Параллельности прямых является равенство. Параллельные прямые

Эта глава посвящена изучению параллельных прямых. Так называются две прямые на плоскости, которые не пересекаются. Отрезки параллельных прямых мы видим в окружающей обстановке - это два края прямоугольного стола, два края обложки книги, две штанги троллейбуса и т. д. Параллельные прямые играют в геометрии очень важную роль. В этой главе вы узнаете о том, что такое аксиомы геометрии и в чём состоит аксиома параллельных прямых - одна из самых известных аксиом геометрии.

В п. 1 мы отмечали, что две прямые либо имеют одну общую точку, т. е. пересекаются, либо не имеют ни одной общей точки, т. е. не пересекаются.

Определение

Параллельность прямых а и b обозначают так: а || b.

На рисунке 98 изображены прямые а и b, перпендикулярные к прямой с. В п. 12 мы установили, что такие прямые а и b не пересекаются, т. е. они параллельны.

Рис. 98

Наряду с параллельными прямыми часто рассматривают параллельные отрезки. Два отрезка называются параллельными , если они лежат на параллельных прямых. На рисунке 99, а отрезки АВ и CD параллельны (АВ || CD), а отрезки MN и CD не параллельны. Аналогично определяется параллельность отрезка и прямой (рис. 99, б), луча и прямой, отрезка и луча, двух лучей (рис. 99, в).


Рис. 99 Признаки параллельности двух прямых

Прямая с называется секущей по отношению к прямым а и b, если она пересекает их в двух точках (рис. 100). При пересечении прямых а и b секущей с образуется восемь углов, которые на рисунке 100 обозначены цифрами. Некоторые пары этих углов имеют специальные названия:

    накрест лежащие углы : 3 и 5, 4 и 6;
    односторонние углы : 4 и 5, 3 и 6;
    соответственные углы : 1 и 5, 4 и 8, 2 и 6, 3 и 7.


Рис. 100

Рассмотрим три признака параллельности двух прямых, связанные с этими парами углов.

Теорема

Доказательство

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны: ∠1 = ∠2 (рис. 101, а).

Докажем, что а || b. Если углы 1 и 2 прямые (рис. 101, б), то прямые а и b перпендикулярны к прямой АВ и, следовательно, параллельны.


Рис. 101

Рассмотрим случай, когда углы 1 и 2 не прямые.

Из середины О отрезка АВ проведём перпендикуляр ОН к прямой а (рис. 101, в). На прямой b от точки В отложим отрезок ВН 1 , равный отрезку АН, как показано на рисунке 101, в, и проведём отрезок ОН 1 . Треугольники ОНА и ОН 1 В равны по двум сторонам и углу между ними (АО = ВО, АН = ВН 1 , ∠1 = ∠2), поэтому ∠3 = ∠4 и ∠5 = ∠6. Из равенства ∠3 = ∠4 следует, что точка Н 1 лежит на продолжении луча ОН, т. е. точки Н, О и Н 1 лежат на одной прямой, а из равенства ∠5 = ∠6 следует, что угол 6 - прямой (так как угол 5 - прямой). Итак, прямые а и b перпендикулярны к прямой HH 1 поэтому они параллельны. Теорема доказана.

Теорема

Доказательство

Пусть при пересечении прямых а и b секущей с соответственные углы равны, например ∠1 =∠2 (рис. 102).


Рис. 102

Так как углы 2 и 3 - вертикальные, то ∠2 = ∠3. Из этих двух равенств следует, что ∠1 = ∠3. Но углы 1 и 3 - накрест лежащие, поэтому прямые а и b параллельны. Теорема доказана.

Теорема

Доказательство

    Пусть при пересечении прямых а и b секущей с сумма односторонних углов равна 180°, например ∠1 + ∠4 = 180° (см. рис. 102).

    Так как углы 3 и 4 - смежные, то ∠3 + ∠4 = 180°. Из этих двух равенств следует, что накрест лежащие углы 1 и 3 равны, поэтому прямые а и b параллельны. Теорема доказана.

Практические способы построения параллельных прямых

Признаки параллельности прямых лежат в основе способов построения параллельных прямых с помощью различных инструментов, используемых на практике. Рассмотрим, например, способ построения параллельных прямых с помощью чертёжного угольника и линейки. Чтобы построить прямую, проходящую через точку М и параллельную данной прямой а, приложим чертёжный угольник к прямой а, а к нему линейку так, как показано на рисунке 103. Затем, передвигая угольник вдоль линейки, добьёмся того, чтобы точка М оказалась на стороне угольника, и проведём прямую b. Прямые а и b параллельны, так как соответственные углы, обозначенные на рисунке 103 буквами α и β, равны.


Рис. 103 На рисунке 104 показан способ построения параллельных прямых при помощи рейсшины. Этим способом пользуются в чертёжной практике.


Рис. 104 Аналогичный способ применяется при выполнении столярных работ, где для разметки параллельных прямых используется малка (две деревянные планки, скреплённые шарниром, рис. 105).


Рис. 105

Задачи

186. На рисунке 106 прямые а и b пересечены прямой с. Докажите, что а || b, если:

    а) ∠1 = 37°, ∠7 = 143°;
    б) ∠1 = ∠6;
    в) ∠l = 45°, а угол 7 в три раза больше угла 3.


Рис. 106

187. По данным рисунка 107 докажите, что АВ || DE.


Рис. 107

188. Отрезки АВ и CD пересекаются в их общей середине. Докажите, что прямые АС и BD параллельны.

189. Используя данные рисунка 108, докажите, что ВС || AD.


Рис. 108

190. На рисунке 109 АВ = ВС, AD = DE, ∠C = 70°, ∠EAC = 35°. Докажите, что DE || АС.


Рис. 109

191. Отрезок ВК - биссектриса треугольника АВС. Через точку К проведена прямая, пересекающая сторону ВС в точке М так, что ВМ = МК. Докажите, что прямые КМ и АВ параллельны.

192. В треугольнике АВС угол А равен 40°, а угол ВСЕ, смежный с углом АСВ, равен 80°. Докажите, что биссектриса угла ВСЕ параллельна прямой АВ.

193. В треугольнике ABC ∠A = 40°, ∠B = 70°. Через вершину В проведена прямая BD так, что луч ВС - биссектриса угла ABD. Докажите, что прямые АС и BD параллельны.

194. Начертите треугольник. Через каждую вершину этого треугольника с помощью чертёжного угольника и линейки проведите прямую, параллельную противоположной стороне.

195. Начертите треугольник АВС и отметьте точку D на стороне АС. Через точку D с помощью чертёжного угольника и линейки проведите прямые, параллельные двум другим сторонам треугольника.

Они не пересекаются, сколько бы их ни продолжали. Параллельность прямых на письме обозначают так: AB || С E

Возможность существования таких прямых доказывается теоремой.

Теорема.

Через всякую точку, взятую вне данной прямой, можно провести параллельную этой прямой .

Пусть AB данная прямая и С какая-нибудь точка, взятая вне ее. Требуется доказать, что через С можно провести прямую, параллельную AB . Опустим на AB из точки С перпендикуляр С D и затем проведем С E ^ С D , что возможно. Прямая CE параллельна AB .

Для доказательства допустим противное, т.е., что CE пересекается с AB в некоторой точке M . Тогда из точки M к прямой С D мы имели бы два различных перпендикуляра M D и , что невозможно. Значит, CE не может пересечься с AB , т.е. С E параллельна AB .

Следствие.

Два перпендикуляра (С E и DB ) к одной прямой (С D ) параллельны.

Аксиома параллельных линий.

Через одну и ту же точку нельзя провести двух различных прямых, параллельных одной и той же прямой.

Так, если прямая С D , проведенная через точку С параллельна прямой AB , то всякая другая прямая С E , проведенная через ту же точку С , не может быть параллельна AB , т.е. она при продолжении пересечется с AB .

Доказательство этой не вполне очевидной истины оказывается невозможным. Ее принимают без доказательства, как необходимое допущение (postulatum).

Следствия.

1. Если прямая (С E ) пересекается с одной из параллельных (СВ ), то она пересекается и с другой (AB ), потому что в противном случае через одну и ту же точку С проходили бы две различные прямые, параллельные AB , что невозможно.

2. Если каждая из двух прямых (A и B ) параллельны одной и той же третьей прямой (С ) , то они параллельны между собой.

Действительно, если предположить, что A и B пересекаются в некоторой точке M , то тогда через эту точку проходили бы две различные прямые, параллельные С , что невозможно.

Теорема .

Если прямая перпендикулярна к одной из параллельных прямых, то она перпендикулярна и к другой параллельной .

Пусть AB || С D и EF ^ AB .Требуется доказать, что EF ^ С D .

Перпендикуляр E F , пересекаясь с AB , непременно пересечет и С D . Пусть точка пересечения будет H .

Предположим теперь, что С D не перпендикулярна к EH . Тогда какая-нибудь другая прямая, например HK , будет перпендикулярна к EH и, следовательно через одну и ту же точку H будут проходить две прямые параллельные AB : одна С D , по условию, а другая HK по доказанному раньше. Так как это невозможно, то нельзя допустить, что СВ была не перпендикулярна к EH .

ГЛАВА III.
ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ

§ 35. ПРИЗНАКИ ПАРАЛЛЕЛЬНОСТИ ДВУХ ПРЯМЫХ.

Теорема о том, что два перпендикуляра к одной прямой параллельны (§ 33), даёт признак параллельности двух прямых. Можно вывести более общие признаки параллельности двух прямых.

1. Первый признак параллельности.

Если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны.

Пусть прямые АВ и СD пересечены прямой ЕF и / 1 = / 2. Возьмём точку О - середину отрезка КL секущей ЕF (черт. 189).

Опустим из точки О перпендикуляр ОМ на прямую АВ и продолжим его до пересечения с прямой СD, АВ_|_МN. Докажем, что и СD_|_МN.
Для этого рассмотрим два треугольника: МОЕ и NОК. Эти треугольники равны между собой. В самом деле: / 1 = / 2 по условию теоремы; ОK = ОL - по построению;
/ МОL = / NОК, как вертикальные углы. Таким образом, сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника; следовательно, /\ МОL = /\ NОК, а отсюда и
/ LМО = / КNО, но / LМО прямой, значит, и / КNО тоже прямой. Таким образом, прямые АВ и СD перпендикулярны к одной и той же прямой МN, следовательно, они параллельны (§ 33), что и требовалось доказать.

Примечание. Пересечение прямых МО и СD может быть установлено путём поворота треугольника МОL вокруг точки О на 180°.

2. Второй признак параллельности.

Посмотрим, будут ли параллельны прямые АВ и СD, если при пересечении их третьей прямой ЕF равны соответственные углы.

Пусть какие-нибудь соответственные углы равны, например / 3 = / 2 (черт. 190);
/ 3 = / 1, как углы вертикальные; значит, / 2 будет равен / 1. Но углы 2 и 1 - внутренние накрест лежащие углы, а мы уже знаем, что если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны. Следовательно, АВ || СD.

Если при пересечении двух прямых третьей соответственные углы равны, то эти две прямые параллельны.

На этом свойстве основано построение параллельных прямых при помощи линейки и чертёжного треугольника. Выполняется это следующим образом.

Приложим треугольник к линейке так, как это показано на чертеже 191. Будем передвигать треугольник так, чтобы одна его сторона скользила по линейке, а по какой-либо другой стороне треугольника проведём несколько прямых. Эти прямые будут параллельны.

3. Третий признак параллельности.

Пусть нам известно, что при пересечении двух прямых АВ и СD третьей прямой сумма каких-нибудь внутренних односторонних углов равна 2d (или 180°). Будут ли в этом случае прямые АВ и СD параллельны (черт. 192).

Пусть / 1 и / 2-внутренние односторонние углы и в сумме составляют 2d .
Но / 3 + / 2 = 2d , как углы смежные. Следовательно, / 1 + / 2 = / 3+ / 2.

Отсюда / 1 = / 3, а эти углы внутренние накрест лежащие. Следовательно, АВ || СD.

Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 2 d, то эти две прямые параллельны.

Упражнение.

Доказать, что прямые параллельны:
а) если внешние накрест лежащие углы равны (черт. 193);
б) если сумма внешних односторонних углов равняется 2d (черт. 194).

Параллельность – очень полезное свойство в геометрии. В реальной жизни параллельные стороны позволяют создавать красивые, симметричные вещи, приятные любому глазу, поэтому геометрия всегда нуждалась в способах эту параллельность проверить. О признаках параллельных прямых мы и поговорим в этой статье.

Определение для параллельности

Выделим определения, которые необходимо знать для доказательства признаков параллельности двух прямых.

Прямые называют параллельными, если они не имеют точек пересечения. Кроме того, в решениях обычно параллельные прямые идут в связке с секущей линией.

Секущей прямой называется прямая, которая пересекает обе параллельные прямые. В этом случае образуются накрест лежащие, соответственные и односторонние углы. Накрест лежащими будут пары углов 1 и 4; 2 и 3; 8 и 6; 7 и 5. Соответственными будут 7 и 2; 1 и 6; 8 и 4; 3 и 5.

Односторонними 1 и 2; 7 и 6; 8 и 5; 3 и 4.

При правильном оформлении пишется: «Накрест лежащие углы при двум параллельных прямых а и b и секущей с», потому что для двух параллельных прямых может существовать бесконечное множество секущих, поэтому необходимо указывать, какую именно секущую, вы имеете в виду.

Также для доказательства понадобится теорема о внешнем угле треугольника, которая гласит, что внешний угол треугольника равен сумме двух углов треугольника несмежных с ним.

Признаки

Все признаки параллельных прямых завязаны на знание свойств углов и теорему о внешнем угле треугольника.

Признак 1

Две прямые параллельны, если накрест лежащие углы равны.

Рассмотрим две прямые а и b с секущей с. Накрест лежащие углы 1 и 4 равны. Предположим, что прямые не параллельны. Значит прямые пересекаются и должна быть точка пересечения М. Тогда образуется треугольник АВМ с внешним углом 1. Внешний угол должен быть равен сумме углов 4 и АВМ как несмежных с ним по теореме о внешнем угле в треугольнике. Но тогда получится, что угол 1 больше угла 4, а это противоречит условию задачи, значит, точки М не существует, прямые не пересекаются, то есть параллельны.

Рис. 1. Рисунок к доказательству.

Признак 2

Две прямые параллельны, если соответственные углы при секущей равны.

Рассмотрим две прямые а и b с секущей с. Соответственные углы 7 и 2 равны. Обратим внимание на угол 3. Он является вертикальным для угла 7. Значит, углы 7 и 3 равны. Значит, углы 3 и 2 также равны, так как <7=<2 и <7=<3. А угол 3 и угол 2 являются накрест лежащими. Следовательно, прямые параллельны, что и требовалось доказать.

Рис. 2. Рисунок к доказательству.

Признак 3

Две прямые параллельны, если сумма односторонних углов равна 180 градусам.

Рис. 3. Рисунок к доказательству.

Рассмотрим две прямые а и b с секущей с. Сумма односторонних углов 1 и 2 равна 180 градусов. Обратим внимание на углы 1 и 7. Они являются смежными. То есть:

$$<1+<7=180$$

$$<1+<2=180$$

Вычтем из первого выражения второе:

$$(<1+<7)-(<1+<2)=180-180$$

$$(<1+<7)-(<1+<2)=0$$

$$<1+<7-<1-<2=0$$

$$<7-<2=0$$

$<7=<2$ - а они являются соответственными. Значит, прямые параллельны.

Что мы узнали?

Мы в подробностях разобрали, какие углы получаются при рассечении параллельных прямых третьей линией, выделили и подробно расписали доказательство трех признаков параллельности прямых.

Тест по теме

Оценка статьи

Средняя оценка: 4.1 . Всего получено оценок: 220.

Определение 1

Прямую $с$ называют секущей для прямых $а$ и $b$, если она пересекает их в двух точках.

Рассмотрим две прямые $a$ и $b$ и секущую прямую $с$.

При их пересечении возникают углы, которые обозначим цифрами от $1$ до $8$.

У каждого из этих углов есть название, которое часто приходиться употреблять в математике:

  • пары углов $3$ и $5$, $4$ и $6$ называются накрест лежащими ;
  • пары углов $1$ и $5$, $4$ и $8$, $2$ и $6$, $3$ и $7$ называют соответственными ;
  • пары углов $4$ и $5$, $5$ и $6$ называют односторонними .

Признаки параллельности прямых

Теорема 1

Равенство пары накрест лежащих углов для прямых $a$ и $b$ и секущей $с$ говорит о том, что прямые $a$ и $b$ – параллельны:

Доказательство .

Пусть накрест лежащие углы для прямых $а$ и $b$ и секущей $с$ равны: $∠1=∠2$.

Покажем, что $a \parallel b$.

При условии, что углы $1$ и $2$ будут прямыми, получим, что прямые $а$ и $b$ будут перпендикулярными относительно прямой $АВ$, а значит – параллельными.

При условии, что углы $1$ и $2$ не являются прямыми, проведем из точки $О$ – середины отрезка $АВ$, перпендикуляр $ОН$ к прямой $а$.

На прямой $b$ отложим отрезок $BH_1=AH$ и проведем отрезок $OH_1$. Получаем два равных треугольника $ОНА$ и $ОH_1В$ по двум сторонам и углу между ними ($∠1=∠2$, $АО=ВО$, $BH_1=AH$), поэтому $∠3=∠4$ и $∠5=∠6$. Т.к. $∠3=∠4$, то точка $H_1$ лежит на луче $ОН$, таким образом точки $Н$, $О$ и $H_1$ принадлежат одной прямой. Т.к. $∠5=∠6$, то $∠6=90^{\circ}$. Таким образом, прямые $а$ и $b$ являются перпендикулярными относительно прямой $HH_1$ являются параллельными. Теорема доказана.

Теорема 2

Равенство пары соответственных углов для прямых $a$ и $b$ и секущей $с$ говорит о том, что прямые $a$ и $b$ – параллельны:

если $∠1=∠2$, то $a \parallel b$.

Доказательство .

Пусть соответственные углы для прямых $а$ и $b$ и секущей $с$ равны: $∠1=∠2$. Углы $2$ и $3$ являются вертикальными, поэтому $∠2=∠3$. Значит $∠1=∠3$. Т.к. углы $1$ и $3$ – накрест лежащие, то прямые $а$ и $b$ являются параллельными. Теорема доказана.

Теорема 3

Если сумма двух односторонних углов для прямых $a$ и $b$ и секущей $с$ равна $180^{\circ}C$, то прямые $a$ и $b$ – параллельны:

если $∠1+∠4=180^{\circ}$, то $a \parallel b$.

Доказательство .

Пусть односторонние углы для прямых $а$ и $b$ и секущей $с$ в сумме дают $180^{\circ}$, например

$∠1+∠4=180^{\circ}$.

Углы $3$ и $4$ являются смежными, поэтому

$∠3+∠4=180^{\circ}$.

Из полученных равенств видно, что накрест лежащие углы $∠1=∠3$, из чего следует, что прямые $а$ и $b$ являются параллельными.

Теорема доказана.

Из рассмотренных признаков вытекает параллельность прямых.

Примеры решения задач

Пример 1

Точка пересечения делит отрезки $АВ$ и $CD$ пополам. Доказать, что $AC \parallel BD$.

Дано : $AO=OB$, $CO=OD$.

Доказать : $AC \parallel BD$.

Доказательство .

Из условия задачи $AO=OB$, $CO=OD$ и равенства вертикальных углов $∠1=∠2$ согласно I-му признаку равенства треугольников следует, что $\bigtriangleup COA=\bigtriangleup DOB$. Таким образом, $∠3=∠4$.

Углы $3$ и $4$ – накрест лежащие при двух прямых $AC$ и $BD$ и секущей $AB$. Тогда согласно I-му признаку параллельности прямых $AC \parallel BD$. Утверждение доказано.

Пример 2

Дан угол $∠2=45^{\circ}$, а $∠7$ в $3$ раза больше данного угла. Доказать, что $a \parallel b$.

Дано : $∠2=45^{\circ}$, $∠7=3∠2$.

Доказать : $a \parallel b$.

Доказательство :

  1. Найдем значение угла $7$:

$∠7=3 \cdot 45^{\circ}=135^{\circ}$.

  1. Вертикальные углы $∠5=∠7=135^{\circ}$, $∠2=∠4=45^{\circ}$.
  2. Найдем сумму внутренних углов $∠5+∠4=135^{\circ}+45^{\circ}=180^{\circ}$.

Согласно III-му признаку параллельности прямых $a \parallel b$. Утверждение доказано.

Пример 3

Дано : $\bigtriangleup ABC=\bigtriangleup ADB$.

Доказать : $AC \parallel BD$, $AD \parallel BC$.

Доказательство :

У рассматриваемых рисунков сторона $АВ$ – общая.

Т.к. треугольники $АВС$ и $ADB$ равны, то $AD=CB$, $AC=BD$, а также соответствующие углы равны $∠1=∠2$, $∠3=∠4$, $∠5=∠6$.

Пара углов $3$ и $4$ – накрест лежащие для прямых $АС$ и $BD$ и соответствующей секущей $АВ$, поэтому согласно I-му признаку параллельности прямых $AC \parallel BD$.

Пара углов $5$ и $6$ – накрест лежащие для прямых $AD$ и $BC$ и соответствующей секущей $АВ$, поэтому согласно I-му признаку параллельности прямых $AD \parallel BC$.