Средние величины и показатели вариации. Средние величины

В процессе обработки и обобщения статистических данных возникает необходимость определения средних величин. Как правило, индивидуальные значения одного и того же признака у разных единиц совокупности неодинаковы.

Средняя величина обобщающая характеристика изучаемого признака в исследуемой совокупности. Она отражает его типичный уровень в расчете на единицу совокупности в конкретных условиях места и времени.

Например, при изучении доходов рабочих предприятия обобщающей характеристикой служит средний доход одного рабочего. Для его определения общую сумму средств, направленных на потребление, в виде заработной платы, социальных и трудовых льгот, материальной помощи, дивидендов по акциям и процентов по вкладам в имущество предприятия за рассматриваемый период (год, квартал, месяц) делят на численность рабочих предприятия. Средний доход характеризует то общее, что свойственно всей совокупности рабочих предприятия, т.е. уровень дохода массы рабочих в конкретных условиях функционирования данного предприятия в рассматриваемом периоде.

Средняя, рассчитанная по совокупности в целом, называется общей средней.

Средние, исчисленные для каждой группы, называются групповыми средними.

Чем больше единиц совокупности, по которым рассчитывается средняя, тем она устойчивее, т.е. точнее. Расчет средней величины включает две операции:

I– суммирование данных по всем единицам (обобщение данных);

II – деление суммированных данных на число единиц совокупности.

средняя величина для признака; n – количество единиц совокупности;

х i индивидуальное значение признака каждой единицы совокупности.

Сущность средней величины определяет её особую значимость в условиях рыночной экономики. Средняя величина через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерности экономического развития.

Степенные средние :

ü средняя арифметическая;

ü средняя геометрическая;

ü средняя гармоническая;

ü средняя квадратическая;

ü средняя хронологическая.

Структурные средние: мода и медиана.

Выбор того или иного вида средней производится в зависимости от цели исследования, экономической сущности усредняемого показателя и характера имеющихся исходных данных. Только тогда, когда средняя применима правильно, получают величины, имеющие реальный экономический смысл.

Средняя арифметическая – наиболее распространённый вид средней.

Под средней арифметической понимается такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределён равномерно между всеми единицами совокупности.

Она исчисляется в тех случаях, когда объём осредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности. В зависимости от характера исходных данных средняя арифметическая определяется следующим образом:

Простая арифметическая средняя исчисляется путем деления суммы значений на их количество.

Пример : Заработная плата за январь у 3-х рабочих одного цеха составила: 6500, 4955, 5323 рубля. Средняя з/плата за месяц составляет: руб.

Пример: Вычислить средний стаж десяти работников торгового предприятия. Одиночное значение признака (лет): 6,5,4,3,3,4,5,4,5,4.

= (6+5+4+3+3+4+5+4+5+4) : 10 = 43: 10 = 4,3 года.

Как видим, средняя арифметическая может оказаться дробным числом, если даже индивидуальные значения признака заданы только целыми числами. Это вытекает из сущности средней арифметической, которая есть величина абстрактная (теоретическая), т.е. она может принимать такое числовое значение, которое не встречается в представленной совокупности индивидуальных значений признака.

Средняя арифметическая взвешенная

Часто приходится рассчитывать среднее значение признака по ряду распределения, когда одно и то же значение признака встречается несколько раз. Объединив данные по величине признака (т.е. сгруппировав) и подсчитав число случаев повторения каждого из них, мы получим следующий вариационный ряд.

Следовательно, для исчисления взвешенной средней выполняются следующие последовательные операции: умножение каждого варианта на его частоту, суммирование полученных произведений, деление полученной суммы на сумму частот.

Средняя арифметическая взвешенная учитывает различное значение отдельных вариантов в пределах совокупности. Поэтому она должна употребляться во всех тех случаях, когда варианты имеют различную численность. Употребление простой средней в этих случаях недопустимо, так как оно неизбежно приводит к искажению статистических показателей.

Арифметическая средняя как бы распределяет поровну между отдельными объектами общую величину признака, в действительности варьирующую у каждого из них.

Иногда вычисление средних величин приходится производить и по данным, сгруппированным в виде интервальных рядов распределения, когда варианты признака, из которых исчисляется средняя, представлены в виде интервалов (от – до). Для вычисления средней величины надо в каждом варианте определить серединное значение х, после чего произвести взвешивание обычным порядком х у

В закрытом интервале серединное значение определяется как полусумма значений нижней и верхней границ.

Задача исчисления средней по величинам интервального ряда осложняется тем, что неизвестны крайние границы начального и конечного интервалов. В этом случае предполагается, что расстояние между границами данного интервала такое же, как и в соседнем интервале.

Необходимо отметить, что, хотя мы и используем для расчета средней из интервального ряда формулу средней арифметической взвешенной, исчисленная средняя не является точной величиной, так как в результате умножения средних значений групп на их численность, мы не получим действительного значения. Степень расхождения зависит от ряда причин: 1 – число вариант. Чем больше число вариант, тем вероятнее, что середина интервала будет мало отличаться от групповой средней. Если же на каждую группу приходится малое число единиц, групповые средние могут находиться не только в середине, но и в близи верхней, либо нижней границы интервала.

Пример, требуется вычислить средний стаж работы 12 работников рекламного агентства. При этом известны индивидуальные значения признака (стажа) в годах: 6,5,4,3,3,5,5,6,3,7,4,5.

Объединив данные по величине признака и подсчитав число случаев повторения каждого из них, проведём расчет среднего стажа по сгруппированным данным с помощью формулы средней взвешенной арифметической.

X = (3*3+4*2+5*4+6*2+7*1) : 12 = 56 : 12 = 4,7 года.

В практике статистической обработки материала возникают различные задачи, имеющие особенности в изучении явлений и требующие применения различных средних в их решении. Учитывая, что статистические средние всегда выражают качественные свойства изучаемых общественных процессов и явлений, важно правильно выбрать форму средней, исходя из взаимосвязи явлений и их признаков.

Свойства средней арифметической:

Средняя арифметическая обладает рядом свойств, знание которых необходимо для понимания сущности средних, а также для упрощения их вычисления.

