и антиматерии производит вспышки высокоэнергетических гамма-лучей.

Они не только представляют опасность для экипажа, но и для двигателя, чтобы те не развалились на субатомные частицы под воздействием всей этой радиации. Короче говоря, двигатель на антивеществе совершенно непрактичен с учетом наших современных технологий.

Варп-двигатель Алькубьерре

Любители научной фантастики, без сомнения, знакомы с концепцией варп-двигателя (или двигателя Алькубьерре). Предложенная мексиканским физиком Мигелем Алькубьерре в 1994 году, эта идея была попыткой вообразить мгновенное перемещение в пространстве без нарушения специальной теории относительности Эйнштейна. Если коротко, эта концепция включает растяжение ткани пространства-времени в волну, которая теоретически приведет к тому, что пространство перед объектом будет сжиматься, а позади - расширяться.

Объект внутри этой волны (наш корабль) сможет ехать на этой волне, будучи в «варп-пузыре», со скоростью намного превышающей релятивистскую. Поскольку корабль не движется в самом пузыре, а переносится им, законы относительности и пространства-времени нарушаться не будут. По сути, этот метод не включает движение быстрее скорости света в локальном смысле.

«Быстрее света» он только в том смысле, что корабль может достичь пункта назначения быстрее луча света, путешествующий за пределами варп-пузыря. Если предположить, что космический аппарат будет оснащен системой Алькубьерре, он доберется до Проксимы Центавра меньше чем за 4 года. Поэтому, если говорить о теоретическом межзвездном космическом путешествии, это, безусловно, наиболее перспективная технология в плане скорости.

Разумеется, вся эта концепция чрезвычайно спорная. Среди аргументов против, например, то, что она не принимает во внимание квантовую механику и может быть опровергнута теорией всего (вроде петлевой квантовой гравитации). Расчеты необходимого объема энергии также показали, что варп-двигатель будет непомерно прожорлив. Другие неопределенности включают безопасность такой системы, эффекты пространства-времени в пункте назначения и нарушения причинности.

Тем не менее в 2012 году ученый NASA Гарольд Уайт заявил, что вместе с коллегами начал исследовать возможность создания двигателя Алькубьерре. Уайт заявил, что они построили интерферометр, который будет улавливать пространственные искажения, произведенные расширением и сжатием пространства-времени метрики Алькубьерре.

В 2013 году Лаборатория реактивного движения опубликовала результаты испытаний варп-поля, которые проводились в условиях вакуума. К сожалению, результаты сочли «неубедительными». В долгосрочной перспективе мы можем выяснить, что метрика Алькубьерре нарушает один или несколько фундаментальных законов природы. И даже если его физика окажется верной, нет никаких гарантий, что систему Алькубьерре можно использовать для полетов.

В общем, все как обычно: вы родились слишком рано для путешествия к ближайшей звезде. Тем не менее, если человечество почувствует необходимость построить «межзвездный ковчег», который будет вмещать самоподдерживающееся человеческое общество, добраться до Проксимы Центавра удастся лет за сто. Если мы, конечно, захотим инвестировать в такое мероприятие.

Что касается времени, все доступные методы кажутся крайне ограниченными. И если потратить сотни тысяч лет на путешествие к ближайшей звезде может нас мало интересовать, когда наше собственное выживание стоит на кону, по мере развития космических технологий, методы будут оставаться чрезвычайно непрактичным. К моменту, когда наш ковчег доберется до ближайшей звезды, его технологии станут устаревшими, а самого человечества может уже не существовать.

Так что если мы не осуществим крупный прорыв в сфере синтеза, антиматерии или лазерных технологий, мы будем довольствоваться изучением нашей собственной Солнечной системы.

Если астронавт будет изучать события, происходящие на покинутой им Земле, то он убедится, что и там все процессы, в том числе и жизнь людей, текут в 1,8 раза медленнее. Как же так? Казалось бы, что для наблюдателя на ракете процессы на Земле должны течь быстрее по отношению к процессам, текущим на ракете. Но этого не происходит. Если ракета летит равномерно и прямолинейно относительно Земли, тогда относительно ракеты Земля будет двигаться с той же скоростью в противоположную сторону. Следовательно, наблюдатели на Земле и на ракете полностью равноправны, И хотя для земного наблюдателя время на ракете течет медленнее, для астронавта медленнее будет течь земное время.

Может показаться, что тогда нельзя избежать противоречия. Когда ракета вернется на Землю, кто окажется прожившим меньше времени: космический путешественник или житель Земли?

На самом деле никакого противоречия нет. Просто в наших рассуждениях упущено одно важное обстоятельство. Чтобы вернуться на Землю, астронавты непременно должны включить двигатели ракеты, развернуть ее и направить к Земле. Во время действия двигателей ракета движется ускоренно и не является инерциальной системой. Законы специальной теории относительности в это время для нее неприменимы. Земной наблюдатель не испытывал никаких ускорений, его система инерциальна все время, и законы специальной теории относительности в ней справедливы, поэтому его вывод о том, что по возвращении межзвездные путешественники окажутся моложе своих сверстников на Земле, правилен.

На ракете же, когда она движется ускоренно, будут действовать законы общей теории относительности, которая позволяет рассматривать не только прямолинейное и равномерное движение, но и ускоренное.

Оказывается, на течение времени влияет не только движение тел, но и близость тяготеющих масс. В сильном поле , то есть там, где потенциал тяготения велик (например на ), время течет медленнее, чем на Земле.

ЛЕТИМ К ПРОКСИМЕ ЦЕНТАВРА

Рассмотрим конкретный пример полета фотонной ракеты к Проксимё Центавра, с которого мы начали наш рассказ. Предположим, что на ракете есть точные часы и мощный передатчик, посылающий сигналы времени на Землю. Наблюдатели на Земле, учтя время распространения радиосигналов от ракеты до Земли, могут следить за течением времени на ракете.

Пусть ракета набирает скорость и тормозится так, что ускорение, которое будет действовать на все предметы внутри ракеты, будет равно ускорению силы тяжести на поверхности Земли. Это наиболее целесообразно с точки зрения удобства экипажа. Попробуем проследить вместе с наблюдателями на Земле за ходом часов на ракете. Пока ракета наберет скорость, часы на ней будут идти все медленнее и к моменту выключения двигателей на ракете отсчитают на 0,3 года меньше, чем земные часы. Дальше ракета летит по инерции; часы на ней идут для земного наблюдателя в 1,8 раза медленнее, чем его собственные. На участке торможения ракеты ход ее часов для земного наблюдателя будет постепенно ускоряться. Астронавты высаживаются на планете системы Проксимы
Центавра. Пока они исследуют эту систему, их часы идут синхронно с земными часами. Затем астронавты отправляются в обратный путь, и картина изменения хода часов на ракете повторяется в обратном порядке. После возвращения космических путешественников по часам на Земле пройдет 13,5 года, а по часам ракеты - 9,3 года, то есть астронавты отсчитают на 4 с лишним года меньше.

Отправимся теперь вместе с астронавтами в космическое путешествие, и радиосигналами с Земли будем следить из ракеты за ходом земных часов. Когда ракета движется ускоренно, в ее системе будет действовать сила, вызванная ускорением и эквивалентная силе тяготения. Но там, где потенциал тяготения больше, часы идут медленнее. Разность потенциалов зависит от величины силы и расстояния между точками, причем потенциал увеличивается в ту сторону, куда направлена сила. Сила, действующая на предметы в ракете, противоположна направлению ее ускорения (вспомните, что при отправлении поезда эта сила толкает нас назад). При разгоне ракеты во время вылета эта сила направлена от ракеты к Земле. Следовательно, потенциал этой силы больше в точке расположения земных часов, и часы замедляют свой ход по сравнению с часами на ракете.

Но этот эффект незначителен, так как расстояние между отлетающей ракетой и Землей еще невелико. Незначительны поэтому и разность потенциалов и замедление хода часов. При полете с выключенными двигателями часы на Земле для астронавтов идут медленнее ракетных и к концу этого участка отстанут от них на 1,25 года. Наконец, при торможении у Проксимы Центавра сила, вызванная ускорением, имеет направление от Земли к ракете. Потенциал теперь больше в точке, занимаемой ракетными часами, и земные часы идут быстрее ракетных. При этом, хотя сила, вызванная ускорением, осталась прежней, но расстояние между часами огромно, а значит, огромна и разность потенциалов и, следовательно, разность хода часов. Для астронавтов часы на Земле начинают так спешить, что очень быстро ликвидируют свое отставание за время предыдущих этапов полета и уходят вперед. Для астронавтов земные часы в это время идут почти в 4 раза быстрее ракетных.

На обратном пути картина хода часов повторяется в обратном порядке.
Итог получается тот же. Когда ракета вернется на Землю, по земным часам пройдет 13,5 года, по ракетным - 9,3 года. Как видим, картина течения времени для астронавтов была совсем иной, чем для жителей Земли, но, тем не менее, никаких противоречий не получается.

К ТУМАННОСТИ АНДРОМЕДЫ

И все-таки, несмотря на всю увлекательность такого путешествия, может показаться, что дальше ближайших соседей Солнца человек все равно полететь не может: на полет, например, к звезде Бетельгейзе и обратно, даже со скоростью 250 000 км/сек., не хватит, человеческой жизни.

Значит ли отсюда, что наши потомки не смогут осуществить мечту героев романа И. Ефремова «Туманность » и добраться до других галактик? Немецкий физик Э. Зенгер дает на этот вопрос положительный ответ. До туманности Андромеды, находящейся в 1,5 миллиона световых лет от нас, можно, оказывается, долететь за 27 собственных лет.

Для этого нужно, чтобы ракета полпути летела с ускорением, а полпути - с торможением. Наибольшая скорость будет тогда достигнута, конечно, на середине пути. И чем больше расстояние до цели путешествия, тем ближе будет скорость ракеты к скорости света, а значит, тем больше будет замедление времени на ракете. Собственное время полета будет зависеть в этом случае только от расстояния. И вот оказывается, что полет до центра нашей Галактики займет при таком режиме 19,8 собственных года, что соответствует 30 000 земных лет, а полет до туманности Андромеды - 27,2 собственных года, или 1,5 миллиона земных лет. Столько же потребуется и на обратный путь.

Конечно, герои Ефремова не отказались бы за 27 собственных или «зависимых» лет добраться до туманности Андромеды. Но мы не учли расхода «горючего» - запасов элементарных частиц. Отношение начальной и конечной массы ракеты составит в этом случае 2,5 триллиона! Из 2,5 миллиона тонн начальной массы до туманности Андромеды долетит… 1 грамм. А если предусмотреть и обратное возвращение, то это число (2,5 триллиона) надо еще возвести в квадрат. К тому же на Земле за это время пройдет 3 миллиона лет…

Есть ли смысл отправляться в такой полет? На это ответит будущее…

КОГДА ЖЕ ЭТО БУДЕТ?

Вернемся из наших воображаемых путешествий на реальную, сегодняшнюю Землю и попытаемся ответить на самый трудный вопрос: когда человек сможет полететь к звездам?

Ответить на этот вопрос нелегко. Ведь трудности предстоит преодолеть немалые. Фотонная ракета - это пока только принцип двигателя. Кроме того, не надо забывать о межзвездном газе, который при движении ракеты с субсветовой скоростью превратится в поток частиц высоких энергий, подобный самым жестким космическим лучам. Придется считаться и с сопротивлением межзвездного газа.

Конечно, вряд ли можно ожидать, что уже в текущем столетии люди полетят к другим звездам: нам хватит работы и в солнечной системе, да и на нашей родной планете еще немало важных дел, не так ли?

Минобороны отказало Максиму Сураеву в почетном звании без всяких объяснений

Максим Сураев честно трудился в космосе, но звезду героя ему пока почему-то не дали.

Вообще Министерство обороны всегда принимало решение о награждении только в отношении космонавтов, которые являются военнослужащими. Гражданских исследователей космоса чествует Роскосмос. Но никогда еще в истории отечественной космонавтики ни один слетавший на орбиту не оставался без звезды героя. Хотя проволочки с положительным решением из главного военного ведомства в последнее время происходят все чаще. К примеру, Роману Романенко, летавшему вместе с Сураевым в 2009 году, но приземлившемуся на несколько месяцев раньше, звезду не выдавали около четырех месяцев — раза три кормили отказами из Минобороны. Пришлось даже жаловаться Путину, после чего положительное решение о награждении военные приняли в считаные дни и приурочили его ко Дню космонавтики.

По мнению большинства коллег Сураева, летавших в космос до него и после, проблема обострилась после перевода Центра подготовки космонавтов из Минобороны в Роскосмос. “Мы словно превратились в каких-то просителей, — говорят молодые космонавты, — вроде бы в погонах, но армии не нужны, а гражданские ведомства, по установленным правилам, не вправе решать нашу судьбу”. Может быть, в руководстве Минобороны полагают, что космонавты занимаются на орбите ерундой? Тогда какой логикой руководствуются власти страны, выделяя миллионы на развитие космонавтики? Непонятно.

Кстати, по закону, решение об отказе в представлении космонавта к награде министр обороны обязан обосновывать, мол, так и так — оказался ваш парень некомпетентен, провалил все эксперименты... и т.п. Но в том-то и фокус — никаких объяснений из Минобороны не пришло вообще. Да и не может их быть. Ведь Сураев, наоборот, отличился во время полета, выполняя на “отлично” все виды космических работ, включая выход в открытый космос. А чего стоит его блог, через который он общался во время полета со всем миром, популяризируя отечественную космонавтику! Но, видимо, это не волнует военных чиновников. Центр подготовки космонавтов шлет министру через Роскосмос документы на представление Максима к награде, а тот просто присылает неподписанные документы обратно. Вот и в наградном отделе главного управления кадров Минобороны, куда “МК” обратился с официальным запросом, нам ответили коротко, лаконично: “Комментариев по этому поводу не даем”. А кто их должен давать, тоже не пояснили.

Космонавты, уже слетавшие на орбиту, пытаются не показывать своих чувств, но можно представить, как им обидно — ждать по десять лет “билет” в космос, а потом еще и звезды не получить за полет. “Если так дальше пойдет, — сказал нам в сердцах Романенко, — скоро в космос вообще никто летать не будет”.

МЕЖДУ ТЕМ

В Федеральном космическом агентстве подтвердили, что дважды направляли документы в Министерство обороны РФ для присвоения звания Героя России летчику-космонавту Максиму Викторовичу Сураеву. В настоящее время обращение по этому поводу направлено непосредственно в Администрацию Президента РФ.