Теорема пифагора катеты равны. Как применять теорему пифагора

1

Шаповалова Л.А. (ст. Егорлыкская, МБОУ ЕСОШ № 11)

1. Глейзер Г.И. История математики в школе VII – VIII классы, пособие для учителей, – М: Просвещение, 1982.

2. Демпан И.Я., Виленкин Н.Я. «За страницами учебника математики» Пособие для учащихся 5-6 классов. – М.: Просвещение, 1989.

3. Зенкевич И.Г. «Эстетика урока математики». – М.: Просвещение, 1981.

4. Литцман В. Теорема Пифагора. – М., 1960.

5. Волошинов А.В. «Пифагор». – М., 1993.

6. Пичурин Л.Ф. «За страницами учебника алгебры». – М., 1990.

7. Земляков А.Н. «Геометрия в 10 классе». – М., 1986.

8. Газета «Математика» 17/1996.

9. Газета «Математика» 3/1997.

10. Антонов Н.П., Выгодский М.Я., Никитин В.В., Санкин А.И. «Сборник задач по элементарной математики». – М., 1963.

11. Дорофеев Г.В., Потапов М.К., Розов Н.Х. «Пособие по математике». – М., 1973.

12. Щетников А.И. «Пифагорейское учение о числе и величине». – Новосибирск, 1997.

13. «Действительные числа. Иррациональные выражения» 8 класс. Издательство Томского университета. – Томск, 1997.

14. Атанасян М.С. «Геометрия» 7-9 класс. – М.: Просвещение, 1991.

15. URL: www.moypifagor.narod.ru/

16. URL: http://www.zaitseva-irina.ru/html/f1103454849.html.

В этом учебном году я познакомились с интересной теоремой, известной, как оказалось с древнейших времён:

«Квадрат, построенный на гипотенузе прямоугольного треугольника равновелик сумме квадратов построенных на катетах».

Обычно открытие этого утверждения приписывают древнегреческому философу и математику Пифагору (VI век до н.э). Но изучение древних рукописей показало, что это утверждение было известно задолго до рождения Пифагора.

Я заинтересовались, почему в таком случае её связывают с именем Пифагора.

Актуальность темы: Теорема Пифагора имеет огромное значение: применяется в геометрии буквально на каждом шагу. Я считаю, что труды Пифагора до сих пор актуальны, ведь куда бы мы ни посмотрели, везде можно увидеть плоды его великих идей, воплощенные в различные отрасли современной жизни.

Целью моего исследования было: узнать, кто такой был Пифагор, и какое отношение он имеет к этой теореме.

Изучая историю теоремы, я решила выяснить:

Существуют ли другие доказательства этой теоремы?

Каково значение этой теоремы в жизни людей?

Какую роль сыграл Пифагор в развитии математики?

Из биографии Пифагора

Пифагор Самосский - великий греческий учёный. Его известность связана с названием теоремы Пифагора. Хотя сейчас уже мы знаем, что эта теорема была известна в древнем Вавилоне за 1200 лет до Пифагора, а в Египте за 2000 лет до него был известен прямоугольный треугольник со сторонами 3, 4, 5, мы по-прежнему называем её по имени этого древнего учёного.

Про жизнь Пифагора достоверно почти ничего неизвестно, но с его именем связано большое количество легенд.

Пифагор родился в 570 году до н.э на острове Самос.

Пифагор имел красивую внешность, носил длинную бороду, а на голове золотую диадему. Пифагор - это не имя, а прозвище, которое философ получил за то, что всегда говорил верно и убедительно, как греческий оракул. (Пифагор - «убеждающий речью»).

В 550 году до н.э Пифагор принимает решение и отправляется в Египет. Итак, перед Пифагором открывается неизвестная страна и неведомая культура. Многое поражало и удивляло Пифагора в этой стране, и после некоторых наблюдений за жизнью египтян Пифагор понял, что путь к знаниям, охраняемым кастой жрецов, лежит через религию.

После одиннадцати лет обучения в Египте Пифагор отправляется на родину, где по пути попадает в Вавилонский плен. Там он знакомится с вавилонской наукой, которая была более развита, чем египетская. Вавилоняне умели решать линейные, квадратные и некоторые виды кубических уравнений. Сбежав из плена, он не смог долго оставаться на родине из-за царившей там атмосферы насилия и тирании. Он решил переселиться в Кротон (греческая колония на севере Италии).

Именно в Кротоне начинается самый славный период в жизни Пифагора. Там он учредил нечто вроде религиозно-этического братства или тайного монашеского ордена, члены которого обязывались вести так называемый пифагорейский образ жизни.

Пифагор и пифагорейцы

Пифагор организовал в греческой колонии на юге Апенинского полуострова религиозно-этическое братство, типа монашеского ордена, который впоследствии назовут пифагорейским союзом. Члены союза должны были придерживаться определённых принципов: во-первых, стремиться к прекрасному и славному, во-вторых, быть полезными, в-третьих, стремиться к высокому наслаждению.

Система морально-этических правил, завещанная Пифагором своим ученикам, была собрана в своеобразный моральный кодекс пифагорейцев «Золотые стихи», которые пользовались большой популярностью в эпоху Античности, эпоху Средневековья и эпоху Возрождения.