1. Средняя арифметическая суммы варьирующих величин равна сумме средних арифметических величин:

Если x i = y i + z i то

Это правило показывает, в каких случаях можно суммировать средние величины. Если, например, выпускаемые изделия состоят из двух деталей y и z и на изготовление каждой из них расходуется в среднем у = 3 ч, z = 5 ч, то средние затраты времени на изготовление одного изделия (х ), будут равны: 3+5 = 8 ч, т.е. х = у + z..

2. Алгебраическая сумма отклонений индивидуальных значений варьирующего признака от средней равна нулю, так как сумма отклонений в одну сторону погашается суммой отклонений в другую сторону, т.е.

, потому что

Это правило показывает, что средняя является равнодействующей.

3. Если все варианты ряда уменьшить или увеличить на одно и то же число а, то средняя уменьшится или увеличится на это же число а:

4. Если все варианты ряда уменьшить или увеличить в А раз, то средняя также соответственно уменьшится или соответственно увеличится в А раз:

5. Если все частоты ряда разделить или умножить на одно и то же число d, то средняя не изменится:

Это свойство показывает, что средняя зависит не от размеров весов, а от соотношения между ними. Следовательно, в качестве весов могут выступать не только абсолютные, но и относительные величины.

Средняя хронологическая

Иногда, при анализе социально-экономических показателей, необходимо определить среднюю величину, если имеются данные равностоящего моментного ряда динамики. Например, среднемесячный запас товаров; среднесписочную численность продавцов за квартал, за полугодие, если известна численность продавцов на начало месяца; или определить среднегодовую численность населения территории, то используют среднюю хронологическую.

Х=( х 1 + х 2 +х 3 +…+х n -1 + х n) : (n-1)

Х – индивидуальное значение признака каждой единицы совокупности;

n – число единиц совокупности.

Средняя гармоническая

Средняя гармоническая – это величина обратная средней арифметической. Когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение, применяется формула средней гармонической взвешенной.

Средняя в такой форме называется средней гармонической взвешенной и обозначается х гар м.взв . Следовательно, средняя гармоническая тождественна средней арифметической. Она применяется тогда, когда неизвестны действительные веса, а известно произведение f x = z

В тех случаях, когда произведения f х одинаковы или равны единице (m=1), применяется средняя гармоническая простая, вычисляемая по формуле

где х - отдельные варианты; п - их число.

Средняя геометрическая

Этой средней удобно пользоваться, когда уделяется внимание не абсолютным разностям, а отношениям двух чисел. Поэтому средняя геометрическая используется в расчетах среднегодовых темпов роста

или

Это формула средней геометрической, которую можно сформулировать следующим образом:

Средняя геометрическаяравна корню степени п из произведения коэффициентов роста, характеризующих отношение величины каждого последующего периода к величине предыдущего.

Геометрическая средняя величина дает наиболее правильный ответ по содержанию результат осреднения, если задача состоит в нахождении такого значения признака, который качественно был бы равноудалён как от максимального, так и от минимального значения признака.

Пример, В результате инфляции за первый год цена товара возросла в два раза к предыдущему; за второй год – ещё в три раза к уровню предыдущего года. Ясно, что за два года цена выросла в 6 раз. Рассчитать средний темп роста цены за год?

В расчете среднего темпа роста арифметическая средняя – непригодна. Геометрическая средняя даёт правильный ответ.

Х = х 1 *х 2 = 2*3 = 6 = 2,45 раза.

Средняя квадратическая


Похожая информация.


В статистике средней величиной называют обобщающий показатель совокупности однородных общественных или природных явлений, который показывает типичный уровень варьирующего признака в расчете на единицу совокупности в конкретный момент времени.

Нахождение среднего - один из распространенных приемов обобщения. Средняя величина отражает то общее, что типично (характерно) для всех единиц изучаемой совокупности, но в то же время она игнорирует различия отдельных единиц. Мы уже говорили, что при неограниченном увеличении количества наблюдений (п -» оо) средняя величина, согласно закону больших чисел, будет неограниченно приближаться к его математическому ожиданию, т. е. при п -> оо можно записать х ~ М[Х], здесь х - средняя величина. То есть средняя величина - это оценка математического ожидания.

Сделаем небольшое отступление и приведем краткие сведения об оценках параметров, полученных в результате п опытов. Предположим, что надо определить по результатам п опытов некоторый параметр d. Приближенное значение этого параметра будем называть его оценкой и обозначим d. Оценка d должна удовлетворять ряду требований, чтобы в каком-то смысле быть оценкой “доброкачественной”.

Оценка d при увеличении числа опытов должна сходиться по вероятности к искомому параметру, т. е.

Оценка, обладающая таким свойством, называется состоятельной.

Кроме того, пользуясь оценкой d вместо самого параметра d, желательно не делать систематической ошибки, т. е. математическое ожидание оценки должно быть равным самому параметру:

Оценка, которая обладает данным свойством, называется несмещенной.

Было бы хорошо, если бы выбранная несмещенная оценка d была как можно менее случайной, т. е. обладала по сравнению с другими минимальной дисперсией:

Оценка, которая обладает данным свойством, называется эффективной.

В реальных условиях не всегда удается удовлетворить всем перечисленным требованиям. Тем не менее при выборе оценки любого параметра желательно эту оценку рассмотреть со всех перечисленных точек зрения.

Вернемся к средним величинам. При их вычислении при большом количестве наблюдений случайности взаимопога- шаются (это следует из закона больших чисел), следовательно, можно абстрагироваться от несущественных особенностей изучаемого явления и от количественных значений признака в каждом конкретном опыте.

Крупный вклад в обоснование и развитие теории средних величин внес А. Кетле. Согласно его учению массовые процессы формируются под влиянием двух групп причин. К первой группе общих для всех единиц массовой совокупности причин относятся те из них, которые определяют состояние массового процесса. Они формируют типичный уровень для единиц данной однородной совокупности.

Вторая группа причин формирует специфические особенности отдельных единиц массовой совокупности и, следовательно, их разброс от типичного уровня.

Эти причины не связаны с природой изучаемого явления, поэтому их называют случайными причинами.

Средняя величина, полученная по всей совокупности, называется общей, а средние величины, вычисленные по каждой группе, называются групповыми средними. Есть два вида средних величин: степенные средние (средняя арифметическая и др.), структурные средние (мода, медиана).

Рассмотрим степенные средние. Степенные средние определяются исходя из формулы

где х - среднее значение;

х { - текущее значение изучаемого признака;

т - показатель степени средней;

п - количество признаков (вариант).

В зависимости от показателя т степени средней получаем следующие виды степенных средних:

  • - среднюю гармоническую х гар, если т = -1;
  • - среднюю геометрическую эс геом, если т = 0;
  • - среднюю арифметическую х ар, если т = 1;
  • - среднюю квадратическую х квад, если т = 2;
  • - среднюю кубическую х куб., если т = 3,
  • - ИТ. д.

При использовании одних и тех же данных чем больше т в формуле (6.4), тем больше значение средней, т. е.

Приведем конкретные формулы для вычисления некоторых видов степенных средних.

При т = -1 получаем среднюю гармоническую:

В том случае, если исходные данные сгруппированы, используются взвешенные средние. В качестве веса может использоваться частота р (количество опытов, в которых появилось интересующее нас событие) или относительная частота

Запишем формулы для взвешенной средней гармонической:

При т = 0 получаем среднюю геометрическую:

т. е. получили неопределенность.

Для ее раскрытия прологарифмируем обе части формулы (6.4.)

затем подставляем т = 0 и получаем

т. е. имеем неопределенность вида Для раскрытия этой неопределенности применяем правило Лопиталя. Полученный результат потенцируется, и окончательно получаем

Широкое применение средняя геометрическая получила для нахождения средних темпов изменения в рядах динамики и в рядах распределения.

Запишем формулы для взвешенной средней геометрической.

Приведем конкретный пример нахождения средней геометрической взвешенной по формуле (6.11).

Пример 6.1

Исходные данные наблюдений приведены в табл. 6.1.

Таблица 6.1

В табл. 6.1 х. - результаты, принятые некоторой случайной величиной X в г-м опыте; р. - частота события - показывает, сколько раз в результате всех опытов появилось интересующее нас событие. Например, х = 2 появилось в 24 опытах 5 раз.

Относительная частота события (частость).

По формуле (6.11) получаем:

По формуле (6.12) имеем

При т = 1 получаем среднюю арифметическую:

Средняя арифметическая - наиболее распределенный вид среди всех видов степенных средних. Она используется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных единиц.

Приведем формулы для нахождения средней арифметической взвешенной:

При большом количестве наблюдений, согласно закону больших чисел, формула (6.15) определяет оценку математического ожидания т. е.

При т = 2 получаем среднюю квадратическую:

Она используется для вычисления среднего размера признака, выраженного в квадратных единицах.

Формулы для нахождения средней квадратической взвешенной имеют вид:

При га = 3 получаем среднюю кубическую:

Она применяется для нахождения среднего размера признака, выраженного в кубических единицах.

Формулы для вычисления средней кубической взвешенной имеют вид:

Теперь рассмотрим структурные средние: моду и медиану. В статистике, в отличие от теории вероятностей, имеем дело с оценками этих величин. Мы будем обозначать их теми же буквами, что и в главе 2, но с тильдой.

Мода в статистике (Мо) - значение случайной величины, которое встречается в статистическом ряду распределения чаще всего, т. е. имеет наибольшую частоту или относительную частоту (частость).

Например, в табл. 6.1 наибольшая относительная частота / = 0,33, поэтому мода равна Мо = 5.

Если мы имеем группированный ряд распределения с равными интервалами, то моду можно найти по формуле

где Мо нижн - нижняя граница модального интервала;

г Мо - длина модального интервала;

Рмо - частота модального интервала;

М-мо_, - частота интервала, предшествующего модальному;

М-мо +1 -- частота интервала, следующего за модальным.

Заметим, что для расчета можно использовать и относительные частоты.

Медиана в статистике - варианта, которая находится в середине ранжированного ряда распределения, т. е. значение медианы находиться по ее порядковому номеру.

Если ряд распределения имеет нечетное число элементов, номер медианы находиться по формуле

Например, в табл. 6.2 приведены величины окладов профессорско-преподавательского состава кафедры высшей математики.

Таблица 6.2

Количество элементов ряда равно 5, поэтому по формуле (6.23) находим номер медианы , следовательно, меди

ана в данном случае равна

Если ряд содержит четное число элементов, то варианта находится как средняя из двух вариант, находящихся в середине ряда.

В группированном ряду распределения медиана (так как она делит всю совокупность на две равные части) находится в каком-то из интервалов.

Кумулятивная (накопленная) частота (или относительная частота) равна или превышает полусумму всех частот ряда (для относительных частот она равна 1/2 или превышает 1/2).

В этом случае значение медианы вычисляется по формуле

где - нижняя граница медианного интервала;

Длина медианного интервала;

Полусумма частот;

Сумма частот, накопленная до начала медианного интервала;

Частота медианного интервала.

Наиболее распространенной формой статистических показателей, используемой в экономических исследованиях, является средняя величина, представляющая собой обоб­щенную количественную характеристику признака в статистической совокупности в кон­кретных условиях места и времени. Показатель в форме средней величины выражает ти­пичные черты и дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков. Он отражает уровень этого признака, отнесенный к единице совокупности. Широкое применение средних объясняется тем, что они имеют ряд положи­тельных свойств, делающих их незаменимым инструментом анализа явлений и процессов в экономике.

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности. Значения признака от­дельных единиц совокупности колеблются в ту или иную сторону под влиянием множест­ва факторов, среди которых могут быть как основные, так и случайные. Например, курс акций корпорации в основном определяется финансовыми результатами ее деятельности. В то же время, в отдельные дни и на отдельных биржах эти акции в силу сложившихся обстоятельств могут продаваться по более высокому или заниженному курсу. Сущность средней величины в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учи­тываются изменения, вызванные действием факторов основных. Это позволяет средней величине отражать типичный уровень признака и абстрагироваться от индивидуальных особенно­стей, присущих отдельным единицам.

В статистике используются различные виды средних величин. Наиболее часто применяются средняя арифметическая, гармоническая, геометрическая и квадратическая. Выбор той или иной средней зависит от содержания осредняемого признака и конкретных данных, по которым ее приходится вычислять.

Указанные средние величины могут быть вычислены либо когда каждый вариант совокупности встречается только один раз (при этом средняя называется простой или невзвешенной ), либо когда варианты повторяются различное число раз (при этом число повторений вариантов называется частотой или статистическим весом , а средняя, вычисленная с учетом весов, – средней взвешенной ).

Средняя арифметическая простая – самый распространенный вид средней величины, рассчитывается по формуле

Средняя арифметическая взвешенная

где х i – вариант, а f i – частота или статистический вес.

Пример. Обследование пяти кабинетов первого этажа офиса показало, что в них работает 1, 2, 3, 4, 5 человек. Рассчитаем среднюю арифметическую простую:

т.е. в среднем на один кабинет первого этажа приходится 3 человека.

Результаты обследования всех кабинетов этого же здания приведены в таблице 8.2.

Таблица 8.2

Результаты обследования офисного здания

Вычислим среднее число сотрудников, работающих в данном здании:

Т.е. в среднем на 2 кабинета в этом здании приходится 7 сотрудников.

Среднеарифметическая – всегда обобщающая количественная характеристика варьирующего признака совокупности.

Средняя гармоническая вычисляется в тех случаях, когда приходится суммировать не сами варианты, а обратные им величины.

Формула вычисления средней гармонической простой следующая:

Средняя гармоническая взвешенная определяется по формуле

где x i – вариант, n – количество вариантов, V i – веса для обратных значений x i .

Пример. Средняя гармоническая невзвешенная (эта форма средней, используемая значи­тельно реже, чем взвешенная). Для иллюстрации области ее применения воспользуемся упрощенным условным примером. Предположим, в фирме, специализирующейся на торговле по почте на основе предварительных заказов, упаковкой и отправкой товаров занимаются два работника. Первый из них на обработку одного заказа затрачивает 5 мин., второй – 15 мин. Каковы средние затраты времени на 1 заказ, если общая продолжительность рабочего времени у работников одинакова?

На первый взгляд, ответ на этот вопрос заключается в осреднении индивидуальных значений затрат времени на 1 заказ, т.е. (5 + 15) : 2 = 10, мин. Проверим обоснованность тако­го подхода на примере одного часа работы. За этот час первый работник обрабатывает 12 заказов (60:5), второй – 4 заказа (60:15), что в сумме составляет 16 заказов. Если же заме­нить индивидуальные значения их предполагаемым средним значением, то общее число обработанных обоими работниками заказов в данном случае уменьшится:

Подойдем к решению через исходное соотношение средней. Для определения средних затрат времени необходимо общие затраты времени за любой интервал (на­пример, за час) разделить на общее число обработанных за этот интервал двумя ра­ботниками заказов:

Если теперь мы заменим индивидуальные значения их средней величиной, то об­щее количество обработанных за час заказов не изменится:

Заказов.

Подведем итог: средняя гармоническая невзвешенная может использоваться вместо взвешенной в тех случаях, когда значения Wj для единиц совокупности равны (в рассмот­ренном примере рабочий день у сотрудников одинаковый).

Пример. Средняя гармоническая взвешенная . В ходе торгов на валютной бирже за первый час работы заключено пять сделок. Данные о сумме продажи рублей и курсе рубля по отношению к доллару США приведены в таблице 8.3.

Таблица 8.3

Данные о ходе торгов на валютной бирже

Для того, чтобы определить средний курс рубля по отношению к доллару, нужно найти соотношение между суммой продажи рублей, которые затрачены на покупку долларов в ходе всех сделок, и суммой приобретенных в результате этих сделок долларов.

Т.е. средний курс за один доллар составил 25,48 руб.

Если бы для расчета среднего курса была использована средняя арифметическая, т.е. руб. за один доллар, то по данному курсу на покупку 29 млн дол. нужно было бы затратить 739,5 млн руб., что не соответствует действительности.

Средняя геометрическая используется для анализа динамики явлений и позволяет определить средний коэффициент роста. При расчете средней геометрической индивидуальные значения признака обычно представляют собой относительные показатели динамики, построенные в виде цепных величин как отношение каждого уровня ряда к предыдущему уровню.

Средняя геометрическая простая рассчитывается по формуле

Если используем частоты m , получим формулу средней геометрической взвешенной

Средняя квадратическая применяется, когда изучается вариация признака. В качестве вариантов используются отклонения фактических значений признака либо от средней арифметической, либо от заданной нормы.

Для несгруппированных данных используют формулу средней квадратической простой

Для сгруппированных данных используют формулу средней квадратической взвешенной

Средние арифметическая, гармоническая, геометрическая и квадратическая, рассчитанные для одного и того же ряда вариантов, отличаются друг от друга. Их численное значение возрастает с ростом показателя степени в формуле степенной средней, т.е. – правило мажорантности средних А.Я. Боярского.

Структурные средние

Наиболее часто используемыми в экономической практике структурными средними являются мода и медиана .

Мода – это величина признака (варианта), который наиболее часто встречается в данной совокупности, т.e. это варианта, имеющая наибольшую частоту. В дискретном ряду мода определяется в соответствии с определением, т.е. это одна из вариант признака, которая в ряду распределения имеет наибольшую частоту. Для интервального ряда моду находим по формуле (8.16), сначала по наибольшей частоте определив модальный интервал:

где х 0 – начальная (нижняя) граница модального интервала;

h – величина интервала;

f Мо – частота модального интервала;

f Мо-1 – частота интервала, предшествующая модальному;

f Мо+1 – частота интервала следующая за модальным.

Медианой называется такое значение признака, которое приходится на середину ранжированного ряда, т.е. в ранжированном ряду распределения одна половина ряда имеет значение признака больше медианы, другая – меньше медианы.

В дискретном ряду медиана находится непосредственно по накопленной частоте, соответствующей номеру медианы.

В случае интервального вариационного ряда медиану определяют по формуле

где х о – нижняя граница медианного интервала;

N Ме – порядковый номер медианы (Σf/2);

S Me -1 – накопленная частота до медианного интервала;

f Me – частота медианного интервала.

Пример. Рассчитаем моду и медиану по данным табл. 8.4.

Таблица 8.4

Распределение семей города по размеру
среднедушевого дохода в январе 2008 г.

Найдем моду по формуле (8.16):

Рассчитаем медиану по формуле (8.17):

сначала находится N медианы: N Ме = Σf i /2 = 5000. По накопленным частотам определим, что 5000 находится в интервале (7000 – 8000), ее значение определим по формуле:

Вывод: по моде – наиболее часто встречается среднедушевой доход в размере 7730 руб., по медиане – половина семей города имеет среднедушевой доход ниже 7800 руб., остальные семьи – более 7800 руб.

Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию. Если М 0 <М е <Х – имеет место правосторонняя асимметрия, при Х<М е <М 0 следует сделать вы­вод о левосторонней асимметрии ряда.

Контрольные задания

1. Какова роль относительных величин в статистике?

2. Какие существуют формы выражения относительных величин?

3. Каково значение средних величин в статистике?

4. Какие виды средних величин применяются в статистике?

5. В каких случаях применяются средняя гармоническая, квадратическая, геометрическая?

6. По данным таблицы 8.5 определить моду и медиану.

Таблица 8.5

Распределение торговых предприятий города
по уровню розничных цен на товар А

7. По данным таблицы 8.6 определить средний возраст персонала.

Таблица 8.6

Распределение сотрудников предприятия по возрасту

8. По таблице 8.7 определить средний стаж работы: а) рабочих; б) служащих.

Таблица 8.7

Распределение работников по стажу работы

Средние величины

В процессе обработки и обобщения статистических данных возникает необходимость определения средних величин. Средней величиной в статистике называется обобщающий показатель, характеризующий типичный уровень явления в конкретных условиях места и времени, отражающий величину варьирующего признака в расчете на единицу качественно однородной совокупности.

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности. Значения признака отдельных единиц совокупности могут колебаться в ту или иную сторону под влиянием множества факторов, среди которых как основные, так и случайные. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей. Так там, где возникает потребность обобщения, расчет таких характеристик приводит к замене множества различных индивидуальных значений признака средним показателем, характеризующим всю совокупность явлений, что позволяет выявить закономерности, присущие массовым общественным явлениям. Типичность средней непосредственным образом связана с однородностью статистической совокупности. Средняя величина только тогда будет отражать типичный уровень признака, когда она рассчитана по качественно однородной совокупности.

Каждая средняя характеризует изучаемую совокупность по какому-либо одному признаку, но для характеристики любой совокупности, описания ее типических черт и качественных особенностей нужна система средних показателей.

Выбор вида средней определяется экономическим содержанием определенного показателя и исходных данных. В каждом конкретном случае применяется одна из средних величин: арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т.д. Перечисленные средние относятся к классу степенных средних и объединяются общей формулой (при разных значениях ш):

где * - среднее значение исследуемого явления; ш - показатель степени средней; х - текущее значение признака; п - число признаков.

В зависимости от значения показателя степени ш различают следующие виды степенных средних:

  • при ш = - 1 - средняя гармоническая х гар;
  • при ш = 0 - средняя геометрическая х г ;
  • при ш =1 - средняя арифметическая х ;
  • при ш =2 - средняя квадратическая х кв ;
  • при ш =3 - средняя кубическая х куб .

Это свойство степенных средних возрастает с повышением показателя степени определяющей функции и называется в статистике правилом мажорантности средних.

Наиболее распространенным видом является средняя арифметическая. Средней арифметической величиной называется такое значение признака в расчете на единицу совокупности, при вычислении которого общий объем признака в совокупности сохраняется неизменным. Она применяется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значении признаков отдельных ее единиц. Чтобы исчислить среднюю арифметическую, нужно сумму всех значений признаков разделить на их число.

Средняя арифметическая применяется в форме простой средней и взвешенной средней. Исходной, определяющей формой служит простая средняя.

Средняя арифметическая простая равна простой сумме отдельных значений осредняемого признака, деленной на общее число этих значений (она применяется в тех случаях, когда имеются несгруппиро- ванные индивидуальные значения признака):

где - индивидуальные значения варьирующего признака;

п - число единиц совокупности.

Средняя из вариантов, которые повторяются различное число раз, или имеют различный вес, называется взвешенной. В качестве весов выступают численности единиц разных группах совокупности (в группу объединяют одинаковые варианты). Средняя арифметическая

взвешенная - средняя сгруппированных величин Х 1 ,Х 2 ,Х 3 ...Х П - вычисляется по формуле:


где - веса (частоты повторения одинаковых признаков);

- сумма произведений величины признаков на их частоты;

- общая численность единиц совокупности.

Вычисление средней арифметической часто сопряжено с большими затратами времени и труда. Однако в ряде случаев процедуру расчета средней можно упростить и облегчить, если воспользоваться ее свойствами. К основным свойствам относится:

  • 1. Если все индивидуальные значения признака уменьшить или увеличить в i раз, то среднее значение нового признака соответственно уменьшится или увеличится в i раз.
  • 2. Если все варианты признака уменьшить или увеличить на число А, то средняя арифметическая соответственно уменьшится или увеличится на это же число А.
  • 3. Если веса всех вариантов уменьшить или увеличить в К раз, то средняя арифметическая не изменится.

В качестве весов средней вместо абсолютных показателей можно использовать удельные веса в общем итоге. Тем самым достигается упрощение расчетов средней.

При расчете статистических показателей помимо средней арифметической могут использоваться и другие виды средних. Однако в каждом конкретном случае в зависимости от характера имеющихся данных существует только одно истинное среднее значение показателя, являющееся следствием реализации его исходного соотношения.

Отметим, что средняя арифметическая применяется в тех случаях, когда известны варианты варьирующего признака х и их частоты f, когда статистическая информация не содержит частот f по отдельным вариантам х совокупности, а представлена как их произведением xf ,

применяется формула средней гармонической. Она используется, когда известен числитель исходного соотношения средней, но неизвестен его знаменатель.


Средняя геометрическая применяется в тех случаях, когда индивидуальные значения признака представляют собой относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики, т.е. характеризует средний коэффициент роста.

Средняя геометрическая исчисляется извлечением корня степени п из произведений отдельных значений - вариантов признака х:

где п - число вариантов;

П - знак произведения.

Наиболее широкое применение средняя геометрическая получила для определения средних темпов изменения в рядах динамики, а также в рядах распределения.

В ряде случаев в экономической практике возникает потребность расчета среднего размера признака, выраженного в квадратных и кубических единицах измерения. Тогда применяется средняя квадратическая и средняя кубическая.

Формулы для расчета средней квадратической:

Средняя квадратическая простая является квадратным корнем из частного от деления суммы квадратов отдельных значений признака на их число:

Средняя квадратическая взвешенная:


Формулы для расчета средней кубической аналогичны:

Средняя кубическая простая:


Средняя кубическая взвешенная:


Средняя квадратическая и кубическая имеют ограниченное применение в практике статистики. Широко используется статистика средней квадратической.

Наиболее часто используемыми в экономической практике структурными средними являются мода и медиана. Модой распределения (°) называется такая величина изучаемого признака, которая в

данной совокупности встречается наиболее часто, т.е. один из вариантов признака повторяется чаще, чем все другие.

Рассмотрим определение моды по несгруппированным данным. Например: 10 студентов имеют следующие экзаменационные оценки: 5, 4, 3, 4, 5, 5, 3, 4, 4, 4. Так как в данной группе больше всего студентов получили 4, то это значение и будет модальным.

Для упорядоченного дискретного ряда распределения мода, являющаяся характеристикой вариационного ряда, определяется по частотам вариантов и соответствует варианту с наибольшей частотой.

Модальный интервал в случае интервального распределения с равными интервалами определяется по наибольшей частоте; с неравными интервалами - по наибольшей плотности, а определение моды требует проведения расчетов на основе следующей формуле:

где х т0 - нижняя граница модального интервала;

i m0 - величина модального интервала;

fmo ~ частота модального интервала;

fmo-i - частота интервала, предшествующего модальному;

fmo+i ~ частота интервала, следующего за модальным.

Медиана - вариант, который находится в середине вариационного ряда. Медиана делит ряд на две равные части. Чтобы найти медиану, необходимо отыскать значение признака, которое находится в середине упорядоченного ряда. В ранжированных рядах несгруппирован- ных данных нахождение медианы сводится к отысканию порядкового номера медианы.

Значение медианы для нечетного объема вычисляется по формуле:

где п - число членов ряда.

В интервальном ряду распределения сразу можно указать только интервал, в котором будет находиться медиана. Для определения ее величины используется специальная формула:

где х ие - нижняя граница интервала, который содержит медиану; i ие - медианный интервал;

- половина от общего числа наблюдений;

F m _ 1 - накопленная частота в интервале, предшествующему медианному;

fме " числ0 наблюдений в медианном интервале.

Таким образом, мода и медиана являются дополнительными к средней характеристиками совокупности и используются в математической статистике для анализа формы рядов распределения.

Контрольные вопросы и задания

  • 1. Назовите виды статистических показателей. Приведите примеры.
  • 2. Что понимается под абсолютными статистическими величинами и каково их значение? Приведите примеры абсолютных величин.
  • 3. Всегда ли для анализа изучаемого явления достаточно одних абсолютных показателей?
  • 4. Что называется относительными показателями?
  • 5. Каковы основные условия правильного расчета относительной величины?
  • 6. Какие виды относительных величин Вы знаете? Приведите примеры.
  • 7. Дайте определение средней величины.
  • 8. Какие виды средних величин применяются в статистике? Какие виды средних величин используются чаще всего?
  • 9. Как исчисляется средняя арифметическая простая и в каких случаях она применяется?
  • 10. Как исчисляется средняя арифметическая взвешенная и в каких случаях она применяется?
  • 11. Как исчисляется средняя арифметическая из вариационного
  • 12. Каковы основные свойства средней арифметической?
  • 13. Для чего служит средняя гармоническая? Чем она отличается от средней арифметической?

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака. Для выяснения сущности средней величины необходимо рассмотреть особенности формирования значений признаков тех явлений, по данным которых исчисляют среднюю величину.

Известно, что единицы каждого массового явления обладают многочисленными признаками. Какой бы из этих признаков мы ни взяли, его значения у отдельных единиц будут различными, они изменяются, или, как говорят в статистике , варьируют от одной единицы к другой. Так, например, заработная плата работника определяется его квалификацией, характером труда, стажем работы и целым рядом других факторов, поэтому изменяется в весьма широких пределах. Совокупное влияние всех факторов определяет размер заработка каждого работника, тем не менее можно говорить о среднемесячной заработной плате работников разных отраслей экономики . Здесь мы оперируем типичным, характерным значением варьирующего признака, отнесенным к единице многочисленной совокупности.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень (или размер) любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Они действуют в обратном направлении, обусловливают различия между количественными признаками отдельных единиц совокупности, стремясь изменить постоянную величину изучаемых признаков. Действие индивидуальных признаков погашается в средней величине. В совокупном влиянии типичных и индивидуальных факторов, которое уравновешивается и взаимно погашается в обобщающих характеристиках, проявляется в общем виде известный из математической статистики фундаментальный закон больших чисел.

В совокупности индивидуальные значения признаков сливаются в общую массу и как бы растворяются. Отсюда и средняя величина выступает как «обезличенная», которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Средняя величина отражает общее, характерное и типичное для всей совокупности благодаря взаимопогашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.

Однако для того, чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться не для любых совокупностей, а только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних величин и метода группировок в анализе социально-экономических явлений. Следовательно, средняя величина - это обобщающий показатель, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

Определяя, таким образом, сущность средних величин, необходимо подчеркнуть, что правильное исчисление любой средней величины предполагает выполнение следующих требований:

  • качественная однородность совокупности, по которой вычислена средняя величина. Это означает, что исчисление средних величин должно основываться на методе группировок, обеспечивающем выделение однородных, однотипных явлений;
  • исключение влияния на вычисление средней величины случайных, сугубо индивидуальных причин и факторов. Это достигается в том случае, когда вычисление средней основывается на достаточно массовом материале, в котором проявляется действие закона больших чисел, и все случайности взаимно погашаются;
  • при вычислении средней величины важно установить цель ее расчета и так называемый определяющий показа-телъ (свойство), на который она должна быть ориентирована.

Определяющий показатель может выступать в виде суммы значений осредняемого признака, суммы его обратных значений, произведения его значений и т. п. Связь между определяющим показателем и средней величиной выражается в следующем: если все значения осредняемого признака заменить средним значением, то их сумма или произведение в этом случае не изменит определяющего показателя. На основе этой связи определяющего показателя со средней величиной строят исходное количественное отношение для непосредственного расчета средней величины. Способность средних величин сохранять свойства статистических совокупностей называют определяющим свойством.

Средняя величина, рассчитанная в целом по совокупности, называется общей средней; средние величины, рассчитанные для каждой группы, - групповыми средними. Общая средняя отражает общие черты изучаемого явления, групповая средняя дает характеристику явления, складывающуюся в конкретных условиях данной группы.

Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины, основными из которых являются средняя арифметическая, средняя гармоническая и средняя геометрическая.

В экономическом анализе использование средних величин является основным инструментом для оценки результатов научно-технического прогресса, социальных мероприятий, поиска резервов развития экономики. В то же время следует помнить о том, что чрезмерное увлечение средними показателями может привести к необъективным выводам при проведении экономико-статистического анализа. Это связано с тем, что средние величины, будучи обобщающими показателями, погашают, игнорируют те различия в количественных признаках отдельных единиц совокупности, которые реально существуют и могут представлять самостоятельный интерес.

Виды средних величин

В статистике используют различные виды средних величин, которые делятся на два больших класса:

  • степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадра-тическая, средняя кубическая);
  • структурные средние (мода, медиана).

Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Мода и медиана определяются лишь структурой распределения, поэтому их называют структурными, позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Самый распространенный вид средней величины - средняя арифметическая. Под средней арифметической понимается такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределен равномерно между всеми единицами совокупности. Вычисление данной величины сводится к суммированию всех значений варьирующего признака и делению полученной суммы на общее количество единиц совокупности. Например, пять рабочих выполняли заказ на изготовление деталей, при этом первый изготовил 5 деталей, второй - 7, третий - 4, четвертый - 10, пятый- 12. Поскольку в исходных данных значение каждого варианта встречалось только один раз, для определения средней выработки одного рабочего следует применить формулу простой средней арифметической:

т. е. в нашем примере средняя выработка одного рабочего равна

Наряду с простой средней арифметической изучают среднюю арифметическую взвешенную. Например, рассчитаем средний возраст студентов в группе из 20 человек , возраст которых варьируется от 18 до 22 лет, где xi - варианты осредняемого признака, fi - частота, которая показывает, сколько раз встречается i-е значение в совокупности (табл. 5.1).

Таблица 5.1

Средний возраст студентов

Применяя формулу средней арифметической взвешенной, получаем:


Для выбора средней арифметической взвешенной существует определенное правило: если имеется ряд данных по двум показателям, для одного из которых надо вычислить

среднюю величину, и при этом известны численные значения знаменателя ее логической формулы, а значения числителя неизвестны, но могут быть найдены как произведение этих показателей, то средняя величина должна высчитывать-ся по формуле средней арифметической взвешенной.

В некоторых случаях характер исходных статистических данных таков, что расчет средней арифметической теряет смысл и единственным обобщающим показателем может служить только другой вид средней величины - средняя гармоническая. В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность при расчете обобщающих статистических показателей в связи с повсеместным внедрением электронно-вычислительной техники. Большое практическое значение приобрела средняя гармоническая величина, которая тоже бывает простой и взвешенной. Если известны численные значения числителя логической формулы, а значения знаменателя неизвестны, но могут быть найдены как частное деление одного показателя на другой, то средняя величина вычисляется по формуле средней гармонической взвешенной.

Например, пусть известно, что автомобиль прошел первые 210 км со скоростью 70 км/ч, а оставшиеся 150 км со скоростью 75 км/ч. Определить среднюю скорость автомобиля на протяжении всего пути в 360 км, используя формулу средней арифметической, нельзя. Так как вариантами являются скорости на отдельных участках xj = 70 км/ч и Х2 = 75 км/ч, а весами (fi) считаются соответствующие отрезки пути, то произведения вариантов на веса не будут иметь ни физического, ни экономического смысла. В данном случае смысл приобретают частные от деления отрезков пути на соответствующие скорости (варианты xi), т. е. затраты времени на прохождение отдельных участков пути (fi/ xi). Если отрезки пути обозначить через fi, то весь путь выразиться как Σfi, а время, затраченное на весь путь, - как Σ fi/ xi , Тогда средняя скорость может быть найдена как частное от деления всего пути на общие затраты времени:

В нашем примере получим:

Если при использовании средней гармонической веса всех вариантов (f) равны, то вместо взвешенной можно использовать простую (невзвешенную) среднюю гармоническую:

где xi - отдельные варианты; n - число вариантов осредняемого признака. В примере со скоростью простую среднюю гармоническую можно было бы применить, если бы были равны отрезки пути, пройденные с разной скоростью.

Любая средняя величина должна вычисляться так, чтобы при замене ею каждого варианта осредняемого признака не изменялась величина некоторого итогового, обобщающего показателя, который связан с осредняемым показателем. Так, при замене фактических скоростей на отдельных отрезках пути их средней величиной (средней скоростью) не должно измениться общее расстояние.

Форма (формула) средней величины определяется характером (механизмом) взаимосвязи этого итогового показателя с осредняемым, поэтому итоговый показатель, величина которого не должна изменяться при замене вариантов их средней величиной, называется определяющим показателем. Для вывода формулы средней нужно составить и решить уравнение, используя взаимосвязь осредняемого показателя с определяющим. Это уравнение строится путем замены вариантов осредняемого признака (показателя) их средней величиной.

Кроме средней арифметической и средней гармонической в статистике используются и другие виды (формы) средней величины. Все они являются частными случаями степенной средней. Если рассчитывать все виды степенных средних величин для одних и тех же данных, то значения

их окажутся одинаковыми, здесь действует правило мажо-рантности средних. С увеличением показателя степени средних увеличивается и сама средняя величина. Наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в табл. 5.2.

Таблица 5.2


Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле

Формула средней геометрической взвешенной имеет следующий вид:

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая - при абсолютных значениях уровней ряда.

Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и вычисляется по формуле

Средняя квадратическая взвешенная рассчитывается по другой формуле:

Средняя кубическая применяется при расчете с величинами кубических функций и вычисляется по формуле

средняя кубическая взвешенная:

Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:

где - средняя величина; - индивидуальное значение; n - число единиц изучаемой совокупности; k - показатель степени, определяющий вид средней.

При использовании одних и тех же исходных данных, чем больше k в общей формуле степенной средней, тем больше средняя величина. Из этого следует, что между величинами степенных средних существует закономерное соотношение:

Средние величины, описанные выше, дают обобщенное представление об изучаемой совокупности и с этой точки зрения их теоретическое, прикладное и познавательное значение бесспорно. Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому кроме рассмотренных средних в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные, или описательные, средние - мода (Мо) и медиана (Ме).

Мода - величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда, т. е. вариант, обладающий наибольшей частотой. Мода может применяться при определении магазинов, которые чаще посещаются, наиболее распространенной цены на какой-либо товар. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле

где х0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; fm_ 1 - частота предшествующего интервала; fm+ 1 - частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой - больше ее. Медиана используется при изучении элемента, значение которого больше или равно или одновременно меньше или равно половине элементов ряда распределения. Медиана дает общее представление о том, где сосредоточены значения признака, иными словами, где находится их центр.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности. Задача нахождения медианы для дискретного вариационного ряда решается просто. Если всем единицам ряда придать порядковые номера, то порядковый номер медианного варианта определяется как (п +1) / 2 с нечетным числом членов п. Если же количество членов ряда является четным числом, то медианой будет являться среднее значение двух вариантов, имеющих порядковые номера n / 2 и n / 2 + 1.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле

где X0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; f - число членов ряда;

∫m-1 - сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на 4 равные части, а децили - на 10 равных частей. Квартилей насчитывается три, а децилей - девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака. Эти, не очень характерные для совокупности значения вариантов, влияя на величину средней арифметической, не влияют на значения медианы и моды, что делает последние очень ценными для экономико-статистического анализа показателями.

Показатели вариации

Целью статистического исследования является выявление основных свойств и закономерностей изучаемой статистической совокупности. В процессе сводной обработки данных статистического наблюдения строят ряды распределения. Различают два типа рядов распределения - атрибутивные и вариационные, в зависимости от того, является ли признак, взятый за основу группировки, качественным или количественным.

Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности не постоянны, более или менее различаются между собой. Такое различие в величине признака носит название вариации. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Наличие вариации у отдельных единиц совокупности обусловлено влиянием большого числа факторов на формирование уровня признака. Изучение характера и степени вариации признаков у отдельных единиц совокупности является важнейшим вопросом всякого статистического исследования. Для описания меры изменчивости признаков используют показатели вариации.

Другой важной задачей статистического исследования является определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности. Для решения такой задачи в статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация. В практике исследователь сталкивается с достаточно большим количеством вариантов значений признака, что не дает представления о распределении единиц по величине признака в совокупности. Для этого проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда. Ранжированный ряд сразу дает общее представление о значениях, которые принимает признак в совокупности.

Недостаточность средней величины для исчерпывающей характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака. Использование этих показателей вариации дает возможность сделать статистический анализ более полным и содержательным и тем самым глубже понять сущность изучаемых общественных явлений.

Самыми простыми признаками вариации являются минимум и максимум - это наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения. Обозначим частоту повторения значения признака fi, сумма частот, равная объему изучаемой совокупности будет:

где k - число вариантов значений признака. Частоты удобно заменять частостями - wi. Частость - относительный показатель частоты - может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Формально имеем:

Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся среднее линейное отклонение, размах вариации, дисперсия, среднее квадратическое отклонение.

Размах вариации (R) представляет собой разность между максимальным и минимальным значениями признака в изучаемой совокупности: R = Xmax - Xmin. Этот показатель дает лишь самое общее представление о колеблемости изучаемого признака, так как показывает разницу только между предельными значениями вариантов. Он совершенно не связан с частотами в вариационном ряду, т. е. с характером распределения, а его зависимость может придавать ему неустойчивый, случайный характер только от крайних значений признака. Размах вариации не дает никакой информации об особенностях исследуемых совокупностей и не позволяет оценить степень типичности полученных средних величин. Область применения этого показателя ограничена достаточно однородными совокупностями, точнее, характеризует вариацию признака показатель, основанный на учете изменчивости всех значений признака.

Для характеристики вариации признака нужно обобщить отклонения всех значений от какой-либо типичной для изучаемой совокупности величины. Такие показатели

вариации, как среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, основаны на рассмотрении отклонений значений признака отдельных единиц совокупности от средней арифметической.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных значений отклонений отдельных вариантов от их средней арифметической:


Абсолютное значение (модуль) отклонения варианта от средней арифметической; f- частота.

Первая формула применяется, если каждый из вариантов встречается в совокупности только один раз, а вторая - в рядах с неравными частотами.

Существует и другой способ усреднения отклонений вариантов от средней арифметической. Этот очень распространенный в статистике способ сводится к расчету квадратов отклонений вариантов от средней величины с их последующим усреднением. При этом мы получаем новый показатель вариации - дисперсию.

Дисперсия (σ 2) - средняя из квадратов отклонений вариантов значений признака от их средней величины:

Вторая формула применяется при наличии у вариантов своих весов (или частот вариационного ряда).

В экономико-статистическом анализе вариацию признака принято оценивать чаще всего с помощью среднего квадратического отклонения. Среднее квадратическое отклонение (σ) представляет собой корень квадратный из дисперсии:

Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности, и выражаются в тех же единицах измерения, что и варианты.

В статистической практике часто возникает необходимость сравнения вариации различных признаков. Например, большой интерес представляет сравнение вариаций возраста персонала и его квалификации, стажа работы и размера заработной платы и т. д. Для подобных сопоставлений показатели абсолютной колеблемости признаков - среднее линейное и среднее квадртическое отклонение - не пригодны. Нельзя, в самом деле, сравнивать колеблемость стажа работы, выражаемую в годах, с колеблемостью заработной платы, выражаемой в рублях и копейках.

При сравнении изменчивости различных признаков в совокупности удобно применять относительные показатели вариации. Эти показатели вычисляются как отношение абсолютных показателей к средней арифметической (или медиане). Используя в качестве абсолютного показателя вариации размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, получают относительные показатели колеблемости:


Наиболее часто применяемый показатель относительной колеблемости, характеризующий однородность совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33 % для распределений, близких к нормальному.