Основной закон динамики вращающегося движения. Вращательное движение тела

ЛАБОРАТОРНАЯ РАБОТА № 3

ПРОВЕРКА ОСНОВНОГО ЗАКОНА ДИНАМИКИ

ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА

Приборы и принадлежности: установка ""маятник Обербека"", набор грузов с указанной массой, штангенциркуль.

Цель работы: экспериментальная проверка основного закона динамики вращательного движения твердого тела относительно неподвижной оси и вычисление момента инерции системы тел.

Краткая теория

При вращательном движении все точки твердого тела движутся по окружностям, центры которых лежат на одной прямой, называемой осью вращения. Рассмотрим случай, когда ось неподвижна. Основной закон динамики вращательного движения твердого тела гласит, что момент силы М , действующий на тело, равен произведению момента инерции тела I на его угловое ускорение https://pandia.ru/text/78/003/images/image002_147.gif" width="61" height="19">. (3.1)

Из закона следует, что если момент инерции I будет постоянным, то https://pandia.ru/text/78/003/images/image004_96.gif" width="67" height="21 src="> представляет собой прямую линию. Наоборот, если зафиксировать постоянный момент силы М , то и уравнение будет представлять собой гиперболу.

Закономерности, связывающие между собой величины e , М , I , можно выявить на установке, которая называется маятником Обербека (рис. 3.1). Груз, прикрепленный к нити, намотанной на большой или малый шкив, приводит систему во вращение. Меняя шкивы и изменяя массу груза m , изменяют вращающий момент М , а передвигая грузы m 1 вдоль крестовины и фиксируя их в различных положениях, изменяют момент инерции системы I .

Груз m , опускаясь на нити, движется с постоянным ускорением

Из связи линейного и углового ускорений любой точки, лежащей на ободе шкива, следует, что угловое ускорение системы

По второму закону Ньютона m g – Т = m а , откуда сила натяжения нити, приводящая блок во вращение, равна

T = m (g - a ). (3.4)

Система приводится во вращение моментом М = R Т . Следовательно,

или . (3.5)

По формулам (3.3) и (3.5) можно вычислить e и М , экспериментально проверить зависимость e = f (М ), и из (3.1) рассчитать момент инерции I .

Так как момент инерции системы относительно неподвижной оси равен сумме моментов инерции элементов системы относительно той же оси, то полный момент инерции маятника Обербека равен

(3.6)

где I – момент инерции (маятника); I 0 – постоянная часть момента инерции, состоящая из суммы моментов инерции оси, малого и большого шкивов и крестовины; 4m 1l2 - переменная часть момента инерции системы, равная сумме моментов инерции четырех грузов, которые можно перемещать на крестовине.

Определив из (3.1) полный момент инерции I , можно вычислить постоянную составляющую часть момента инерции системы

I 0 = I - 4m 1l 2 . (3.7)

Изменяя момент инерции маятника при постоянном моменте сил, можно экспериментально проверить зависимость e = f (I ).

Описание лабораторной установки

Установка состоит из основания 1, на котором установлена вертикальная стойка (колонка) 4. На вертикальной стойке располагаются верхний 6, средний 3 и нижний 2 кронштейны.

На верхнем кронштейне 6 размещается узел подшипников 7 с малоинерционным шкивом 8. Через последний перекинута капроновая нить 9, которая закрепляется на шкиве 12 одним концом, а ко второму крепится наборный груз 15.

"СТОП"" – в течение времени, когда нажата эта кнопка, система расторможена и можно вращать крестовину;

кнопка ""СТАРТ"" – при нажатии на кнопку обнуляется и сразу же включается секундомер, система растормаживается на время до пересечения наборным грузом 15 луча фотоэлектрического датчика 14.

На задней панели блока электронного расположен выключатель ""Сеть"" (""01"") – при включении выключателя срабатывает электромагнит и затормаживает систему, на секундомере высвечиваются нули.

ПРЕДОСТЕРЕЖЕНИЕ!!! Запрещается быстро раскручивать крестовину 11, так как любой из грузов 10 (m 1) при этом может сорваться, летящий же с большой скоростью стальной груз представляет опасность. Чтобы не сломать электромагнитный тормоз, вращать крестовину 11 с грузами 10 (m 1) разрешается только при нажатой кнопке ""СТОП"" или при выключенном питании установки (выключатель ""Сеть"" (""01"") на задней панели блока электронного).

Упражнение №1 . Определение зависимости e (M )

углового ускорения e от вращающего момента М

при постоянном моменте инерции I =const

1. На концах крестовины 11 на одинаковом расстоянии от ее оси вращения установите и закрепите грузы 10 (m 1).

2. Замерьте штангенциркулем диаметры шкивов d 1 и d 2 и запишите их в табл. 3.1.

3. По шкале на вертикальной стойке 4 определите высоту h опускания наборного груза 15 (m ), равную расстоянию между риской фотоэлектрического датчика 14 и верхним краем визира 5 (риска фотоэлектрического датчика находится на одной высоте с верхним краем нижнего кронштейна 2, окрашенным в красный свет).

4. Установите минимальную массу наборного груза 15 (m ) и запишите ее в табл. 3.1 (массы грузов указаны на них).

5. Включите выключатель ""Сеть"" (""01""), расположенный на задней панели блока электронного. При этом должны загореться табло секундомера и включиться электромагнит. Вращать крестовину сейчас нельзя! Если один из элементов не сработал, сообщите об этом лаборанту.

6. Нажмите и удерживайте кнопку ""СТОП"", растормозив систему. При нажатой кнопке ""СТОП"" укрепите нить в прорезях на малом шкиве и затем, вращая крестовину, намотайте нить на малый шкив, поднимая при этом наборный груз 15. Когда нижний обрез груза будет находиться строго против верхнего края визира 5, отожмите кнопку ""СТОП"" – система затормозится.

7. Нажмите на кнопку ""СТАРТ"". Система растормозится, груз начнет ускоренно опускаться, а секундомер отсчитывать время. Когда груз пересечет световой луч фотодатчика, секундомер автоматически выключится и система затормозится. Запишите в табл. 3.1 измеренное время t 1.

Таблица 3.1

d 1=

d 2=

t ср

8. Замеры времени выполните по 3 раза для трех значений массы наборного груза 15 (m ). Повторите измерения на большом шкиве. Результаты замеров занесите в табл. 3.1. Выключите установку из сети.

9. Для любой массы m рассчитайте tср и выполните оценочный расчет момента инерции I , используя формулы (3.2), (3.3), (3.5), (3.1). Заполните полностью соответствующую строку в табл. 3.2 и подойдите к преподавателю на проверку.

Таблица 3.2

t ср ,

10. При оформлении отчета для всех значений tср рассчитайте a , e , M , I . Результаты измерений и расчетов занесите в табл. 3.2.

11. Рассчитайте среднее значение момента инерции Iср , вычислите методом Стьюдента абсолютную погрешность результата измерений (при расчетах принять t a ,n =2,57 для n= 6 и a = 0,95).

12. Постройте график зависимости e = f (М ), взяв значения e и M из табл. 3.2. Напишите выводы.

Упражнение №2 . Определение зависимости e (I )

углового ускорения e от момента инерции I

при постоянном вращающем моменте M =const

1. Укрепите грузы 10 (m 1) на концах крестовины на равном расстоянии от ее оси вращения. Замерьте расстояние l от центра масс груза m 1 до оси вращения крестовины и запишите в табл. 3.3. Запишите в табл. 3.4 массу груза m 1, выбитую на нем.

2. Выберите и запишите в табл. 3.4 радиус R шкива 12 и массу m наборного груза 15 (нежелательно брать одновременно большой шкив и большую массу). В упр. 2 выбранные R и m не изменяйте.