Пифагорейская система занятий состояла из трёх разделов:

Учения о числах - арифметике,

Учения о фигурах - геометрии,

Учения о строении Вселенной - астрономии.

Система образования, заложенная Пифагором, просуществовала много веков.

Школа Пифагора много сделала, чтобы придать геометрии характер науки. Основной особенностью метода Пифагора было объединение геометрии с арифметикой.

Пифагор много занимался пропорциями и прогрессиями и, вероятно, подобием фигур, так как ему приписывают решение задачи: «По данным двум фигурам построить третью, равновеликую одной из данных и подобную второй».

Пифагор и его ученики ввели понятие о многоугольных, дружественных, совершенных числах и изучали их свойства. Арифметика как практика вычислений не интересовала Пифагора, и он с гордостью заявил, что «поставил арифметику выше интересов торговца».

Членами пифагорейского союза были жители многих городов Греции.

В своё общество пифагорейцы принимали и женщин. Союз процветал более двадцати лет, а потом начались гонения на его членов, многие из учеников были убиты.

О смерти самого Пифагора ходило много самых разных легенд. Но учение Пифагора и его учеников продолжало жить.

Из истории создания теоремы Пифагора

В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что именно Пифагор первым дал ее полноценное доказательство, а другие отказывают ему и в этой заслуге. Некоторые приписывают Пифагору доказательство, которое Евклид приводит в первой книге своих «Начал». С другой стороны, Прокл утверждает, что доказательство в «Началах» принадлежит самому Евклиду. Как мы видим, история математики почти не сохранила достоверных конкретных данных о жизни Пифагора и его математической деятельности.

Исторический обзор теоремы Пифагора начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5:

«Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4».

Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра.

Геометрия у индусов была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 8 века до нашей эры. Наряду с чисто ритуальными предписаниями, существуют и сочинения геометрически теологического характера. В этих сочинениях, относящихся к 4 или 5 веку до нашей эры, мы встречаемся с построением прямого угла при помощи треугольника со сторонами 15, 36, 39.

В средние века теорема Пифагора определяла границу, если не наибольших возможных, то, по крайней мере, хороших математических знаний. Характерный чертеж теоремы Пифагора, который ныне иногда превращается школьниками, например, в облаченного в мантию профессора или человека цилиндре, в те времена нередко употреблялся как символ математики.

В заключение приведем различные формулировки теоремы Пифагора в переводе с греческого, латинского и немецкого языков.

Евклида эта теорема гласит (дословный перевод):

«В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол».

Как видим, в разных странах и разных языках существуют различные варианты формулировки знакомой нам теоремы. Созданные в разное время и в разных языках, они отражают суть одной математической закономерности, доказательство которой также имеет несколько вариантов.

Пять способов доказательства теоремы Пифагора

Древнекитайское доказательство

На древнекитайском чертеже четыре равных прямоугольных треугольника с катетами a, b и гипотенузой с уложены так, что их внешний контур образует квадрат со стороной a + b, а внутренний - квадрат со стороной с, построенный на гипотенузе

a2 + 2ab + b2 = c2 + 2ab

Доказательство Дж. Гардфилда (1882 г.)

Расположим два равных прямоугольных треугольника так, чтобы катет одного из них был продолжением другого.

Площадь рассматриваемой трапеции находится как произведение полусуммы оснований на высоту

C другой стороны, площадь трапеции равна сумме площадей полученных треугольников:

Приравнивая данные выражения, получаем:

Доказательство простейшее

Это доказательство получается в простейшем случае равнобедренного прямоугольного треугольника.

Вероятно, с него и начиналась теорема.

В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы.

Например, для треугольника АВС: квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах, - по два. Теорема доказана.

Доказательство древних индусов

Квадрат со стороной (a + b), можно разбить на части либо как на рис. 12. а, либо как на рис. 12, б. Ясно, что части 1, 2, 3, 4 на обоих рисунках одинаковы. А если от равных (площадей) отнять равные, то и останутся равные, т.е. с2 = а2 + b2.

Доказательство Евклида

В течение двух тысячелетий наиболее распространенным было доказательство теоремы Пифагора, придуманное Евклидом. Оно помещено в его знаменитой книге «Начала».

Евклид опускал высоту BН из вершины прямого угла на гипотенузу и доказывал, что её продолжение делит достроенный на гипотенузе квадрат на два прямоугольника, площади которых равны площадям соответствующих квадратов, построенных на катетах.

Чертёж, применяемый при доказательстве этой теоремы, в шутку называют «пифагоровы штаны». В течение долгого времени он считался одним из символов математической науки.

Применение теоремы Пифагора

Значение теоремы Пифагора состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии и решить множество задач. Кроме этого, практическое значение теоремы Пифагора и обратной ему теоремы заключается в том, что с их помощью можно найти длины отрезков, не измеряя самих отрезков. Это как бы открывает путь от прямой к плоскости, от плоскости к объемному пространству и дальше. Именно по этой причине теорема Пифагора так важна для человечества, которое стремится открывать все больше измерений и создавать технологии в этих измерениях.

Заключение

Теорема Пифагора настолько известна, что трудно представить себе человека, не слышавшего о ней. Я узнала, что существует несколько способов доказательства теоремы Пифагора. Я изучила ряд исторических и математических источников, в том числе информацию в Интернете, и поняла, что теорема Пифагора интересна не только своей историей, но и тем, что она занимает важное место в жизни и науке. Об этом свидетельствуют приведённые мной в данной работе различные трактовки текста этой теоремы и пути её доказательств.

Итак, теорема Пифагора - одна из главных и, можно сказать, самая главная теорема геометрии. Значение ее состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии. Теорема Пифагора замечательна и тем, что сама по себе она вовсе не очевидна. Например, свойства равнобедренного треугольника можно видеть непосредственно на чертеже. Но сколько ни смотри на прямоугольный треугольник, никак не увидишь, что между его сторонами есть простое соотношение: c2 = a2 + b2. Поэтому для её доказательства часто используют наглядность. Заслуга же Пифагора состояла в том, что он дал полноценное научное доказательство этой теоремы. Интересна личность самого учёного, память о котором неслучайно сохранила эта теорема. Пифагор - замечательный оратор, учитель и воспитатель, организатор своей школы, ориентированной на гармонию музыки и чисел, добра и справедливости, на знания и здоровый образ жизни. Он вполне может служить примером для нас, далёких потомков.

Библиографическая ссылка

Туманова С.В. НЕСКОЛЬКО СПОСОБОВ ДОКАЗАТЕЛЬСТВА ТЕОРЕМЫ ПИФАГОРА // Старт в науке. – 2016. – № 2. – С. 91-95;
URL: http://science-start.ru/ru/article/view?id=44 (дата обращения: 28.02.2020).

Теорема Пифагора гласит:

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы:

a 2 + b 2 = c 2 ,

  • a и b – катеты, образующие прямой угол.
  • с – гипотенуза треугольника.

Формулы теоремы Пифагора

  • a = \sqrt{c^{2} - b^{2}}
  • b = \sqrt {c^{2} - a^{2}}
  • c = \sqrt {a^{2} + b^{2}}

Доказательство теоремы Пифагора

Площадь прямоугольного треугольника вычисляется по формуле:

S = \frac{1}{2} ab

Для вычисления площади произвольного треугольника формула площади:

  • p – полупериметр. p=\frac{1}{2}(a+b+c) ,
  • r – радиус вписанной окружности. Для прямоугольникаr=\frac{1}{2}(a+b-c).

Потом приравниваем правые части обеих формул для площади треугольника:

\frac{1}{2} ab = \frac{1}{2}(a+b+c) \frac{1}{2}(a+b-c)

2 ab = (a+b+c) (a+b-c)

2 ab = \left((a+b)^{2} -c^{2} \right)

2 ab = a^{2}+2ab+b^{2}-c^{2}

0=a^{2}+b^{2}-c^{2}

c^{2} = a^{2}+b^{2}

Обратная теорема Пифагора:

Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный. То есть для всякой тройки положительных чисел a, b и c , такой, что

a 2 + b 2 = c 2 ,

существует прямоугольный треугольник с катетами a и b и гипотенузой c .

Теорема Пифагора - одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Доказана она ученым математиком и философом Пифагором.

Значение теоремы в том, что с ее помощью можно доказать другие теоремы и решать задачи.

Дополнительный материал:

Когда вы только начинали изучать квадратные корни и способы решения иррациональных уравнений (равенств, содержащих неизвестную под знаком корня), вы, вероятно, получили первое представление об их практическом использовании. Умение извлекать квадратный корень из чисел также необходимо для решения задач на применение теоремы Пифагора. Эта теорема связывает длины сторон любого прямоугольного треугольника.

Пусть длины катетов прямоугольного треугольника (тех двух сторон, которые сходятся под прямым углом) будут обозначены буквами и , а длина гипотенузы (самой длинной стороны треугольника, расположенной напротив прямого угла) будет обозначена буквой . Тогда соответствующие длины связаны следующим соотношением:

Данное уравнение позволяет найти длину стороны прямоугольного треугольника в том случае, когда известна длина двух других его сторон. Кроме того, оно позволяет определить, является ли рассматриваемый треугольник прямоугольным, при условии, что длины всех трёх сторон заранее известны.

Решение задач с использованием теоремы Пифагора

Для закрепления материала решим следующие задачи на применение теоремы Пифагора.

Итак, дано:

  1. Длина одного из катетов равняется 48, гипотенузы – 80.
  2. Длина катета равняется 84, гипотенузы – 91.

Приступим к решению:

a) Подстановка данных в приведённое выше уравнение даёт следующие результаты:

48 2 + b 2 = 80 2

2304 + b 2 = 6400

b 2 = 4096

b = 64 или b = -64

Поскольку длина стороны треугольника не может быть выражена отрицательным числом, второй вариант автоматически отбрасывается.

Ответ к первому рисунку: b = 64.

b) Длина катета второго треугольника находится тем же способом:

84 2 + b 2 = 91 2

7056 + b 2 = 8281

b 2 = 1225

b = 35 или b = -35

Как и в предыдущем случае, отрицательное решение отбрасывается.

Ответ ко второму рисунку: b = 35

Нам дано:

  1. Длины меньших сторон треугольника равны 45 и 55 соответственно, большей – 75.
  2. Длины меньших сторон треугольника равны 28 и 45 соответственно, большей – 53.

Решаем задачу:

a) Необходимо проверить, равна ли сумма квадратов длин меньших сторон данного треугольника квадрату длины большей:

45 2 + 55 2 = 2025 + 3025 = 5050

Следовательно, первый треугольник не является прямоугольным.

b) Выполняется та же самая операция:

28 2 + 45 2 = 784 + 2025 = 2809

Следовательно, второй треугольник является прямоугольным.

Сперва найдем длину наибольшего отрезка, образованного точками с координатами (-2, -3) и (5, -2). Для этого используем известную формулу для нахождения расстояния между точками в прямоугольной системе координат:

Аналогично находим длину отрезка, заключенного между точками с координатами (-2, -3) и (2, 1):

Наконец, определяем длину отрезка между точками с координатами (2, 1) и (5, -2):

Поскольку имеет место равенство:

то соответствующий треугольник является прямоугольным.

Таким образом, можно сформулировать ответ к задаче: поскольку сумма квадратов сторон с наименьшей длиной равняется квадрату стороны с наибольшей длиной, точки являются вершинами прямоугольного треугольника.

Основание (расположенное строго горизонтально), косяк (расположенный строго вертикально) и трос (протянутый по диагонали) формируют прямоугольный треугольник, соответственно, для нахождения длины троса может использоваться теорема Пифагора:

Таким образом, длина троса будет составлять приблизительно 3,6 метра.

Дано: расстояние от точки R до точки P (катет треугольника) равняется 24, от точки R до точки Q (гипотенуза) – 26.

Итак, помогаем Вите решить задачу. Поскольку стороны треугольника, изображённого на рисунке, предположительно образуют прямоугольный треугольник, для нахождения длины третьей стороны можно использовать теорему Пифагора:

Итак, ширина пруда составляет 10 метров.

Сергей Валерьевич

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

В школьном курсе геометрии с помощью теоремы Пифагора решаются только математические задачи. К сожалению, вопрос о практическом применении теоремы Пифагора не рассматривается.

В связи с этим, целью моей работы было выяснить области применения теоремы Пифагора.

В настоящее время всеобщее признание получило то, что успех развития многих областей науки и техники зависит от развития различных направлений математики. Важным условием повышения эффективности производства является широкое внедрение математических методов в технику и народное хозяйство, что предполагает создание новых, эффективных методов качественного и количественного исследования, которые позволяют решать задачи, выдвигаемые практикой.

Рассмотрю примеры практического применения теоремы Пифагора. Не буду пытаться привести все примеры использования теоремы - это вряд ли было бы возможно. Область применения теоремы достаточно обширна и вообще не может быть указана с достаточной полнотой.

Гипотеза:

С помощью теоремы Пифагора можно решать не только математические задачи.

По данной исследовательской работе определена следующая цель:

Выяснить области применения теоремы Пифагора.

Исходя из вышеназванной цели, были обозначены следующие задачи:

    Собрать информацию о практическом применении теоремы Пифагора в различных источниках и определить области применения теоремы.

    Изучить некоторые исторические сведения о Пифагоре и о его теореме.

    Показать применение теоремы при решении исторических задач.

    Обработать собранные данные по теме.

Я занималась поиском и сбором информации - изучала печатный материал, работала с материалом в интернете, обработкой собранными данными.

Методика исследования:

    Изучение теоретического материала.

    Изучение методик исследования.

    Практическое выполнение исследования.

    Коммуникативный (метод измерения, анкетирование).

Вид проекта: информационно-исследовательский. Работа выполнялась в свободное время.

О Пифагоре .

Пифагор - древнегреческий философ, математик, астроном. Обосновал многие свойства геометрических фигур, разработал математическую теорию чисел и их пропорций. Внёс значительный вклад в развитие астрономии и акустики. Автор «Золотых стихов», основатель пифагорейской школы в Кротоне.

По преданию Пифагор родился около 580 г. до н. э. на острове Самос в богатой купеческой семье. Его мать - Пифазис, получила свое имя в честь Пифии, жрицы Аполлона. Пифия предсказала Мнесарху и его жене появление на свет сына, сын также был назван в честь Пифии. По многим античным свидетельствам мальчик был сказочно красив и вскоре проявил свои незаурядные способности. Первые познания получил от своего отца Мнесарха, ювелира, резчика по драгоценным камням, который мечтал, что сын станет продолжателем его дела. Но жизнь рассудила иначе. Будущий философ обнаружил большие способности к наукам. Среди учителей Пифагора были Ферекид Сиросский и старец Гермодамант. Первый привил мальчику любовь к науке, а второй - к музыке, живописи и поэзии. Впоследствии Пифагор познакомился известным философом - математиком Фалесом Милетским и по его совету отправился в Египет - центр тогдашней научной и исследовательской деятельности. Прожив 22 года в Египте и 12 лет в Вавилоне, он вернулся на остров Самос, затем покинул его по неизвестным причинам и переехал в город Кротон, на юг Италии. Здесь он создал пифагорейскую школу (союз), в которой изучали различные вопросы философии и математики. В возрасте примерно 60 лет Пифагора женился на Феано, одной из своих учениц. У них рождены трое детей, и все они становятся последователями своего отца. Исторические условия того времени характеризуются широким движением демоса против власти аристократов. Спасаясь от волн народного гнева, Пифагор и его ученики переехали в город Тарента. По одной версии: к нему пришел Килон, богатый и злой человек, желая спьяну вступить в братство. Получив отказ, Килон начал борьбу с Пифагором. При пожаре ученики своей ценой спасли жизнь учителю. Пифагор затосковал и вскоре покончил жизнь самоубийством.

Следует отметить, что это один из вариантов его биографии. Точные даты его рождения и смерти не установлены, многие факты его жизни противоречивы. Но ясно одно: этот человек жил, и оставил потомкам большое философское и математическое наследие.

Теорема Пифагора.

Теорема Пифагора - важнейшее утверждение геометрии. Теорема формулируется следующим образом: площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.

Открытие этого утверждения приписывают Пифагору Самосскому (XII в. до н. э.)

Изучение вавилонских клинописных табличек и древних китайских рукописей (копий еще более древних манускриптов) показало, что знаменитая теорема была известна задолго до Пифагора, возможно несколько тысячелетий до него.

(Но есть предположение, что Пифагор дал ее полноценное доказательство)

Но есть и другое мнение: в пифагорейской школе был замечательный обычай приписывать все заслуги Пифагору и несколько не присваивать себе славы первооткрывателей, кроме, может быть нескольких случаев.

(Ямвлих-сирийский грекоязычный писатель, автор трактата «Жизнь Пифагора». (II век н. э)

Так немецкий историк математики Кантор считает, что равенство 3 2 + 4 2= 5 2 было

известно египтянам около 2300 лет до н. э. во времена царя Аменехмета (согласно папирусу 6619 Берлинского музея). Одни полагают, что Пифагор дал теореме полноценное доказательство, а другие отказываю ему в этой заслуге.

Некоторые приписывают Пифагору доказательство, которое Евклид приводил в своих «Началах». С другой стороны Прокл (математик, 5 века) утверждает, что доказательство в «Началах» принадлежало самому Евклиду, то есть история математики почти не сохранила достоверных данных о математической деятельности Пифагора. В математике, пожалуй, не найти никакой другой теоремы, заслуживающей всевозможных сравнений.

В некоторых списках «Начал» Евклида эта теорема назвалась «теоремой нимфы» за сходство чертежа с пчелкой, бабочкой(«теорема бабочки»), что по гречки назвалось нимфой. Этим словом греки назвали еще некоторых богинь, а также молодых женщин и невест. Арабский переводчик не обратил внимания на чертеж и перевел слово «нимфа» как «невеста». Так появилось ласковое название «теорема невесты». Существует легенда, что когда Пифагор Самосский доказал свою теорему, он отблагодарил богов, принеся в жертву 100 быков. Отсюда еще одно название- «теорема ста быков».

В англоязычных странах ее назвали: «ветряная мельница», «павлиний хвост», «кресло невесты», «ослиный мост» (если ученик не мог через него «перейти», значит, он был настоящим « ослом»)

В дореволюционной России рисунок теоремы Пифагора для случая равнобедренного треугольника называли «пифагоровыми штанами».

Эти «штаны» появляются, когда на каждой стороне прямоугольного треугольника построить квадраты во внешнюю сторону.

Сколько существует различных доказательств теоремы Пифагора?

Со времен Пифагора их появилось более 350.Теорема попала в Книгу рекордов Гиннеса. Если проанализировать доказательства теоремы, то принципиально различных идей в них используется немного.

Области применения теоремы.

Широкое применение имеет при решении геометрических задач.

Именно с ее помощью, можно геометрически находить значения квадратных корней из целых чисел:

Для этого строим прямоугольный треугольник АОВ (угол А равен 90°) с единичными катетами. Тогда его гипотенуза √2. Затем строим единичный отрезок ВС, ВС перпендикулярен ОВ, длина гипотенузы ОС=√3 и т.д.

(этот способ встречаем у Евклида и Ф. Киренского).

Задачи в курсе физики средней школы требуют знания теоремы Пифагора.

Это задачи связанные со сложением скоростей.

Обратите внимание на слайд: задача из учебника физики 9 класса. В практическом смысле её можно сформулировать так: под каким углом к течению реки должен двигаться катер, осуществляющий перевозку пассажиров между пристанями, чтобы уложиться в расписание?(пристани находятся на противоположных берегах реки)

Когда биатлонист стреляет по мишени, он делает «поправку на ветер». Если ветер дует справа, а спортсмен стреляет по прямой, то пуля уйдёт влево. Чтобы попасть в цель, надо сдвинуть прицел вправо на расстояние смещения пули. Для них составлены специальные таблицы (на основе следствий из т. Пифагора). Биатлонист знает, на какой угол смещать прицел при известной скорости ветра.

Астрономия - также широкая область для применения теоремы Путь светового луча. На рисунке показан путь светового луча от A к B и обратно. Путь луча показан изогнутой стрелкой для наглядности, на самом деле, световой луч - прямой.

Какой путь проходит луч ? Свет идет туда и обратно одинаковый путь. Чему равна половина пути, который проходит луч? Если обозначить отрезок AB символом l , половину времени как t , а также обозначив скорость движения света буквой c , то наше уравнение примет вид

c * t = l

Это ведь произведение затраченного времени на скорость!

Теперь попробуем взглянуть на то же самое явление из другой системы отсчета, например, из космического корабля, пролетающего мимо бегающего луча со скоростью v . При таком наблюдении скорости всех тел изменятся, причем неподвижные тела станут двигаться со скоростью v в противоположную сторону. Предположим, что корабль движется влево. Тогда две точки, между которыми бегает зайчик, станут двигаться вправо с той же скоростью. Причем, в то время, пока зайчик пробегает свой путь, исходная точка A смещается и луч возвращается уже в новую точку C .

Вопрос: на сколько успеет сместиться точка (чтобы превратиться в точку C), пока путешествует световой луч? Точнее: чему равна половина данного смещения? Если обозначить половину времени путешествия луча буквой t" , а половину расстояния AC буквой d , то получим наше уравнение в виде:

v * t" = d

Буквой v обозначена скорость движения космического корабля.

Другой вопрос: какой путь при этом пройдет луч света? (Точнее, чему равна половина этого пути? Чему равно расстояние до неизвестного объекта?)

Если обозначить половину длины пути света буквой s, то получим уравнение:

c * t" = s

Здесь c - это скорость света, а t" - это тоже самое время, которое рассматривали выше.

Теперь рассмотрим треугольник ABC . Это равнобедренный треугольник, высота которого равна l , которое мы ввели при рассмотрении процесса с неподвижной точки зрения. Поскольку движение происходит перпендикулярно l , то оно не могло повлиять не нее.

Треугольник ABC составлен из двух половинок - одинаковых прямоугольных треугольников, гипотенузы которых AB и BC должны быть связаны с катетами по теореме Пифагора . Один из катетов - это d , которое мы рассчитали только что, а второй катет - это s, который проходит свет, и который мы тоже рассчитали.Получаем уравнение:

s 2 = l 2 + d 2

Это ведь теорема Пифагора !

Явление звёздной аберрации, открытое в 1729 году, заключается в том, что все звёзды на небесной сфере описывают эллипсы. Большая полуось этих эллипсов наблюдается с Земли под углом, равным 20,5 градуса. Такой угол связан с движением Земли вокруг Солнца со скоростью 29,8 км в час. Чтобы с движущейся Земли наблюдать звезду, необходимо наклонить трубу телескопа вперёд по движению звезды, так как пока свет проходит длину телескопа, окуляр вместе с землёй перемещается вперёд. Сложение скоростей света и Земли производится векторно, используя т.

Пифагора. U 2 =C 2 +V 2

С-скорость света

V-скорость земли

Труба телескопа

В конце девятнадцатого века высказывались разнообразные предположения о существовании обитателей Марса подобных человеку, это явилось следствием открытий итальянского астронома Скиапарелли (открыл на Марсе каналы, которые долгое время считались искусственными). Естественно, что вопрос о том, можно ли с помощью световых сигналов объясняться с этими гипотетическими существами, вызвал оживленную дискуссию. Парижской академией наук была даже установлена премия в 100000 франков тому, кто первый установит связь с каким-нибудь обитателем другого небесного тела; эта премия все еще ждет счастливца. В шутку, хотя и не совсем безосновательно, было решено передать обитателям Марса сигнал в виде теоремы Пифагора.

Неизвестно, как это сделать; но для всех очевидно, что математический факт, выражаемый теоремой Пифагора, имеет место всюду, и поэтому похожие на нас обитатели другого мира должны понять такой сигнал.

Мобильная связь

Кто в современном мире не пользуется сотовым телефоном? Каждый абонент мобильной связи заинтересован в ее качестве. А качество в свою очередь зависит от высоты антенны мобильного оператора. Чтобы рассчитать, в каком радиусе можно принимать передачу, применяем теорему Пифагора .

Какую наибольшую высоту должна иметь антенна мобильного оператора, чтобы передачу можно было принимать в радиусе R=200 км? (радиус Земли равен 6380 км.)

Решение:

Пусть AB= x , BC=R=200 км , OC= r =6380 км.

OB=OA+ABOB=r + x.

Используя теорему Пифагора, получим Ответ: 2,3 км.

При строительстве домов и коттеджей часто встает вопрос о длине стропил для крыши, если уже изготовлены балки. Например: в доме задумано построить двускатную крышу (форма в сечении). Какой длины должны быть стропила, если изготовлены балки AC=8 м., и AB=BF.

Решение:

Треугольник ADC - равнобедренный AB=BC=4 м., BF=4 м. Если предположить, что FD=1,5 м., тогда:

А) Из треугольника DBC: DB=2,5 м.

Б) Из треугольника ABF:

Окна

В зданиях готического и романского стиля верхние части окон расчленяются каменными ребрами, которые не только играют роль орнамента, но и способствуют прочности окон. На рисунке представлен простой пример такого окна в готическом стиле. Способ построения его очень прост: Из рисунка легко найти центры шести дуг окружностей, радиусы которых равны

ширине окна (b) для наружных дуг

половине ширины, (b/2) для внутренних дуг

Остается еще полная окружность, касающаяся четырех дуг. Т. к. она заключена между двумя концентрическими окружностями, то ее диаметр равен расстоянию между этими окружностями, т. е. b/2 и, следовательно, радиус равен b/4. А тогда становится ясным и

положение ее центра.

В романской архитектуре часто встречается мотив, представленный на рисунке. Если b по-прежнему обозначает ширину окна, то радиусы полуокружностей будут равны R = b / 2 и r = b / 4. Радиус p внутренней окружности можно вычислить из прямоугольного треугольника, изображенного на рис. пунктиром. Гипотенуза этого треугольника, проходящая через точку касания окружностей, равна b/4+p, один катет равен b/4, а другой b/2-p. По теореме Пифагора имеем:

(b/4+p) 2 =(b/4) 2 +(b/4-p) 2

b 2 /16+ bp/2+p 2 =b 2 /16+b 2 /4 - bp/2 +p 2 ,

Разделив на b и приводя подобные члены, получим:

(3/2)p=b/4, p=b/6.

В лесной промышленности : для потребностей строительства бревна распиливают на брус, при этом главная задача - получить как можно меньше отходов. Наименьшее число отходов будет тогда, когда брус имеет наибольший объем. Что же должно быть в сечении? Как видно из решения сечение должно быть квадратным, а теорема Пифагора и другие рассуждения позволяют сделать такой вывод.

Брус наибольшего объема

Задача

Из цилиндрического бревна надо выпилить прямоугольный брус наибольшего объема. Какой формы должно быть его сечение (рис. 23)?

Решение

Если стороны прямоугольного сечения х и y, то по теореме Пифагора

x 2 + y 2 = d 2 ,

где d - диаметр бревна. Объем бруса наибольший, когда площадь его сечения наибольшая, т. е. когда ху достигает наибольшей величины. Но если ху наибольшее, то наибольшим будет и произведение х 2 y 2 . Так как сумма х 2 + y 2 неизменна, то, по доказанному ранее, произведение х 2 y 2 наибольшее, когда

х 2 = y 2 или х = y.

Итак, сечение бруса должно быть квадратным.

Транспортные задачи (так называемые задачи на оптимизацию; задачи, решение которых позволяет ответить на вопрос: как располагать средствами для достижения большой выгоды)

На первый взгляд ничего особенного: снять размеры высоты от пола до потолка в нескольких точках, отнять несколько сантиметров, чтобы шкаф не упирался в потолок. Поступив так, в процессе сборки мебели могут возникнуть трудности. Ведь сборка каркаса мебельщики выполняют, располагая шкаф в горизонтальном положении, а когда каркас собран, поднимают его в вертикальное положение. Рассмотрим боковую стенку шкафа. Высота шкафа должна быть на 10 см меньше расстояния от пола до потолка при условии, что это расстояние не превышает 2500 мм. А глубина шкафа - 700 мм. Почему на 10 см, а не на 5 см или на 7, и причем здесь теорема Пифагора?

Итак: боковая стенка 2500-100=2400(мм)- максимальная высота конструкции.

Боковая стенка в процессе подъема каркаса должна свободно пройти как по высоте, так и по диагонали. По теореме Пифагора

АС= √ АВ 2 + ВС 2

АС= √ 2400 2 + 700 2 = 2500 (мм)

Что произойдет если высоту шкафа уменьшить на 50 мм?

АС= √ 2450 2 + 700 2 = 2548 (мм)

Диагональ 2548 мм. Значит, шкаф не поставишь (можно испортить потолок).

Молниеотвод.

Известно, что молниеотвод защищает от молнии все предметы, расстояние которых от его основания не превышает его удвоенной высоты. Необходимо определить оптимальное положение молниеотвода на двускатной крыше, обеспечивающее наименьшую его доступную высоту.

По теореме Пифагора h 2 ≥ a 2 +b 2, значит h≥(a 2 +b 2) 1/2

Срочно на дачном участке надо сделать парник для рассады.

Из досок сбит квадрат 1м1м. Имеются остатки пленки размером 1,5м1,5м. На какой высоте в центре квадрата надо закрепить рейку, чтобы плёнка полностью его покрыла?

1)Диагональ парника d==1,4;0,7

2)Диагональ плёнки d 1= 2,12 1,06

3) Высота рейки x= 0,7

Заключение

В результате исследования я выяснила некоторые области применения теоремы Пифагора. Мной собрано и обработано много материала из литературных источников и интернета по данной теме. Я изучила некоторые исторические сведения о Пифагоре и его теореме. Да, действительно, с помощью теоремы Пифагора можно решать не только математические задачи. Теорема Пифагора нашла свое применение в строительстве и архитектуре, мобильной связи, литературе.

Изучение и анализ источников информации о теореме Пифагора

показал, что:

а ) исключительное внимание о стороны математиков и любителей математики к теореме основано на ее простоте, красоте и значимости;

б) теорема Пифагора на протяжении многих веков служит толчком к интересным и важным математическим открытиям (теорема Ферма, теория относительности Эйнштейна);

в ) теорема Пифагора - является воплощением универсального языка математики, справедливого во всем мире;

г ) область применения теоремы достаточно обширная и вообще не может быть указана с достаточной полнотой;

д ) тайны теоремы Пифагора продолжают волновать человечество и поэтому каждому из нас дают шанс быть причастным к их раскрытию.

Библиография

    «Успехи математических наук», 1962, т. 17, № 6 (108).

    Александр Данилович Александров (к пятидесятилетию со дня рождения),

    Александров А.Д., Вернер А.Л., Рыжик В.И. Геометрия, 10 - 11 кл. - М.: Просвещение, 1992.

    Атанасян Л.С. и др. Геометрия, 10 - 11 кл. - М.: Просвещение, 1992.

    Владимиров Ю.С. Пространство - время: явные и скрытые размерности. - М.: «Наука», 1989.

    Волошин А.В. Пифагор. - М.: Просвещение, 1993.

    Газета «Математика», № 21, 2006.

    Газета «Математика», № 28, 1995.

    Геометрия: Учеб. Для 7 - 11 кл. сред.шк./ Г.П. Бевз, В.Г. Бевз, Н.Г. Владимирова. - М.: Просвещение, 1992.

    Геометрия: Учеб.для 7 - 9 кл. общеобразоват. Учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. - 6-е изд. - М.: Просвещение, 1996.

    Глейзер Г.И. История математики в школе: IX - Xкл. Пособие для учителей. - М.: Просвещение, 1983.

    Дополнительные главы к школьному учебнику 8 кл.: Учебное пособие для учащихся шк. и классов с углубл. изуч. математики /Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. - М.: Просвещение, 1996.

    Еленьский Щ. По следам Пифагора. М., 1961.

    Киселёв А.П., Рыбкин Н.А. Геометрия: Планиметрия: 7 - 9 кл.: Учебник и задачник. - М.: Дрофа, 1995.

    Клайн М. Математика. Поиск истины: Перевод с англ. / Под ред. и предисл. В.И. Аршинова, Ю.В. Сачкова. - М.: Мир, 1998.

    Литурман В. Теорема Пифагора. - М., 1960.

    Математика: Справочник школьника и студента / Б. Франк и др.; Перевод с нем. - 3-е изд., стереотип. - М.: Дрофа, 2003.

    Пельтуер А. Кто вы Пифагор? - М.: Знание - сила, № 12, 1994.

    Перельман Я. И. Занимательная математика. - М.: «Наука», 1976.

    Пономарёва Т.Д. Великие учёные. - М.: ООО «Издательство Астрель», 2002.

    Свешникова А. Путешествие в историю математики. - М., 1995.

    Семёнов Е.Е. Изучаем геометрию: Кн. Для учащихся 6 - 8 кл. сред.шк. - М.: Просвещение, 1987.

    Смышляев В.К. О математике и математиках. - Марийское книжное издательство, 1977.

    Тучнин Н.П. Как задать вопрос. - М.: Просвещение, 1993.

    Черкасов О.Ю. Планиметрия на вступительном экзамене. - М.: Московский лицей, 1996.

    Энциклопедический словарь юного математика. Сост. А.П. Савин. - М.: Педагогика, 1985.

    Энциклопедия для детей. Т. 11. Математика. /Глав. Ред. М.Д. Аксёнова. - М.: Аванта +, 2001.

Теорема Пифагора гласит:

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы:

a 2 + b 2 = c 2 ,

  • a и b – катеты, образующие прямой угол.
  • с – гипотенуза треугольника.

Формулы теоремы Пифагора

  • a = \sqrt{c^{2} - b^{2}}
  • b = \sqrt {c^{2} - a^{2}}
  • c = \sqrt {a^{2} + b^{2}}

Доказательство теоремы Пифагора

Площадь прямоугольного треугольника вычисляется по формуле:

S = \frac{1}{2} ab

Для вычисления площади произвольного треугольника формула площади:

  • p – полупериметр. p=\frac{1}{2}(a+b+c) ,
  • r – радиус вписанной окружности. Для прямоугольникаr=\frac{1}{2}(a+b-c).

Потом приравниваем правые части обеих формул для площади треугольника:

\frac{1}{2} ab = \frac{1}{2}(a+b+c) \frac{1}{2}(a+b-c)

2 ab = (a+b+c) (a+b-c)

2 ab = \left((a+b)^{2} -c^{2} \right)

2 ab = a^{2}+2ab+b^{2}-c^{2}

0=a^{2}+b^{2}-c^{2}

c^{2} = a^{2}+b^{2}

Обратная теорема Пифагора:

Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный. То есть для всякой тройки положительных чисел a, b и c , такой, что

a 2 + b 2 = c 2 ,

существует прямоугольный треугольник с катетами a и b и гипотенузой c .

Теорема Пифагора - одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Доказана она ученым математиком и философом Пифагором.

Значение теоремы в том, что с ее помощью можно доказать другие теоремы и решать задачи.

Дополнительный материал: