Построение hs диаграммы. Водяной пар

is - диаграмма является наиболее удобной для расчетных целей. Это свя­зано с тем, что удельные количества теплоты и работы изображаются не площадями, как это имеет место в Ts- и pv - диаграммах, а отрезками линий (рис.6.4).

За начало координат в is - диаграмме принято состояние воды в тройной точке, где s 0 =0 (допущение) i o =0. По оси абсцисс откладывается удельная энтропия, а по оси ординат - удельная энтальпия. На основе данных таблиц водяного пара на диаграмму наносятся пограничные кривые жидкости (АК) и пара (KB) (соответственно нулевой х= 0и единичной х= 1степени сухости), сходящиеся в критической точке К. Пограничная кривая жидкости выходит из начала координат.

Изобары (p=const )в области влажного пара являются прямыми наклон­ными линиями, берущими начало на пограничной кривой нулевой степени сухости, к которой они касательны. В этой области изобары и изотермы сов­падают, т.е. они имеют одинаковый коэффициент наклона к оси абсцисс. Для любой изобары - изотермы

где φ - угол наклона изобар к оси s, T s - температура насыщения, неизменная для данного давления всюду между пограничными кривыми и КВ.

В области перегретого пара (правее и выше кривой х =1) изобары имеют вид кривых отклоняющихся вверх с выпуклостью, направленной вниз. Изо­термы в этой области отклоняются вправо и их выпуклость направлена вверх. Изобара АВ 1 соответствует давлению в тройной точке р 0 = 0,000611 МПа. Область диаграммы, расположенная ниже тройной точки, характери­зует различные состояния смеси пара и льда.

Между кривыми АК и KB наносится сетка линий постоянной степени су­хости (x=const )пара, сходящихся в критической точке К.

Кроме того, на диаграмму наносится сетка изохор, имеющих вид кривых, поднимающихся вверх (как в области влажного, так и в области перегретого пара) более круто, чем изобары. На is -диаграмме рис. 6.3. изохоры не при­ведены.

В практических расчетах обычно используется лишь область диаграммы, расположенная в правом верхнем углу. В связи с чем, начало координат пе­реносится из точки 0 в точку 0", что дает возможность изображать диаграмму в большем масштабе.

Диаграмма is широко применяется для расчета процессов с водяным па­ром. Общий метод состоит в следующем.

1. По заданным начальным параметрам, характеристике процесса и за­данному конечному параметру в i s-диаграмме находится график процесса.

2. По начальной и конечной точкам процесса находятся все основные па­раметры пара в этих точках.

3.Определяется изменение внутренней энергии по формуле

4.Определяется теплота процесса по формулам:

а) процесс ν = const ;

б) процесс р = const ;

в) процесс Т = const ;

г) процесс s = const q = 0.

5.0пределяется удельная работа по формуле

Все рассмотренные выше диаграммы в pv- , Ts- и is - координатах в соот­ветствующих масштабах строятся на основе таблиц параметров, полученных из опытных и теоретических данных. Наиболее точные таблицы для водяно­го пара разработаны в Московском энергетическом институте под руково­дством проф. М.П.Вукаловича .

Вода и. водяной пар широко применяются в энергетике, в отоплении, вентиляции, горячем водоснабжении.

Водяной пар - реальный газ. Он может быть влажным, сухим насыщенным и перегретым. Уравнения состояния реальных газов сложны, поэтому в теплотехнических расчетах предпочитают использовать таблицы и диаграммы. Особое значение для технических расчетов процессов с водяным паром имеет h,s -диаграмма водяного пара.

В диаграмме h,S нанесена (рисунок 5.1 а), верхняя пограничная кривая (степень сухости пара X=1) соответствующая сухому насыщенному пару. Выше этой кривой располагается область перегретого пара.

Рисунок 5.1 Диаграмма hS водяного пара

Ниже влажного насыщенного пара. В область влажного насыщенного пара нанесены кривые сухости (X=0,95; Х=0,90; X=0.85 и т.д.)

В координатных, осях hS (рисунок 5.1 а) нанесены кривые простейших процессов р=сonst (изобары); v= сonst (изохоры); t =сonst (изотермы); любая вертикальная линия (рисунок 5.1 б) изображает адиабатный процесс (S=const).