3. Для выбранных R и m три раза определите время t 1 опускания наборного груза 15 (m ). Результаты занесите в табл. 3.3.

Таблица 3.3

t ср

4. Выключите установку из сети. Сдвиньте все грузы 10 (m 1) на 1-2 см к оси вращения крестовины. Замерьте новое расстояние l и занесите его в табл. 3.3. Включите установку в сеть и измерьте трижды время t 2 опускания наборного груза 15 (m ). Замеры выполните для 6 различных значений l . Результаты занесите в табл. 3.3. Отключите установку от сети.

5. По формуле (3.7) выполните оценочный расчет I 0, взяв значение I и l из упр. 1.

6. Для любого l из табл. 3.3 рассчитайте tср и по формулам (3.2), (3.3) и (3.6) рассчитайте a , e и I . Заполните полностью соответствующую строку в табл. 3.4 и подойдите к преподавателю на проверку.

7. При оформлении отчета по формуле (3.7) вычислите среднее значение I 0, используя Iср и l из упр. 1. Используя полученное значение I 0, по формуле (3.6) вычислите I i для всех l из табл. 3.3. Результаты занесите в три последних столбца табл. 3.4.

Таблица 3.4

4m 1l2 ,

8. Используя формулы (3.2) и (3.3), рассчитайте Лабораторные работы" href="/text/category/laboratornie_raboti/" rel="bookmark">лабораторной работы соблюдайте общие требования техники безопасности в лаборатории механики в соответствии с инструкцией. Подключение установки к блоку электронному производится строго в соответствии с паспортом установки.

Контрольные вопросы

1. Дайте определение вращательного движения твердого тела относительно неподвижной оси.

2. Какая физическая величина является мерой инертности при поступательном движении? При вращательном движении? В каких единицах они измеряются?

3. Чему равен момент инерции материальной точки? Твердого тела?

4. При каких условиях момент инерции твердого тела минимален?

5. Чему равен момент инерции тела относительно произвольной оси вращения?

6. Как будет изменяться угловое ускорение системы, если при неизменяемых радиусе шкива R и массе груза m грузы на концах крестовины удалять от оси вращения?

7. Как изменится угловое ускорение системы, если при неизменном грузе m и неизменном положении грузов на крестовине увеличить радиус шкива?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Курс физики: Учеб. пособ. для втузов. – М.: Высш. шк., 1998, с. 34-38.

2. , Курс физики: Учеб. пособ. для втузов. – М.: Высш. шк., 2000, с. 47-58.

В этой статье описывается важный раздел физики - "Кинематика и динамика вращательного движения".

Основные понятия кинематики вращательного движения

Вращательным движением материальной точки вокруг неподвижной оси называют такое движение, траекторией которого является окружность, находящаяся в плоскости перпендикулярной к оси, а центр ее лежит на оси вращения.

Вращательное движение твердого тела - это движение, при котором по концентрическим (центры которых лежат на одной оси) окружностям движутся все точки тела в соответствии с правилом для вращательного движения материальной точки.

Пусть произвольное твердое тело T совершает вращения вокруг оси O, которая перпендикулярна плоскости рисунка. Выберем на данном теле точку M. При вращении эта точка будет описывать вокруг оси O круг радиусом r .

Через некоторое время радиус повернется относительно исходного положения на угол Δφ.

За положительное направление поворота принято направление правого винта (по часовой стрелке). Изменение угла поворота со временем называется уравнением вращательного движения твердого тела:

φ = φ(t).

Если φ измерять в радианах (1 рад - это угол, соответствующий дуге, длиной равной ее радиусу), то длина дуги окружности ΔS, которую пройдет материальная точка M за время Δt, равна:

ΔS = Δφr.

Основные элементы кинематики равномерного вращательного движения

Мерой перемещения материальной точки за небольшой промежуток времени dt служит вектор элементарного поворота .

