Свойства ковалентной связи. Химическая связь

Как уже говорилось, общая электронная пара, осуществляющая ковалентную связь, может образоваться за счет неспаренных электронов, имеющихся в невозбуждеиных взаимодействующих атомах. Это происходит, например, при образовании таких молекул, как . Здесь каждый из атомов обладает одним неспаренным электроном; при взаимодействии двух таких атомов создается общая электронная пара - возникает ковалентная связь.

В невозбужденном атоме азота имеются три неспаренных электрона:

Следовательно, за счет неспаренных электронов атом азота может участвовать в образовании трех ковалентных связей. Это и происходит, например, в молекулах или , в которых ковалентность азота равна 3.

Однако число ковалентных связей может быть и больше числа имеющихся у невозбужденного атома иеспаренных электронов. Так, в нормальном состоянии внешний электронный слой атома углерода имеет структуру, которая изображается схемой:

За счет имеющихся неспаренных электронов атом углерода может образовать две ковалентные связи. Между тем для углерода характерны соединения, в которых каждый его атом связан с соседними атомами четырьмя ковалентными связями (например, и т. д.). Это оказывается возможным благодаря тому, что при затрате некоторой энергии можно один из имеющихся в атоме -электронов перевести на подуровень в результате атом переходит в возбужденное состояние, а число неспаренных электронов возрастает. Такой процесс возбуждения, сопровождающийся «распариванием» электронов, может быть представлен следующей схемой, в которой возбужденное состояние отмечено звездочкой у символа элемента:

Теперь во внешнем электронном слое атома углерода находятся четыре неспаренных электрона; следовательно, возбужденный атом углерода может участвовать в образовании четырех ковалентных связей. При этом увеличение числа создаваемых ковалентных связей сопровождается выделением большего количества энергии, чем затрачивается на перевод атома в возбужденное состояние.

Если возбуждение атома, приводящее к увеличению числа неспаренных электронов, связано с очень большими затратами энергии, то эти затраты не компенсируются энергией образования новый связей; тогда такой процесс в целом оказывается энергетически невыгодным. Так, атомы кислорода и фтора не имеют свободных орбиталей во внешнем электронном слое:

Здесь возрастание числа неспаренных электронов возможно только путем перевода одного из электронов на следующий энергетический уровень, т. е. в состояние . Однако такой переход сопряжен с очень большой затратой энергии, которая не покрывается энергией, выделяющейся при возникновении новых связей. Поэтому за счет неспаренных электронов атом кислорода может образовать не больше двух ковалентных связей, а атом фтора - только одну. Действительно, для этих элементов характерна постоянная ковалентность, равная двум для кислорода и единице - для фтора.

Атомы элементов третьего и последующих периодов имеют во внешнем электронном слое -подуровень, на который при возбуждении могут переходить s- и р-электроны внешнего слоя. Поэтому здесь появляются дополнительные возможности увеличения числа неспаренных электронов. Так, атом хлора, обладающий в невозбужденном состоянии одним неспаренным электроном,

может быть переведен, при затрате некоторой энергии, в возбужденные состояния , характеризующиеся тремя, пятью или семью неспаренными электронами;

Поэтому, в отличие от атома фтора, атом хлора может участвовать в образовании не только одной, но также трех, пяти или семи ковалентных связей. Так, в хлористой кислоте ковалентность хлора равна трем, в хлорноватой кислоте - пяти, а в хлорной кислоте - семи. Аналогично атом серы, также обладающий незанятым -подуровнем, может переходить в возбужденные состояния с четырьмя или шестью неспаренными электронами и участвовать, следовательно, в образовании не только двух, как у кислорода, но также четырех или шести ковалентных связей. Этим можно объяснить существование соединений, в которых сера проявляет ковалентность, равную четырем или шести .

Во многих случаях ковалентные связи возникают и за счет спаренных электронов, имеющихся во внешнем электронном поле атома. Рассмотрим, например, электронную структуру молекулы аммиака:

Здесь точками обозначены электроны, первоначально принадлежавшие атому азота, а крестиками - принадлежавшие атомам водорода. Из восьми внешних электронов атома азота шесть образуют три ковалентные связи и являются общими для атома азота и атомов водорода. Но два электрона принадлежат только азоту к образуют неподеленную электронную пару. Такая пара электронов тоже может участвовать в образовании ковалентной связи с другим атомом, если во внешнем электронном слое этого атома есть свободная орбиталь. Незаполненная -орбиталь имеется, например, у нона водорода , вообще лишенного электронов:

Поэтому при взаимодействии молекулы с ионом водорода между ними возникает ковалентная связь; неподеленная пара электронов атома азота становится общей для двух атомов, в результате чего образуется ион аммония :

Здесь ковалентная связь возникла за счет пары электронов, (электронной пары), и свободной орбитали другого атома (акцептора электронной пары) первоначально принадлежавшей одному атому (донору электронной пары).

Такой способ образования ковалентной связи называется донорно-акцепторным. В рассмотренном примере донором электронной пары служит атом азота, а акцептором - атом водорода.

Опытом установлено, что четыре связи в ионе аммония во всех отношениях равноценны. Из этого следует, что связь, образованная донорно-акцепторным способом, не отличается по своим свойствам от ковалентной связи, создаваемой за счет неспаренных электронов взаимодействующих атомов.

Другим примером молекулы, в которой имеются связи, образованные донорно-акцепторным способом, может служить молекула оксида азота .

Раньше структурную формулу этого соединения изображали следующим сбразом:

Согласно этой формуле центральный атом азота соединен с соседними атомами пятью ковалентными связями, так что в его внешнем электронном слое находятся десять электронов (пять электронных пар). Но такой вывод противоречит электронной структуре атома азота, поскольку его наружный L-слой содержит всего четыре орбитали (одну s- и три р-орбитали) и не может вместить более восьми электронов. Поэтому приведенную структурную формулу нельзя признать правильной.

Рассмотрим электронную структуру оксида азота , причем электроны отдельных атомов будем попеременно обозначать точками или крестиками. Атом кислорода, имеющий два неспаренных электрона, образует две ковалентных связи с центральным атомом азота:

За счет неспаренного электрона, оставшегося у центрального атома азота, последний образует ковалентную связь со вторым атомом азота:

Таким образом, внешние электронные слои атома кислорода и центрального атома азота оказываются заполненными: здесь образуются устойчивые восьмиэлектронные конфигурации. Но во внешнем электронном слое крайнего атома азота размещено только шесть электронов; этот атом может, следовательно, быть акцептором еще одной электронной пары. Соседний же с ним центральный атом азота обладает неподеленной электронной парой и может выступать в качестве донора.

Это приводит к образованию по донорно-акцепторному способу еще одной ковалентной связи между атомами азота:

Теперь каждый из трех атомов, составляющих молекулу , обладает устойчивой восьмиэлектронной структурой внешнего слоя. Если ковалентную связь, образованную донорно-акцепторным способом, обозначить, как это принято, стрелкой, направленной от атома-донора к атому-акцептору, то структурную формулу оксида азота (I) можно представить следующим образом:

Таким образом, в оксиде азота ковалентность центрального атома азота равна четырем, а крайнего - двум.

Рассмотренные примеры показывают, что атомы обладают разнообразными возможностями для образования ковалентных связей. Последние могут создаваться и за счет неспаренных электронов невозбужденного атома, и за счет неспаренных электронов, появляющихся в результате возбуждения атома («распаривания» электронных пар), и, наконец, по донорно-акцепторному способу. Тем не менее, общее число ковалентных связей, которые способен образовать данный атом, ограничено. Оно определяется общим числом валентных орбиталей, т. е. тех орбиталей, использование которых для образования ковалентных связей оказывается энергетически выгодным. Квантово-механический расчет показывает, что к подобным орбиталям принадлежат s- и р-орбитали внешнего электронного слоя и -орбитали предшествующего слоя; в некоторых случаях, как мы видели на примерах атомов хлора и серы, в качестве валентных орбиталей могут использоваться и -орбитали внешнего слоя.

Атомы всех элементов пторого периода имеют во внешнем электронном слое четыре орбитали при отсутствии -орбиталей в предыдущем слое. Следовательно, на валентных орбиталях этих атомов может разместиться не более восьми электронов. Это означает, что максимальная ковалентность элементов второго периода равна четырем.

Атомы элементов третьего и последующих периодов могут использовать для образования ковалентных связей не только s- и , но также и -орбитали. Известны соединения -элементов, в которых в образовании ковалентных связей участвуют s- и р-орбитали внешнего электронного слоя и все пять -орбиталей предшествующего слоя; в подобных случаях ковалентность соответствующего элемента достигает девяти.

Способность атомов участвовать в образовании ограниченного числа ковалентных связей получила название насыщаемости ковалентной связи.

Тест 4

Тема « Ковалентная связь»

Вариант 1

1. Валентность атома химического элемента в соединении с ковалентными связями равна а) числу электронов у этого атома б) числу общих пар электронов, образованных этим атомом в) заряду ядра этого атома г) номеру периода, в котором находится данный элемент

2. Формула молекулы углекислого газа СО 2 называется

а) молекулярной формулой б) графической формулой в) электронной формулой г) физической формулой

3. Сколько электронов недостает атому хлора до завершения внешнего электронного слоя?

а) 1 б)2 в) 3 г) 7

4. Атом углерода присоединил два атома кислорода, образовав при этом четыре общие пары электронов. Укажите валентность углерода в этом соединении.

а) I б) II в) III г) IV

5. Химическая связь в молекуле брома Br 2

а) ионная б) металлическая

в) ковалентная неполярная г) ковалентная полярная

6.В периоде от щелочного металла к галогену электроотрицательность атома, как правило,

а) не меняется

в) уменьшается

г) увеличивается

а) бериллий б) натрий

в) магний г) литий

8.В ряду элементов электроотрицательность элементов меняется (увеличивается или уменьшается) так же, как и

а) их металлические свойства

б) радиусы их атомов

в) их неметаллические свойства

г) число электронов на внешнем уровне атомов

9. Какой частичный заряд имеют атомы азота и кислорода соответственно в молекуле NO ?

а) N 2 б) NH 3 в) H 2 г) Cl 2

Вариант 2

1. Ковалентная связь – это химическая связь, обусловленная а) образованием общих пар электронов

б) образованием неподеленных пар электронов

в) притяжением ионов противоположных зарядов

г)) взаимодействием между ионами металла и свободными электронами

2. Какая формула молекулы сероводорода является его электронной формулой?

а) H 2 S б) H – S – H

в) H : : S : : H г) H : S : H

3. Сколько электронов недостает атому фосфора до завершения внешнего электронного слоя?

а) 5 б) 2 в) 3 г) 4

4. Атом серы присоединил три атома кислорода, образовав при этом шесть общих пар электронов. Укажите валентность серы в этом соединении.

а) II б) VI в) IV г) III

5. Формула вещества с ковалентной неполярной связью

а) SO 2 б) Br 2 в) H 2 O г) NaCl

6. В группе, в главной подгруппе, сверху вниз электроотрицательность атома, как правило,

а) не меняется

б) сначала увеличивается, потом уменьшается

в) уменьшается

г) увеличивается

7. Среди перечисленных элементов выберите наименее электроотрицательный элемент

а) фтор б) кислород

в) сера г) хлор

8.Какой частичный заряд имеют атомы бора и фтора соответственно в молекуле

а) положительный и отрицательный

б) отрицательный и отрицательный

в) положительный и положительный

г) отрицательный и положительный

9. Выберите молекулу, содержащую полярную ковалентную связь

а) NH 3 б) HCl в) F 2 г) SO 3

10. Химическая связь в молекуле аммиака NH 3

а) ионная

б) металлическая

в) ковалентная неполярная

г) ковалентная полярная

Вариант 3 1. Как правило, ковалентная связь образуется между:

а) атомами типичного металла и атомами типичного неметалла

б) атомами металлов

в) атомами типичного металла и атомами инертного газа

г) атомами неметаллов

2. Формула молекулы хлора Cl : Cl называется

а) молекулярной формулой

б) графической формулой

в) электронной формулой

г) физической формулой

3. Сколько электронов недостает атому кислорода до завершения внешнего электронного слоя?

а) 1 б) 2 в) 3 г) 6

4. Число ковалентных связей, образованных атомом химического элемента, равно

а) числу общих пар электронов, образованных этим атомом

в) числу спаренных электронов на внешнем уровне атома

г) числу других атомов, присоединенных данным атомом

5. В группе, в главной подгруппе, сверху вниз радиус атома, как правило

6. Среди перечисленных элементов выберите элемент, атом которого имеет наибольший радиус

а) бор б) кремний в) алюминий г) углерод

7.В случае ковалентной неполярной связи общая пара электронов

г) отсутствует

8. Какой частичный заряд имеют атомы кислорода и серы соответственно в молекуле SO 2

б) отрицательный и отрицательный

9. Выберите молекулу, содержащую неполярную ковалентную связь:

а) NH 3 б) H 2 О в) NO 2 г) H 2

10. Химическая связь в молекуле сульфида свинца PbS

а) ковалентная неполярная б) ковалентная полярная

в) ионная г) металлическая

Вариант 4

1. Какова природа сил, удерживающих два атома водорода в молекуле?

а) химическая б) физическая

в) электрическая г) ядерная

2. Формула молекулы воды Н – О – Н называется

а) молекулярной формулой

б) графической формулой

в) электронной формулой

г) физической формулой

3. Сколько электронов недостает атому кремния до завершения внешнего электронного слоя?

1) 1 б) 2 в) 3 г) 4

4. Число неспаренных электронов у атома бора равно

1) 1 б) 2 в) 3 г) 4

5. Число общих пар, образованных атомом химического элемента, равно

а) общему числу электронов в атоме

б) числу электронов на внешнем уровне атома

в) числу неспаренных электронов на внешнем уровне атома

г) числу спаренных электронов на внешнем уровне атома

6. В периоде от щелочного металла к галогену радиус атома, как правило

а) увеличивается б) уменьшается

в) не меняется г) сначала увеличивается, потом уменьшается

7.Среди перечисленных элементов выберите элемент, атом которого имеет наименьший радиус:

1) углерод б) фосфор в) кремний г) азот

8. В случае ковалентной полярной связи общая пара электронов

а) сдвинута в сторону более электроотрицательного атома

б) находится на равном удалении от ядер атомов

в) целиком принадлежит одному из атомов

г) отсутствует

9. Какой частичный заряд имеют атомы водорода и азота соответственно в молекуле аммиака NH 3 ?

а) положительный и положительный

б) отрицательный и отрицательный

в) положительный и отрицательный

г) отрицательный и положительный?

10. Выберите молекулу, содержащую полярную ковалентную связь

а) H 2 О б) H 2 в) О 2 г) F 2

Кодификатор

Вариант

вопроса

1

2

3

4

Сера (лат. Sulfur) — элемент-неметалл. Химический символ S, порядковый номер в таблице Менделеева — 16. Валентность серы была установлена еще до изучения строения атома. Определили ее значение на основании свойства замещать, притягивать либо присоединять некоторое количество других атомов или групп. Позже исследователи выяснили роль отрицательно заряженных частиц (электронов) в возникновении

Валентность серы: какие особенности атомов влияют на ее значение?

По распространенности на Земле химический элемент находится на 16-м месте. Встречается в виде ярко-желтых кристаллов или порошка в горных породах, вблизи действующих и потухших вулканов. Наиболее известные природные соединения — сульфиды и сульфаты.

Особенности элемента и вещества:

  1. Сильный неметалл.
  2. По электроотрицательности (ЭО) или способности притягивать к себе электроны сера уступает только фтору, кислороду, азоту, хлору и брому.
  3. Взаимодействует с металлами и неметаллами, простыми и сложными веществами.

Отличия в свойствах зависят от строения и состояния атома, разницы в значениях ЭО. Выясним, какая валентность может быть у серы в соединениях. Их химическое поведение зависит от строения энергетических оболочек, числа и расположения внешних электронов в атоме.

Почему валентность бывает разной?

Стабильными являются естественные изотопы серы с массовыми числами 32 (наиболее распространенный), 33, 34 и 36. Атом каждого из этих нуклидов содержит 16 положительно заряженных протонов. В пространстве вблизи ядра передвигаются с огромной скоростью 16 электронов. Они бесконечно малы, отрицательно заряжены. Меньше притягиваются к ядру (более свободны) 6 внешних частиц. Несколько из них или все принимают участие в образовании разных типов химической связи. По современным представлениям валентность серы определяется числом созданных общих (связывающих) электронных пар. Обычно на рисунках и схемах внешние частицы, принимающие участие в этом процессе, изображают точками вокруг химического знака.

Как валентность зависит от строения атома?

С помощью энергетической диаграммы можно показать строение уровней и подуровней (s, p, d), от которых зависит формула валентности серы. Две разнонаправленные стрелочки символизируют спаренные, одна — неспаренные электроны. Внешнее пространство атома серы образуют орбитали 6 частиц, а необходимо 8 для устойчивости по правилу октета. Конфигурацию валентной оболочки отражает формула 3s23p4. Электроны незавершенного слоя обладают большим запасом энергии, что вызывает неустойчивое состояние всего атома. Для достижения стабильности атому серы требуются две дополнительные отрицательные частицы. Они могут быть получены при образовании с другими элементами или за счет поглощения двух свободных электронов. В этом случае сера проявляет валентность II (-). Такое же значение можно получить, используя формулу: 8 - 6 = 2, где 6 — это номер группы, в которой находится элемент.

Где встречаются соединения, в которых валентность серы равна II (-)?

Элемент притягивает или полностью отнимает электроны у атомов с меньшим значением электроотрицательности по шкале Поллинга. Валентность II (-) проявляется в сульфидах металлов и неметаллов. Обширная группа подобных соединений встречается в составе имеющих огромное практическое значение. К ним относятся пирит (FeS), сфалерит (ZnS), галенит (PbS) и другие вещества. Кристаллы сульфида железа имеют красивый желтовато-коричневый цвет и блеск. Часто минерал пирит называют «золотом дураков». Для получения металлов из руд проводят их обжиг или восстановление. Сульфид водорода H2S имеет такую же электронную структуру, как вода. Происхождение H2S:

  • выделяется при гниении белков (например, куриного яйца);
  • извергается с вулканическими газами;
  • накапливается в природных водах, нефти;
  • выделяется в пустоты в земной коре.

Почему формула оксида четырехвалентной серы SO2?

Формула диоксида показывает, что один атом серы в молекуле связан с двумя атомами кислорода, каждому из которых необходимо 2 электрона до октета. Возникшая связь является по своей природе ковалентной полярной (ЭО кислорода больше). Валентность серы в этом соединении имеет значение IV (+), потому что 4 электрона атома серы смещаются в сторону двух атомов кислорода. Формулу можно записать так: S2O4, но по правилам нужно сократить на 2. Диоксид при растворении в воде образует ионы слабой сернистой кислоты. Ее соли — сульфиты — сильные восстановители. Газ SO2 служит промежуточным продуктом в

В каких веществах сера проявляет свою высшую валентность?

Оксид SO3 или S2O6 — бесцветная жидкость, при температурах ниже 17°С она твердеет. В соединении SO3 валентность кислорода равна II (-), а серы VI (+). растворяется в воде и образует сильную двухосновную серную кислоту. За большую роль в производственных процессах вещество назвали «хлебом химической промышленности». Важная роль в хозяйстве и медицине принадлежит солям кислоты — сульфатам. Используются кристаллогидрат кальция (гипс), магния (английская или горькая соль).

В образовании разных типов химической связи могут участвовать 1, 2, 3, 4, 6 внешних электронов. Назовем возможные валентности серы, учитывая, что есть редкие и нестабильные соединения: I (-), II (-), II (+), III (+), IV (+), VI (+). Вторую положительную валентность элемент приобретает в монооксиде SO. Наиболее распространенные значения II (-), IV (+), VI (+) проявляет сера в составе группы веществ, имеющих промышленное, сельскохозяйственное и медицинское значение. Ее соединения используются в производстве фейерверков.

Большой проблемой остается улавливание отходящих газов, среди которых вредные для человека и окружающей среды IV (+), VI (+) и сероводород. Созданы технологии для переработки этих газообразных отходов и получения из них серной кислоты, сульфатов. С этой целью химические предприятия возводят рядом с металлургическими комбинатами или в одном районе. В результате объем загрязнений сокращается, меньше возникает «сернокислотных дождей».

Вариант 1.



1. Заряд ядра атома +8 имеют атомы химического элемента:
Б. Кислорода.

2. Число общих электронных пар в молекуле хлора:
В. Три.

3. Ковалентная полярная связь имеется в молекуле вещества, формула которого:
Б. СО2.

4. Степень окисления азота в ряду веществ, формулы которых N2-NO-NО2-HNО3:
А. Повышается от 0 до +5.

5. Структурная формула водородного соединения элемента Э главной подгруппы VI группы Периодической системы:
В. Н-Э-Н.

6. Уравнение химической реакции H2S + С12 = 2НС1 + S соответствует схеме превращения хлора:
A. Cl0→Cl-1

7. Вещество X в ряду превращений С02→ X→Са(НСО3)2→ CО2 имеет формулу:
В. СаСО3.

8. Реактивом на хлорид-анион является катион:
Б. Ag+.


Г. H2SО4 и MgO.

10. Оксид азота (IV) образуется при взаимодействии веществ, формулы которых:
В. НNО3(конц) и Ag.



2P + 3Zn = Zn3P2
Zn3P2 + 3H2O + 4O2 = 3Zn(OH)2 + P2O5
P2O5 + 3H2O = 2H3PO4
2H3PO4 + 6Na = 2Na3PO4 + 3H2
Na3PO4 + 3AgNO3 = Ag3PO4↓+ 3NaNO3


Zn3P2-3 + 3H2O + 4O20 = 3Zn(OH)2 + P2+5O5-2
O2 0 → 2O -2 +2 e, окислитель
P -3 → P +5 - 8 е, восстановитель


Na3PO4 + 3AgNO3 = Ag3PO4↓ + 3NaNO3
3Na+ + PO4 3-+ 3Ag+ + 3NO3- = Ag3PO4↓+ 3Na+ + 3NO3-
PO4 3-+ 3Ag+= Ag3PO4↓

14. Вычислите массу (в кг) хлороводорода, который получается при взаимодействии 4,48 м3 хлора с избытком водорода.
n(Cl2) = 4480дм3/22,4 дм3/моль = 200моль
n (НСl) = 2n (Cl2) = 400 моль
m (НСl) = 400моль*36,5г/моль = 14600 г = 14,6 кг

15. Назовите химический элемент, имеющий изотоп, в ядре которого отсутствуют нейтроны.
водород

Вариант 2.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Заряд ядра атома +17 имеют атомы химического элемента:
Г. Хлора.

2. Число общих электронных пар в молекуле водорода:
А. 1.

3. Ковалентная неполярная связь имеется в молекуле вещества, формула которого:
А. N2.

4. Степень окисления фосфора в ряду веществ, формулы которых Са3Р2-Р-Р2О3-Р2О5:
Б. Повышается от -3 до +5.

5. Структурная формула водородного соединения элемента Э главной подгруппы V группы Периодической системы:
Г. Н-Э-Н.
Н

6. Уравнение химической реакции 2SО2 + О2 = 2SО3 соответствует схеме превращения серы:
В. S+4→ S+6.

7. Вещество X в ряду превращений N2→ NH3→ X→ NО2 имеет формулу:
Б. NO.

8. Реактивом на карбонат-анион является катион:
А. Н+.

9. Химическая реакция возможна между веществами, формулы которых:
В. Р2О5 и NaOH.

10. Оксид серы (IV) не образуется при взаимодействии веществ, формулы которых:
Г. СаСО3 и H2SО4.

ЧАСТЬ Б. Задания со свободным ответом



1. Mg + S = MgS
2. 2 MgS + ЗО2 = 2MgО + 2SО2,
3. 2SO2 + O2 = 2SO3
4. SO3 + Na2O = Na2SO4
5. Na2SO4 + BaCl2 = BaSO4 ↓+ 2NaCl

12. Превращение 2 из задания 11 рассмотрите с точки зрения ОВР.
2 MgS-2 + ЗО20 = 2MgО-2 + 2S+4О2-2,
S-2 → S+4 , -6e, восстановитель
O20 → 2O-2 +2*2е, окислитель

13. Из задания 11 выберите реакцию ионного обмена и запишите ее в ионном виде.
Na2SO4 + BaCl2 = BaSO4 ↓+ 2NaCl
SO42- + Ba2+ = BaSO4 ↓

14. Вычислите массу (в кг) аммиака, который получается при взаимодействии 2 кмоль азота с избытком водорода.
N2 + 3H2 = 2NH3
n(NH3) = 2n(N2) = 4кмоль = 4000 моль
m(NH3) = 4000 моль *17 г/моль = 68000 г = 68 кг.

15. Назовите химический элемент, который в соединениях никогда не проявляет положительную степень окисления.
Фтор

Вариант 3.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Заряд ядра атома +14 имеют атомы химического элемента:
В. Кремния.

2. Число общих электронных пар в молекуле брома:
А. 1.

3. Ковалентная полярная связь имеется в веществе, формула которого:
Б. H2S.

4. Степень окисления серы в ряду веществ, формулы которых SО3-SО2-S-H2S:
Г. Понижается от +6 до -2.

5. Структурная формула водородного соединения элемента Э главной подгруппы VII группы Периодической системы:
А. Н-Э.

6. Уравнение химической реакции 4NH3 + 5О2 = 4NO + 6Н2О соответствует схеме превращения азота:
В. N-3→ N+2.

7. Вещество X в ряду превращений РН3→ Р2О5 → X→ Са3(РО4)2 имеет формулу:
А. Н3РО4.

8. Реактивом на сульфат-анион является катион:
В. Ва2+.

9. Химическая реакция возможна между веществами, формулы которых:
А. СО2 и NaOH.

10. Оксид углерода (IV) образуется при взаимодействии веществ, формулы которых:
Б. СаСО3 и НС1.

ЧАСТЬ Б. Задания со свободным ответом


11. Запишите уравнения реакций, с помощью которых можно осуществить превращения согласно схеме:
SiH4→ SiО2 →Na2SiО3→ H2SiО3 →SiО2→ Si.

1. SiH4 + 2O2 = SiO2 + 2H2O
2. SiO2 + Na2O = Na2SiO3
3. Na2SiO3 + 2HCl = H2SiO3↓ + 2NaCl
4. H2SiO3 = SiO2 + H2O
5. SiO2+2C---> Si + 2CO

12. Превращение 5 из задания 11 рассмотрите с точки зрения ОВР.
Si+4O2+2C0---> Si0 + 2C+2O
Si+4 →Si0 +4е, окислитель
C0 →C+2 -2е, восстановитель

13. Из задания 11 выберите реакцию ионного обмена и запишите ее в ионном виде.
Na2SiO3 + 2HCl = H2SiO3↓ + 2NaCl
SiO32- + 2H+ = H2SiO3↓

14. Вычислите массу (в кг) хлорида аммония, который образуется при взаимодействии 11,2 м3 хлороводорода с избытком аммиака.
HCl + NH3 = NH4Cl
n(HCl) = n(NH4Cl) = 11200 дм3/ 22,4 дм3/моль = 500 моль
m(NH4Cl) = 500 моль *56,5 г/моль = 28250 г = 28,250 кг.

15. Расположите химические элементы фосфор, кислород, серу, хлор в порядке увеличения неметаллических свойств.
Фосфор, сера, кислород, хлор

Вариант 4.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Заряд ядра атома +16 имеют атомы химического элемента:
В. Серы.

2. Число общих электронных пар в молекуле азота:
В. 3.

3. Ковалентная неполярная связь имеется в веществе, формула которого:
В. О2.

4. Степень окисления углерода в ряду веществ, формулы которых СН4-С-СО-СО2:
Б. Повышается от -4 до +4.

5. Структурная формула водородного соединения элемента Э главной подгруппы IV группы Периодической системы:
В. Н-Э-Н

6. Уравнение химической реакции Си + 4HNО3 = CU(NО3)2 + 2NО2 + 2Н2О соответствует схеме превращения азота:
Г. N+5 →N+4.

7. Вещество X в ряду превращений S→ S02→ X→ Na2SО3 имеет формулу:
Г. H2SО3.

8. Реактивом на фосфат-анион является катион:
Г. Ag+.

9. Химическая реакция возможна между веществами, формулы которых:
Б. СО2 и Са(ОН)2.

10. Кремниевая кислота образуется при взаимодействии веществ, формулы которых:
В. Na2SiО3 и НС1.

ЧАСТЬ Б. Задания со свободным ответом


11. Запишите уравнения реакций, с помощью которых можно осуществить превращения согласно схеме:
N2 →NH3 →NО→NО2→ HNО3→ KNО3.

1. N2 + 3H2 =2NH3
2. 4NH3 + 5O2 = 4NO + 6H2O
3. 2NO + O2 = 2NO2
4. 4NO2 + О2 + 2Н2О → 4HNO3
5. HNO3 + KOH =KNO3 + H2O

12. Превращение 2 в задании 11 рассмотрите с точки зрения ОВР.
4N-3H3 + 5O20 = 4N+2O-2 + 6H2O
N-3 ->N+2, -5е, восстановитель
O20-> 2O-2 ,+ 2*2е, окислитель

13. Из задания 11 выберите реакцию ионного обмена и запишите ее в ионном виде.
HNO3 + KOH =KNO3 + H2O
H+ + OH- = H2O

14. Вычислите массу (в кг) оксида серы (IV), образовавшегося при сгорании 4,48 м3 сероводорода в избытке кислорода.
2H2S + 3O2 = 2SO2 + 2H2O
n(H2S) = n(SO2) = 44800 дм3/ 22,4 дм3/моль = 2000 моль
m(SO2) = 2000 моль *64 г/моль = 128000 г = 128 кг

15. Назовите химический элемент самый распространенный:
А. В земной коре:

кислород
Б. Во Вселенной:
водород

Ответ на вопрос 1(1).

Так как значения ЭО водорода и фосфора одинаковы, то химическая связь в молекуле PH 3 будет ковалентной неполярной.

Ответ на вопрос 2(2).

І. а) в молекуле S 2 связь ковалентная неполярная, т.к. она образована атомами одного и того же элемента. Схема образования связи будет следующей:
Сера - элемент главной подгруппы VI группы. Атомы серы имеют по 6 электронов на внешней оболочке. Непарных электронов будет два (8-6=2).
Обозначим внешние электроны , тогда схема образования молекулы серы будет иметь вид:

или S=S
б) в молекуле K 2 O связь ионная, потому что она образована атомами элементов металла и неметалла.
Калий - элемент первой группы главной подгруппы, металл. Его атому легче отдать 1 электрон, чем принять недостающие 7 электронов:

2. Кислород - неметалл, элемент главной подгруппы VI группы. Его атому легче принять 2 электрона, которых не хватает до завершения внешнего уровня, чем отдать 6 электронов с внешнего уровня:

Найдем наименьшее общее кратное между зарядами образовавшихся ионов, оно равно 2(2 . 1). Чтобы атомы калия отдали 2 электрона, нужно взять 2 атома, чтобы атомы кислорода смогли принять 2 электрона, необходимо взять 1 атом, поэтому схема образования оксида калия будет иметь вид:

в) в молекуле H 2 S связь ковалентная полярная, потому что она образована атомами элементов с различной ЭО. Схема образования химической связи будет следующей:
Сера – элемент главной подгруппы VІ группы. Ее атомы имеют по 6 электронов на внешней оболочке. Непарных электронов будет 2 (8-6=2).
Водород - элемент главной подгруппы 1 группы. Его атомы содержат по 1 электрону на внешней оболочке. Непарным является 1 электрон (для атома водорода завершенным является двухэлектродный уровень).
Обозначим внешние электроны атомов серы и водорода, соответственно:

В молекуле сероводорода общие электронные пары смещены в сторону более электроотрицательного атома – серы:

1. а) в молекуле N 2 связь ковалентная неполярная, потому что она образована атомами одного и того же элемента. Схема образования связи следующая:
Азот - элемент главной подгруппы V группы. Его атомы имеют 5 электронов на внешней оболочке. Неспаренных электронов три (8 -5 = З).
Обозначим внешние электроны атома азота точками:

б) в молекуле Li 3 H связь ионная, потому что она образована атомами элементов металла и неметалла.
Литий - элемент главной подгруппы І группы, металл. Его атому легче отдать 1 электрон, чем принять недостающие 7 электронов:

Азот - элемент главной подгруппы V группы, неметалл. Его атому легче принять З электрона, которых не хватает до завершения внешнего уровня, чем отдать пять электронов с внешнего уровня:

Найдем наименьшее общее кратное между зарядами образовавшихся ионов, оно равно 3(3: 1 =3). Чтобы атомы лития отдали З электрона, необходимо З атома, чтобы атомы азота смогли принять З электрона, необходим только один атом:

в) в молекуле NCl 3 связь ковалентная полярная, т.к. она образована атомами элементов-неметаллов с различными значениями ЭО. Схема образования связи следующая:
Азот - элемент главной подгруппы V группы. Его атомы имеют по 5 электронов на внешней оболочке. Непарных электронов будет три (8-5=3).
Хлор - элемент главной подгруппы VII группы. Его атомы содержат по 7 электронов на внешней оболочке. Непарным остается 1 электрон (8 – 7 = 1). Обозначим внешние электроны атомов азота и хлора, соответственно:

Общие электронные пары смещены к атому азота, как более электроотрицательному:

Ответ на вопрос 3(3).

Связь в молекуле HCl менее полярна, чем в молекуле HF, потому что в ряду изменения ЭО хлор и водород менее удалены друг от друга, чем фтор и водород.

Ответ на вопрос 4(4).

Ковалентная химическая связь образуется за счет обобщения внешних электронов. По числу общих электронных пар она бывает одинарной, двойной или тройной, а по электроотрицательности, образующих её атомов - ковалентную полярную и ковалентную неполярную