В области влажного насыщенного пара изотермы (t =сonst)совпадают с кривыми изобары (р=сonst), так как парообразование происходит при постоянном давлении и при постоянной температуре. На верхней пограничной кривой направление изотермы меняется и в пограничной кривой направление изотермы меняется, и области перегретого пара изотермы отклоняются вправо и не совпадают с изобарами.

Практически применяется часть диаграммы hS , когда X 0,5, которая заключена в рамку. Эта часть диаграммы приведена на рисунке 5.1.

Состояние перегретого пара на диаграмме hS определяется двумя параметрами (р 1 и t 1 или р 1 и v 1), а влажного насыщенного пара - одним параметром и степенью сухости пара Х. По двум заданным параметрам р 1 и t 1 в области перегретого пара находим точку I (рисунок 5.1 б), соответствующую заданному состоянию водяного пара. Для этого состояния из диаграммы можно найти все другие параметры (h 1 ,s 1 ,v 1).

Значение внутренней энергии подсчитывается по формуле

(5.1)

Зная вид термодинамического процесса, двигаются по нему до пересечения с заданным конечным параметром и находят на диаграмме конечное состояние пара. Определив параметры конечного состояния, можно рассчитывать показатели процесса (работу, теплоту, изменение параметров).

Изменение внутренней энергии
и работу в любом процессе подсчитывают по формулам

∆u = u 1 – u 2 = (h 1 – h 2) - (p 1 v 1 – p 2 v 2); (5.2)

W=q - ∆u = q –(h 1 – h 2)+(p 1 v 1 -p 2 v 2). (5.3)

Рассмотрим основные задачи, решаемые по hS диаграмме.

Изохорный процесс ( v = const ). Количество теплоты, участвующей в процессе определяется по формуле (5.2) для определения изменения внутренней энергии. Работа изохорного процесса равна нулю.

Изобарный процесс (р=с onst ). Количество теплоты, участвующая в процессе определяется по формуле

(5.4)

Изменение внутренней энергии по формуле 5.2

Работу изобарного процесса можно сравнить

w = p (v 2 v 1 ) (5.5)

или по формуле (5.3).

Изотермический процесс ( T onst ). Теплоту и работу процесса находят по формуле

(5.6)

Адиабатный процесс (р v k =const ). На рисунке 5.1б представлен адиабатный процесс, протекающий без теплообмена с внешней средой. В адиабатном процессе энтропия не изменяется и очень часто этот процесс называется изоэнтропным.

Работа процесса происходит за счет изменения внутренней энергии
.

Процесс при постоянной степени сухости (Х=сonst) решается также по диаграмме hS (рисунок 5.2).

Приблизительное количество определяется по формуле

. (5.7)

Изменение внутренней энергии в процессе находят обычным способом по формуле 5.2

Работа процесса определяется по формуле (5.3).

Соединив точки б, б" и т.д. до точки К (см. рис. 5.6), получим линию, все точки которой соответствуют состоянию насыщения воды = 0). Эта линия называется нижней пограничной кривой (НПК). Линия, проходящая через точки г, г", г" и т.д., соответствующие состоянию сухого насыщенного пара, называется верхней пограничной кривой (ВПК). Часть диаграммы левее НПК представляет собой область однофазной жидкости, а часть диаграммы правее ВПК - область однофазного перегретого пара.

Часть диаграммы, расположенная ниже обеих пограничных кривых, - область влажного насыщенного пара. На самих пограничных кривых расположены точки, соответствующие состояниям сухого насыщенного пара и насыщенной жидкости. Вид линий процессов р = const и v = const нар, v-диаграмме очевиден (рис. 5.7).

Для построения линии процесса Т = const рассмотрим процесс изотермического сжатия перегретого пара при Т Свойства сильно перегретого пара мало отличаются от свойств идеального газа, и изотерма мало отличается от равнобокой гиперболы. Вблизи верхней пограничной линии изотерма пара в большей степени отли-

Рис. 5.7. Процессы водяного пара на р, v-диаграмме

чается от изотермы идеального газа, но общий характер кривой на участке а-Ъ аналогичен характеру изотермы идеального газа. Картина резко меняется, когда повышающееся по мере сжатия давление станет равным давлению насыщения при температуре Т. Отвод теплоты от насыщенного пара теперь обязательно приведет к его конденсации. Плотность жидкости при давлении меньше критического больше плотности пара. Поэтому при изотермическом сжатии влажного пара давление не увеличивается.

Уменьшение удельного объема на участке Ъ-с происходит за счет конденсации все новых и новых порций пара, до тех пор пока он весь не превратится в воду. В области влажного насыщенного пара изотерма и изобара совпадают. В области жидкости при постоянной температуре даже для очень малого уменьшения объема требуется очень высокое давление (жидкости практически несжимаемы) и изотерма совпадает с изохорой.

На рис. 5.7 хорошо видно, что изотерма водяного пара качественно совпадает с изотермой Ван-дер-Ваальса (см. рис. 5.4) для реального газа a-b-m-n-c-d при условии равенства площадей заштрихованных фигур. Более того, на практике могут быть достигнуты состояния, соответствующие участкам п-с и Ъ-т изотермы Ван-дер-Ваальса. Это так называемые неустойчивые состояния «перегретой» жидкости и «пересыщенного» пара. Только состояния, соответствующие участку п-т изотермы Ван-дер-Ваальса, не могут быть осуществлены в принципе.

Форма любой изотермы при Т Т кр аналогична рассмотренной. При Т = Т кр горизонтальный участок совпадения изотермы и изобары вырождается в точку перегиба. При Т> Т кр форма изотермы водяного пара становится аналогичной форме изотермы идеального газа, хотя и не является равнобокой гиперболой.

Рассмотрев р, v-диаграмму водяного пара, можно сделать следующие важные выводы:

  • 1) при температуре выше критической жидкость не существует ни при каких давлениях;
  • 2) при давлении выше критического превращение воды в пар происходит без образования двухфазной системы.

В предыдущей главе было показано, что для анализа и сравнения эффективности термодинамических циклов удобно использовать диаграмму Т, s. Такая диаграмма для воды и водяного пара представлена на рис. 5.8. Изображение изотермы и адиабаты в этой системе координат очевидно.


Рис. 5.8.

Построим на Т, 5-диаграмме изобару р процесса парообразования. При изобарном подводе теплоты к воде температура ее повышается и энтропия растет - участок а-б.

В связи с тем что вода практически несжимаема, работа сжатия при адиабатном повышении давления очень мала и столь же мало равное этой работе повышение внутренней энергии. Поэтому мало и повышение температуры воды. Соседние изобары в Т, 5-координатах расположены очень близко, и линия а-б близка к нижней пограничной кривой. При соблюдении масштаба изобара воды даже при давлении в несколько десятков МПа на рис. 5.8 совпала бы с нижней пограничной кривой. Изображение изобар в области воды на рис. 5.8 для большей наглядности выполнено с искажением масштаба, как если бы эта часть рисунка рассматривалась через увеличительное стекло.

По мере повышения температуры наступает момент, когда температура воды становится равной температуре насыщения при рассматриваемом давлении. Начиная с этого момента подвод теплоты и увеличение энтропии не могут сопровождаться увеличением температуры - участок б-в-г. Вся подводимая теплота затрачивается на парообразование. Как было уже отмечено ранее, в области влажного пара изобара и изотерма совпадают. Когда последняя порция воды превратится в пар и он станет сухим насыщенным, дальнейший подвод теплоты вызовет повышение температуры. Форма изобары перегретого пара на участке г-д качественно повторяет форму линии изобары идеального газа и отличается от нее настолько, насколько переменная теплоемкость с р водяного пара отличается от постоянной теплоемкости идеального газа. При других давлениях р форма линий изобар аналогична рассмотренной, а при р = р кр участок совпадения изобары и изотермы вырождается в точку перегиба.

Площадь фигуры е-а-б-ж равна в масштабе диаграммы теплоте q H , затраченной на нагрев 1 кг воды до кипения. Площадь фигуры ж-б-г-з равна теплоте, затраченной на получение сухого насыщенного пара из 1 кг насыщенной воды, - это теплота фазового перехода г. Наконец, площадь фигуры з-г-д-и равна теплоте q ne , затраченной на перегрев 1 кг пара от температуры насыщения до температуры в точке д.

Для расчетов процессов и циклов водяного пара Т, s-диаграмма не так удобна, как для качественного анализа и сравнения. На практике предпочтительнее измерять величины на диаграмме отрезками, а не площадями фигур. Поэтому для инженерных расчетов чаще используют диаграмму /, s водяного пара, предложенную Рихардом Молье в 1906 г. (рис. 5.9).

В той части диаграммы, где свойства водяного пара мало отличаются от свойств идеального газа, /, s-диаграмма отличается от Т , s- диаграммы только масштабом. Достаточно вспомнить, что / = с р Т , а величина изобарной теплоемкости идеального газа постоянна. Поэтому линии изотерм вдали от кривой насыщения горизонтальны, а форма линий р = const и v = const в этой области повторяет их форму на Г, s-диаграмме. Вблизи же верхней пограничной кривой, особенно при давлениях, близких к критическому, свойства водяного пара значительно отличаются от свойств идеального газа и форма


Рис. 5.9. Диаграмма /", s водяного пара

линий Т = const, р = const и v = const также значительно отличается от их формы для идеального газа.

Процесс парообразования (см. рис. 5.5) при давлении меньше критического на /, s-диаграмме (см. рис. 5.9) изображается линией а-б-в-г-д. Так же как и на Г, s-диаграмме, область жидкости расположена в узкой полосе вблизи нижней пограничной кривой. Для наглядности на рис. 5.9 в этой части диаграммы масштаб искажен. При соблюдении масштаба вся область жидкости совпала бы с нижней пограничной кривой.

Для расчета процессов водяного пара нельзя использовать уравнение состояния и другие соотношения между параметрами идеального газа, например уравнения основных термодинамических процессов. Эти расчеты можно выполнять только с использованием диаграмм или таблиц водяного пара.

ВОДЯНОЙ ПАР. ДИАГРАММА H,S ВОДЯНОГО ПАРА. ИССЛЕДОВАНИЕ ПАРОВЫХ ПРОЦЕССОВ ПО ДИАГРАММЕ H,s

Вода и. водяной пар широко применяются в энергетике, в отоплении, вентиляции, горячем водоснабжении.

Водяной пар - реальный газ. Он может быть влажным, сухим насыщенным и перегретым. Уравнения состояния реальных тазов сложны, поэтому в теплотехнических расчетах предпочитают использовать таблицы и диаграммы. Особое значение для технических расчетов процессов с водяным паром имеет h,s -диаграмма водяного пара.

В диаграмме h,S нанесена (рис. 5.1) верхняя пограничная кривая (степень сухости пара X=1) соответствующая сухому насыщенному пару. Выше этой кривой располагается область перегретого пара.

Рисунок 5.1 Диаграмма h,S водяного пара

Ниже влажного насыщенного пара. В область влажного насыщенного пара нанесены кривые сухости (X=0,95; Х=0,90; X=0.85 и т.д.)

В координатных, осях h,S (рис.5.1) нанесены кривые простейших процессов р=сonst (изобары); v= сonst (изохоры); t =сonst (и термы); любая вертикальная линия (рис.5.2.) изображает адиабатный процесс (S=const).

В области влажного насыщенного пара изотермы (t =сonst)совпадают с кривыми изобары (р=сonst), так как парообразование происходит при постоянном давлении и при постоянной температуре. На верхней пограничной кривой направление изотермы меняется и в пограничной кривой направление изотермы меняется, и области перегретого пара изотермы отклоняются вправо, и не совпадают с изобарами.

Практически применяется часть диаграммы h,S , когда X 0,5 , которая заключена в рамку. Эта часть диаграммы приведена в прило­жении и на рис.5.2.

Состояние перегретого пара на диаграмме h,S определяется двумя параметрами (р 1 и t 1 или р 1 и v 1), а влажного насыщенного па­ра - одним параметром и степенью сухости пара Х. По 2 заданным па­раметрам р 1 и t 1 в области перегретого пара находим точку I (рис. 5.2.), соответствующую заданному состоянию водяного пара. Для этого состояния из диаграммы можно найти все другие параметры (h 1 ,s 1 ,v 1).

Значение внутренней анергии подсчитывается по формуле

Зная вид термодинамического процесса, двигаются по нему до пе­ресечения с заданным конечным параметром и находят на диаграмме конечное состояние пара..Определив параметры коночного состояния, можно рассчитывать показатели процесса (работу, теплоту, изменение параметров)

Изменение внутренней энергии и работу в любом процессе подсчи­тывают по формулам

Рассмотрим основные задачи, решаемые по h,S диаграмме.

Изохорный процесс (v= const)

Количество теплоты, участвующая в процессе, определяется по формуле 5.2,. для определения изменения внутренней энергии.

Работа изохорного процесса равна нулю.

Изобарный процесс (р=сonst), количество теплоты, участвующая в процессе определяется по формуле

Изменение внутренней энергии по формуле 5.2 или по формуле 5.3

Изотермный процесс (t =сonst).

Теплоту и работу процесса находят по формуле:

5.6

Адиабатный процесс . На рис. 5.2. представлен адиабатный процесс, протекающий без теплообмена с внешней среда. В адиабатном процессе энтропия не изменяется и очень часто этот процесс называется изоэнтропным.

Описание hs-диаграммы

На hs-диаграмме изображены термодинамические процессы:

§ Изобарный процесс (p = const) - фиолетовые линии (изобары),

§ Изотермический процесс (t = const) - зеленые линии (изотермы),

§ Изохорный процесс (v = const) - красные линии (изохоры).

Степень сухости и паросодержание (х ) - розовые линии. Жирная розовая линия - степень сухости х =1. Все что ниже этой линии - зона влажного пара.

Ось «Х» - энтропия , ось «h» - энтальпия .

Семейство изобар в области насыщения представляет собой пучок расходящихся прямых, начинающихся на нижней и оканчивающихся на верхней пограничной кривой. Чем больше давление, тем выше лежит соответствующая изобара. Переход изобар из области влажного насыщенного в область перегретого пара происходит без перелома на верхней пограничной кривой.

В i, s-диаграмме водяного пара наносятся также линии постоянного паросодержания (x = const) и линии постоянного удельного объема (v = const). Изохоры идут несколько круче, чем изобары.

Состояние перегретого пара обычно определяется в технике давлением p и температурой t . Точка, изображающая это состояние, находится на пересечении соответствующей изобары и изотермы. Состояние влажного насыщенного пара определяется давлением p и паросодержанием x .

Точка, изображающее это состояние, определяется пересечением изобары и линии x = const.

Критические параметры водяного пара: t кр = 364,15 0 С, v кр = 0, 00326 м 3 /кг, р кр = 22, 129 МПа.

Как пользоваться hs-диаграммой

Для описания воспользуемся небольшой задачей. Возьмем с потолка условие.

Пусть начальные параметры пара будут: давление пара р = 120 бар, температура пара t = 550°С. Пар адиабатно расширяется в турбине до температуры, например, 400 °С.

Для примера этого будет достаточно.

Адиабатный процесс на hs-диаграмме - это вертикальная линия (горизонтальная линия - дросселирование). Это для справки.

Итак, начальное давление и температура у нас есть. Найдем эту точку на hs-диаграмме:

Нам нужна изобара , соответствующая давлению 120 бар и изотерма , соответствующая температуре 550 °С . На их пересечении и будет точка, соответствующая начальным параметрам пара в нашей задаче.

Найдя эту точку, мы уже можем определить в ней энтальпию и энтропию. Опустив на оси проекции найденной точки, узнаем значения энтальпии (ось «Y») и энтропии (ось «Х»).

i = ~3480 кДж/кг, S = 6,65 кДж/(кг К)

Далее нам нужно узнать параметры пара после адиабатного расширения. Мы знаем, что по поставленным нами условиям, пар расширился и его температура в точке 2 = 400 °С. Я уже упоминал, что на is-диаграмме адиабатный процесс изображается в виде вертикальной линии. Проведем эту линию из точки 1 (начальные параметры) до пересечения с изотермой 400 °С .