Угловая скорость материальной точки или тела - это физическая величина, которая определяется отношением вектора элементарного поворота к продолжительности этого поворота. Направление вектора можно определить правилом правого винта вдоль оси О. В скалярном виде:

ω = dφ/dt.

Если ω = dφ/dt = const, то такое движение называется равномерное вращательное движение. При нем угловую скорость определяют по формуле

ω = φ/t.

Согласно предварительной формуле размерность угловой скорости

[ω] = 1 рад/с.

Равномерное вращательное движение тела можно описать периодом вращения. Период вращения T - физическая величина, определяющая время, за которое тело вокруг оси вращения выполняет один полный оборот ([T] = 1 с). Если в формуле для угловой скорости принять t = T, φ = 2 π (полный один оборот радиуса r), то

ω = 2π/T,

поэтому период вращения определим следующим образом:

T = 2π/ω.

Число оборотов, которое за единицу времени совершает тело, называется частотой вращения ν, которая равна:

ν = 1/T.

Единицы измерения частоты: [ν]= 1/c = 1 c -1 = 1 Гц.

Сравнивая формулы для угловой скорости и частоты вращения, получим выражение, связывающее эти величины:

ω = 2πν.

Основные элементы кинематики неравномерного вращательного движения

Неравномерное вращательное движение твердого тела или материальной точки вокруг неподвижной оси характеризует его угловая скорость, которая изменяется со временем.

Вектор ε , характеризующий скорость изменения угловой скорости, называется вектором углового ускорения:

ε = dω/dt.

Если тело вращается, ускоряясь, то есть dω/dt > 0 , вектор имеет направление вдоль оси в ту же сторону, что и ω.

Если вращательное движение замедлено - dω/dt < 0 , то векторы ε и ω противоположно направлены.

Замечание . Когда происходит неравномерное вращательное движение, вектор ω может меняться не только по величине, но и по направлению (при повороте оси вращения).

Связь величин, характеризующих поступательное и вращательное движение

Известно, что длина дуги с углом поворота радиуса и его величиной связана соотношением

ΔS = Δφ r.

Тогда линейная скорость материальной точки, выполняющей вращательное движение

υ = ΔS/Δt = Δφr/Δt = ωr.

Нормальное ускорение материальной точки, что выполняет вращательно поступательное движение, определим следующим образом:

a = υ 2 /r = ω 2 r 2 /r.

Итак, в скалярном виде

a = ω 2 r.

Тангенциальное ускоренной материальной точки, которая выполняет вращательное движение

a = ε r.

Момент импульса материальной точки

Векторное произведение радиуса-вектора траектории материальной точки массой m i на ее импульс называется моментом импульса этой точки касательно оси вращения. Направление вектора можно определить, воспользовавшись правилом правого винта.

Момент импульса материальной точки (L i ) направлен перпендикулярно плоскости, проведенной через r i и υ i , и образует с ними правую тройку векторов (то есть при движении с конца вектора r i к υ i правый винт покажет направление вектора L i).

В скалярной форме

L = m i υ i r i sin(υ i , r i).

Учитывая, что при движении по кругу радиус-вектор и вектор линейной скорости для i-й материальной точки взаимно перпендикулярные,

sin(υ i , r i) = 1.

Так что момент импульса материальной точки для вращательного движения примет вид

L = m i υ i r i .

Момент силы, которая действует на i-ю материальную точку

Векторное произведение радиуса-вектора, который проведен в точку приложения силы, на эту силу называется моментом силы, действующей на i-ю материальную точку относительно оси вращения.

В скалярной форме

M i = r i F i sin(r i , F i).

Считая, что r i sinα = l i , M i = l i F i .

Величина l i , равная длине перпендикуляра, опущенного из точки вращения на направление действия силы, называется плечом силы F i .

Динамика вращательного движения

Уравнение динамики вращательного движения записывается так:

M = dL/dt.

Формулировка закона следующая: скорость изменения момента импульса тела, которое совершает вращение вокруг неподвижной оси, равна результирующему моменту относительно этой оси всех внешних сил, приложенных к телу.

Момент импульса и момент инерции

Известно, что для i-й материальной точки момент импульса в скалярной форме задается формулой

L i = m i υ i r i .

Если вместо линейной скорости подставить ее выражение через угловую:

υ i = ωr i ,

то выражение для момента импульса примет вид

L i = m i r i 2 ω.

Величина I i = m i r i 2 называется моментом инерции относительно оси i-й материальной точки абсолютно твердого тела, проходящей через его центр масс. Тогда момент импульса материальной точки запишем:

L i = I i ω.

Момент импульса абсолютно твердого тела запишем как сумму моментов импульса материальных точек, составляющих данное тело:

L = Iω.

Момент силы и момент инерции

Закон вращательного движения гласит:

M = dL/dt.

Известно, что представить момент импульса тела можно через момент инерции:

L = Iω.

M = Idω/dt.

Учитывая, что угловое ускорение определяется выражением

ε = dω/dt,

получим формулу для момента силы, представленного через момент инерции:

M = Iε.

Замечание. Момент силы считается положительным, если угловое ускорение, которым он вызван, больше нуля, и наоборот.

Теорема Штейнера. Закон сложения моментов инерции

Если ось вращения тела через центр масс его не проходит, то относительно этой оси можно найти его момент инерции по теореме Штейнера:
I = I 0 + ma 2 ,

где I 0 - начальный момент инерции тела; m - масса тела; a - расстояние между осями.

Если система, которая совершает обороты округ неподвижной оси, состоит из n тел, то суммарный момент инерции такого типа системы будет равен сумме моментов, ее составляющих (закон сложения моментов инерции).

ЛЕКЦИЯ №4

ОСНОВНЫЕ ЗАКОНЫ КИНЕТИКИ И ДИНАМИКИ

ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ. МЕХАНИЧЕСКИЕ

СВОЙСТВА БИОТКАНЕЙ. БИОМЕХАНИЧЕСКИЕ

ПРОЦЕССЫ В ОПОРНО-ДВИГАТЕЛЬНОМ АППАРАТЕ

ЧЕЛОВЕКА.

1. Основные законы кинематики вращательного движения.

Вращательные движения тела вокруг неподвижной оси является наиболее простым видом движения. Оно характеризуется тем, что любые точки тела описывают окружности, центры которых расположены на одной прямой 0 ﺍ 0 ﺍﺍ , которая называется осью вращения (рис.1).

При этом положение тела в любой момент времени определяется углом поворота φ радиуса вектора R любой точки А относительно своего начального положения. Зависимость его от времени:

(1)

является уравнением вращательного движения. Быстрота вращения тела характеризуется угловой скоростью ω. Угловая скорость всех точек вращательного тела одинакова. Она является векторной величиной. Этот вектор направлен по оси вращения и связан с направлением вращения правилом правого винта:

. (2)

При равномерном движении точки по окружности

, (3)

где Δφ=2π – угол, соответствующий одному полному обороту тела, Δt=T – время одного полного оборота, или период вращения. Единица измерения угловой скорости [ω]=c -1 .

При равномерном движении ускорение тела характеризуется угловым ускорением ε (вектор его расположен аналогично вектору угловой скорости и направлен согласно с ним при ускоренном и в обратном направлении – при замедленном движении):

. (4)

Единица измерения углового ускорения [ε]=c -2 .

Вращательное движение можно характеризовать также линейной скоростью и ускорением его отдельных точек. Длина дуги dS, описываемой любой точкой А (рис.1) при повороте на угол dφ определяется по формуле: dS=Rdφ. (5)

Тогда линейная скорость точки :

. (6)

Линейное ускорение а :

. (7)

2. Основные законы динамики вращательного движения.

Вращение тела вокруг оси вызывается силой F, приложенной к любой точке тела, действующей в плоскости перпендикулярной оси вращения и направленной (или имеющей составляющую в этом направлении) перпендикулярно радиусу вектору точки приложения (рис.1).

Моментом силы относительно центра вращения называют векторную величину, численно равную произведению силына длину перпендикуляраd, опущенного из центра вращения на направление силы, называемого плечом силы. На рис.1 d=R, поэтому

. (8)

Момент вращающей силы является векторной величиной. Векторприложен к центру окружности О и направлен вдоль оси вращения. Направление векторасогласуется с направлением силы по правилу правого винта. Элементарная работаdA i , при повороте на малый угол dφ, когда тело проходит малый путь dS, равна:

Мерой инертности тела при поступательном движении является масса. При вращении тела мера его инертности характеризуется моментом инерции тела относительно оси вращения.

Моментом инерции I i материальной точки относительно оси вращения называют величину, равную произведению массы точки на квадрат расстояния её от оси (рис.2):

. (10)

Моментом инерции тела относительно оси называют сумму моментов инерции материальных точек, из которых состоит тело:

. (11)

Или в пределе (n→∞):
, (12)

где интегрирование производится по всему объёмуV. Подобным образом вычисляются моменты инерции однородных тел правильной геометрической формы. Момент инерции выражается в кг·м 2 .

Момент инерции человека относительно вертикальной оси вращения, проходящей через центр масс (центр масс человека находится в сагиттальной плоскости несколько впереди второго крестового позвонка), в зависимости от положения человека имеет следующие значения: 1,2 кг·м 2 при стойке «смирно»; 17 кг·м 2 – в горизонтальном положении.

При вращении тела его кинетическая энергия складывается из кинетических энергий отдельных точек тела:

Продифференцировав (14), получим элементарное изменение кинетической энергии:

. (15)

Приравняв элементарную работу (формула 9) внешних сил к элементарному изменению кинетической энергии (формула 15), получим:
, откуда:
или, учитывая, что
получим:
. (16)

Это уравнение называется основным уравнением динамики вращательного движения. Эта зависимость аналогична IIзакону Ньютона для поступательного движения.

Моментом импульса L i материальной точки относительно оси называется величина, равная произведению импульса точки на расстояние её до оси вращения:

. (17)

Момент импульса Lтела, вращающегося вокруг неподвижной оси:

Момент импульса есть векторная величина, ориентированная по направлению вектора угловой скорости.

Теперь возвратимся к основному уравнению (16):

,
.

Подведём постоянную величину Iпод знак дифференциала и получим:
, (19)

где Mdtназывают импульсом момента силы. Если на тело не действуют внешние силы (М=0), то равно нулю и изменение момента количества движения (dL=0). Это означает, что момент импульса остаётся постоянным:
. (20)

Этот вывод называется законом сохранения момента импульса относительно оси вращения. Его используют, например, при вращательных движениях относительно свободной оси в спорте, например в акробатике и т.д. Так, фигурист на льду, изменяя в процессе вращения положение тела и соответственно момент инерции относительно оси вращения, может регулировать свою скорость вращения.

Момент силы

Вращающее действие силы определяется ее моментом. Моментом силы относительно какой-либо точки называется векторное произведение

Радиус-вектор, проведенный из точки в точку приложения силы (рис.2.12). Единица измерения момента силы .

Рисунок 2.12

Величина момента силы

,

или можно записать

где - плечо силы (кратчайшее расстояние от точки до линии действия силы).

Направление вектора определяется по правилу векторного произведения или по правилу «правого винта» (векторы и параллельным переносом совмещаем в точке О, направление вектора определяется так, чтобы из его конца поворот от вектора к был виден против часовой стрелки – на рис 2.12 вектор направлен перпендикулярно плоскости чертежа «от нас» (аналогично по правилу буравчика – поступательное движение соответствует направлению вектора , вращательное соответствует повороту от к )).

Момент силы относительно какой-либо точки равен нулю, если линия действия силы проходит через эту точку.

Проекция вектора на какую-либо ось, например, ось z, называется моментом силы относительно этой оси. Чтобы определить момент силы относительно оси, сначала проецируют силу на плоскость, перпендикулярную оси (рис. 2.13), а затем находят момент этой проекции относительно точки пересечения оси с перпендикулярной ей плоскостью. Если линия действия силы параллельна оси, или пересекает ее, то момент силы относительно этой оси равен нулю.


Рисунок 2.13

Момент импульса

Моментомимпульса материальной точки массой , движущейся со скоростью , относительно какой-либо точки отсчета , называют векторное произведение

,

Радиус-вектор материальной точки (рис. 2.14), - ее импульс.

Рисунок 2.14

Величина момента импульса материальной точки

,

где -кратчайшее расстояние от линии вектора до точки .

Направление момента импульса определяется аналогично направлению момента силы.

Если выражение для L 0 умножить и разделить на l получим:

Где - момент инерции материальной точки - аналог массы во вращательном движении.

- угловая скорость.

Момент инерции твердого тела

Видно, что получающиеся формулы очень похожи на выражения для импульса и для второго закона Ньютона соответственно, только вместо линейной скорости и ускорения используются угловые скорость и ускорение, а вместо массы – величина I=mR 2 , именуемая моментом инерции материальной точки .

Если тело нельзя считать материальной точкой, но можно считать абсолютно твердым, то его момент инерции можно считать суммой моментов инерции бесконечно малых его частей, поскольку угловые скорости вращения этих частей одинаковы (рис. 2.16). Сумма бесконечно малых – интеграл:

Для любого тела существуют оси, проходящие через его центр инерции, обладающие таким свойством: при вращении тела вокруг таких осей в отсутствии внешних воздействий оси вращения не меняют своего положения. Такие оси называются свободными осями тела . Можно доказать, что для тела любой формы и с любым распределением плотности существуют три взаимно перпендикулярные свободные оси, именуемые главными осями инерции тела. Моменты инерции тела относительно главных осей именуются главными (собственными) моментами инерции тела.

Главные моменты инерции некоторых тел приведены в табл.:

Теорема Гюйгенса-Штейнера.

.

Это выражение носит название теоремы Гюйгенса-Штейнера : момент инерции тела относительно произвольной оси равен сумме момента инерции тела относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями .

Основное уравнение динамики вращательного движения

Основной закон динамики вращательного движения можно получить из второго закона Ньютона для поступательного движения твердого тела

Где F – сила, приложенная к телу массой m ; а – линейное ускорение тела.

Если к твердому телу массой m в точке А (рис. 2.15) приложить силу F , то в результате жесткой связи между всеми материальными точками тела все они получат угловое ускорение ε и соответственные линейные ускорения, как если бы на каждую точку действовала сила F 1 …F n . Для каждой материальной точки можно записать:

Где поэтому

Где m i – масса i- й точки; ε – угловое ускорение; r i – ее расстояние до оси вращения.

Умножая левую и правую части уравнения на r i , получаем

Где – момент силы – это произведение силы на ее плечо.

В инерциальной системе отсчёта угловое ускорение , приобретаемое телом, вращающимся относительно неподвижной оси, пропорционально суммарному моменту всех внешних сил , действующих на тело, и обратно пропорционально моменту инерции тела относительно данной оси:

Можно дать и более простую формулировку основному закону динамики вращательного движения (его ещё называют вторым законом Ньютона для вращательного движения ) : вращающий момент равен произведению момента инерции на угловое ускорение :

Моментом импульса (моментом количества движения , угловым моментом ) тела называется произведение его момента инерции на угловую скорость :

Момент импульса – векторная величина. Его направление совпадает с направлением вектора угловой скорости.

Изменение момента импульса определяется следующим образом:

. (I.112)

Изменение момента импульса (при неизменном моменте инерции тела) может произойти, только вследствие изменения угловой скорости и всегда обусловлено действием момента силы .

Согласно формуле , а также формулам (I.110) и (I.112) изменение момента импульса можно представить в виде:

. (I.113)

Произведение в формуле (I.113) называется импульсом момента силы или движущим моментом . Он равен изменению момента импульса.

Формула (I.113) справедлива при условии, что момент силы не меняется с течением времени . Если же момент силы зависит от времени, т.е. , то

. (I.114)

Формула (I.114) показывает, что: изменение момента импульса равно интегралу по времени от момента силы . Кроме того, если эту формулу представить в виде: , то из неё будет следовать определение момента силы : мгновенный момент силы представляет собой первую производную момента импульса по времени ,

Выражение (I.115) является ещё одной формой основного уравнения (закона ) динамики вращательного движения твёрдого тела относительно неподвижной оси: производная момента импульса твёрдого тела относительно оси равна моменту сил относительно той же оси .

Вопрос 15

Момент инерции



Моментом инерции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс n материальных точек системы на квадраты их расстоянии до рассматриваемой оси:

J=

Суммирование производится по всем элементарным массам m(i), на которые разбивается тело

В случае непрерывного распределения масс эта сумма сводится к интегралу

где интегрирование производится по всему объему тела. Величина г в этом случае есть функция положения точки с координатами х, у, z.

В качестве примера найдем момент инерции однородного сплошного цилиндра высотой h и радиусом R относительно его геометрической оси. Разобьем цилиндр на отдельные полые концентрические цилиндры бесконечно малой толщины dr с внутренним радиусом г и внешним г + dr. Момент инерции каждого полого цилиндра d,/ = r^2 dm (так как dr≤r то считаем, что расстояние всех точек цилиндра от оси равно г), где dm - масса всего элементарного цилиндра; его объем 2πr hrdr . Если р - плотность материала, то dm = 2πhpr^3dr . Тогда момент инерции сплошного цилиндра

но так как πR^3h - объем цилиндра, то его масса m= πR^2hp , а момент инерции

Теорема Штейнера

Момент инерции тела J относительно произвольной оси равен моменту его инерции относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы тела на квадрат расстояния а между осями:

J= + ma^2

1. Момент инерции однородного прямого тонкого цилиндрического стержня длины и массы относительно оси проходящей через его середину и перпендикулярной к его длине:

2. Момент инерции однородного сплошного цилиндра (или диска ) радиуса и массы относительно оси симметрии перпендикулярной к его плоскости и проходящей через его центр:

3. Момент инерции цилиндра радиуса , массы и высоты относительно оси, перпендикулярной к его высоте и проходящей через её середину:

4. Момент инерции шара (тонкостенной сферы ) радиуса и массы относительно его диаметра (или оси проходящей через центр сферы):

5. Момент инерции стержня длины и массы , относительно оси проходящей через один из его концов и перпендикулярной к его длине:

6. Момент инерции полого тонкостенного цилиндра радиуса и массы , относительно оси цилиндра:

7. Момент инерции цилиндра с отверстием (колесо, муфта):

,

где и - радиусы цилиндра и отверстия в нём. Момент импульса и для незамкнутых систем постоянен, если результирующий момент внешних сил, приложенных к системе, равен нулю.

Гироскоп (пример:юла) – симметричное тело, вращающиеся вокруг своей оси с большой скоростью.

Момент количества движения гироскопа совпадает с его осью вращения.

Электрический заряд – это мера участия тел в электромагнитных взаимодействиях.

Существует два рода электрических зарядов, условно названных положительными и отрицательными.

Закон Кулона:

.

Электрическое поле – это особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами.

Напряженность электрического поля – векторная физическая величина. Направление вектора напряжённости совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

Силовые линии кулоновских полей положительных и отрицательных точечных зарядов: