Векторы направлены в одну точку. Векторы на ЕГЭ по математике

Лекция 3. Векторы. Системы линейных уравнений.

Векторы

Цель изучения темы состоит в обобщении понятия вектора, с которым студенты знакомы по школьной программе и расширение ее систематического кругозора.

Векторы на плоскости и в пространстве.

Вектор – это направленный отрезок . Точка А – начало вектора, точка В – конец вектора (рис. 3.1.1). Можно использовать обозначение .

Длиной (модулем) вектора называется число, равное длине вектора. Обозначается модуль вектора символом или . Если модуль вектора , вектор называется нулевым ; направление нулевого вектора произвольно.

Два вектора называются коллинеарными , если они параллельны одной прямой (или лежат на одной прямой), в этом случае пишут . Нулевой вектор коллинеарен любому вектору.

Два вектора равны , то есть , если выполняется три условия: ; и и одинаково направлены.

Произведением вектора ā на число (скаляр) λ называется вектор , удовлетворяющий следующим условиям: , векторы и сонаправлены, если и направлены в противоположные стороны, если . Если , вектор называется противоположным вектору .

Таким образом, условие является достаточным для коллинеарности вектором и ;

Сложение векторов. Суммой двух векторов и называется вектор , начало которого совпадает с началом вектора , а конец – с концом вектора при условии, что начало вектора совпадает с концом вектора (правило треугольника) (см. рис. 3.1.2).

Так как вектор , то для получения суммы двух векторов можно использовать правило параллелограмма : суммой двух векторов является вектор-диагональ параллелограмма, построенного на векторах и , выходящий их общего начала обоих векторов-слагаемых.

Сумма нескольких векторов находится по правилу многоугольника : чтобы найти сумму нескольких векторов , нужно последовательно совместить начало следующего вектора-слагаемого с концом предыдущего; тогда вектор, проведенный из начала первого вектора в конец последнего называется суммой всех данных векторов (рис. 3.1.3).

Разностью двух векторов называется сумма . Если вектор , то по аналогии с суммой двух векторов этот вектор является диагональю параллелепипеда, построенного на трех векторах как на сторонах (рис. 3.1.4).

Рассмотрим вектор в плоскости. Перенесем в начало координат системы хОу .

Получим вектор . Координатами вектора называются координаты точки М (х ;у ). Введем на осях координат векторы i и j – единичной длины (рис. 3.1.5).

Очевидно, или или . Если вектор рассматривается в трехмерном пространстве, где точка М характеризуется тремя координатами, то есть M (x,y,z ) , то вектор можно представить в виде:


xi yj zk , (3.1.1)

где i, j, k – единичные векторы, лежащие на осях координат. Пусть , . Найдем сумму и разность этих векторов:

Сложение векторов и умножение вектора на скаляр подчиняется следующим свойствам:

Доказательства вытекают на основании (3.1.2).


Определение. Скалярным произведением векторов и называется число равно произведению модулей этих векторов на косинус угла φ между ними, то есть . (3.1.3)

Из (3.1.3) вытекают свойства скалярного произведения:

4) если , то .

Используя свойства скалярного произведения, можно найти скалярное произведение двух векторов в координатной форме. Если , , то ; если - условие перпендикулярности векторов.

Если векторы коллинеарны, то есть , то - условие коллинеарности векторов.

Понятие n -мерного вектора. Векторное пространство. Линейная комбинация и линейная зависимость векторов.

Понятие вектора можно обобщить.

Определение. n -мерным вектором называется упорядоченная совокупность n действительных чисел, записываемых в виде Х=(х 1 , х 2 ,…, х n) , х i – компоненты вектора Х .

Понятие n -мерного вектора широко используется в экономике. Например, некоторый набор товаров можно охарактеризовать вектором , а соответствующие цены – вектором .

Два n -мерных вектора равны тогда и только тогда, когда равны их соответствующие компоненты: , .

По аналогии с геометрическими векторами вводятся: сумма векторов с компонентами , ; разность векторов с компонентами , , с теми же свойствами.

Скалярное произведение n -мерных векторов:

Если X - набор товаров, а Y - соответствует ценам за единицу каждого товара, то стоимость всем товаров:

Определение. Множество векторов с действительными компонентами, в котором определены операции сложения (вычитания) и умножения вектора на скаляр, удовлетворяющего приведенным выше свойствам называется векторным пространством.


Определение. Вектор называется линейной комбинацией векторов векторного пространства, если

, (3.1.4)

где - любые действительные числа.

Определение. Векторы называются линейно зависимыми, если существуют такие числа , не равные одновременно нулю, что линейная комбинация .

В противном случае векторы () называются линейно независимыми.

Если векторы линейно зависимы, то хотя бы один из них линейно выражается через остальные. Покажем это. Пусть векторы () линейно зависимы, то естьn), следовательно

Решив систему любым методом (например, методом Крамера), получим ее решение: , , . Разложение вектора по базису имеет вид .

В статье пойдет речь о том, что такое вектор, что он из себя представляет в геометрическом смысле, введем вытекающие понятия.

Для начала дадим определение:

Определение 1

Вектор – это направленный отрезок прямой.

Исходя из определения, под вектором в геометрии отрезок на плоскости или в пространстве, который имеет направление, и это направление задается началом и концом.

В математике для обозначения вектора обычно используют строчные латинские буквы, однако над вектором всегда ставится небольшая стрелочка, например a → . Если известны граничные точки вектора – его начало и конец, к примеру A и B , то вектор обозначается так A B → .

Определение 2

Под нулевым вектором 0 → будем понимать любую точку плоскости или пространства.

Из определения становится очевидным, что нулевой вектор может иметь любое направление на плоскости и в пространстве.

Длина вектора

Определение 3

Под длиной вектора A B → понимается число, большее либо равное 0, и равное длине отрезка АВ.

Длину вектора A B → принято обозначать так A B → .

Понятия модуль вектора и длина вектора равносильны, потому что его обозначение совпадает со знаком модуля. Поэтому длину вектора также называют его модулем. Однако грамотнее использовать термин "длина вектора". Очевидно, что длина нулевого вектора принимает значение ноль.

Коллинеарность векторов

Определение 4

Два вектора лежащие на одной прямой или на параллельных прямых называются коллинеарными .

Определение 5

Два вектора не лежащие на одной прямой или на параллельных прямых называются неколлинеарными .

Следует запомнить, что Нулевой вектор всегда коллинеарен любому другому вектору, так как он может принимать любое направление.

Коллиниарные векторы в свою очередь тоже можно разделить на два класса: сонаправленные и противоположно направленные.

Определение 6

Сонаправленными векторами называют два коллинеарных вектора a → и b → , у которых направления совпадают, такие векторы обозначаются так a → b → .

Определение 7

Противоположно направленными векторами называются два коллинеарных вектора a → и b → , у которых направления не совпадают, т.е. являются противоположными, такие векторы обозначаются следующим образом a → ↓ b → .

Считается, что нулевой вектор является сонаправленым к любым другим векторам.

Определение 8

Равными называются сонаправленные вектора, у которых длины равны.

Определение 9

Противопожными называются противоположно направленные вектора, у которых их длины равны.

Введенные выше понятия позволяют нам рассматривать векторы без привязки к конкретным точкам. Иначе говоря, можно заменить вектор равным ему вектором, отложенным от любой точки.

Пусть заданы два произвольных вектора на плоскости или в пространстве a → и b → . Отложим от некоторой точки O плоскости или пространства векторы O A → = a → и O B → = b → . Лучи OA и OB образуют угол ∠ A O B = φ .

Определение 9

Угол φ = ∠ A O B называется углом между векторами a → = O A → и b → = O B → .

Очевидно, что угол между сонаправленными векторами равен нулю градусам (или нулю радиан), так как сонаправленные векторы лежат на одной или на параллельных прямых и имеют одинаковое направление, а угол между противоположно направленными векторами равен 180 градусам (или π радиан), так как противоположно направленные векторы лежат на одной или на параллельных прямых, но имеют противоположные направления.

Определение 10

Перпендикулярными называются два вектора, угол между которыми равен 90 градусам (или π 2 радиан).

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Векторы Вектором в пространстве называется направленный отрезок, т.е. отрезок, в котором указаны его начало и конец. Длиной, или модулем, вектора называется длина соответствующего отрезка. Длина векторов, обозначается соответственно,. Два вектора называются равными, если они имеют одинаковую длину и направление. Вектор с началом в точке А и концом в точке В обозначается и изображается стрелкой с началом в точке А и концом в точке В. Рассматривают также нулевые векторы, у которых начало совпадает с концом. Все нулевые векторы считаются равными между собой. Они обозначаются, и их длина считается равной нулю.


Сложение векторов Для векторов определена операция сложения. Для того чтобы сложить два вектора и, вектор откладывают так, чтобы его начало совпало с концом вектора. Вектор, у которого начало совпадает с началом вектора, а конец - с концом вектора, называется суммой векторов и, обозначается




Умножение вектора на число Произведение вектора на число t обозначается. По определению, Произведение вектора на число -1 называется вектором, противоположным и обозначается По определению, вектор имеет направление, противоположное вектору и Произведением вектора на число t называется вектор, длина которого равна, а направление остается прежним, если t > 0, и меняется на противоположное, если t 0, и меняется на противоположное, если t


Свойства Разностью векторов и называется вектор, который обозначается Для умножения вектора на число справедливы свойства, аналогичные свойствам умножения чисел, а именно: Свойство 1. (сочетательный закон). Свойство 2. (первый распределительный закон). Свойство 3. (второй распределительный закон).



























Определение

Скалярная величина - величина, которая может быть охарактеризована числом. Например, длина, площадь , масса, температура и т.д.

Вектором называется направленный отрезок $\overline{A B}$; точка $A$ - начало, точка $B$ - конец вектора (рис. 1).

Вектор обозначается либо двумя большими буквами - своим началом и концом: $\overline{A B}$ либо одной малой буквой: $\overline{a}$.

Определение

Если начало и конец вектора совпадают, то такой вектор называется нулевым . Чаще всего нулевой вектор обозначается как $\overline{0}$.

Векторы называются коллинеарными , если они лежат либо на одной прямой, либо на параллельных прямых (рис. 2).

Определение

Два коллинеарных вектора $\overline{a}$ и $\overline{b}$ называются сонаправленными , если их направления совпадают: $\overline{a} \uparrow \uparrow \overline{b}$ (рис. 3, а). Два коллинеарных вектора $\overline{a}$ и $\overline{b}$ называются противоположно направленными , если их направления противоположны: $\overline{a} \uparrow \downarrow \overline{b}$ (рис. 3, б).

Определение

Векторы называются компланарными , если они параллельны одной плоскости или лежат в одной плоскости (рис. 4).

Два вектора всегда компланарны.

Определение

Длиной (модулем) вектора $\overline{A B}$ называется расстояние между его началом и концом: $|\overline{A B}|$

Подробная теория про длину вектора по ссылке .

Длина нулевого вектора равна нулю.

Определение

Вектор, длина которого равна единице, называется единичным вектором или ортом .

Векторы называются равными , если они лежат на одной или параллельных прямых; их направления совпадают и длины равны.

Существует два способа решения задач по стереометрии

Первый - классический - требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод - применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили - то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами - координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z :

Как найти координаты вектора? Как и на плоскости - из координаты конца вычитаем координату начала.


Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Сумма векторов:

Разность векторов:

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA 1 B 1 C 1 D 1 точки E и K - середины ребер соответственно A 1 B 1 и B 1 C 1 . Найдите косинус угла между прямыми AE и BK.

Если вам достался куб - значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK - скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K - середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E - середина SB, а K - середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA 1 B 1 C 1 , все ребра которой равны 1, точка D - середина ребра A 1 B 1 . Найдите косинус угла между прямыми AD и BC 1

Пусть точка A - начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D - середина A 1 B 1 . Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C - координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

Для точки M:

То есть A + C + D = 0.

Для точки N:

Аналогично для точки K:

Получили систему из трех уравнений:

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое - вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Выразим C и B через A и подставим в третье уравнение:

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор - это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения - чтобы косинус угла был неотрицателен.

4. В кубе ABCDA 1 B 1 C 1 D 1 точки E и F - середины ребер соответственно A 1 B 1 и A 1 D 1 . Найдите тангенс угла между плоскостями AEF и BDD 1 .

Строим чертеж. Видно, что плоскости AEF и BDD 1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD 1 .

Сначала - нормаль к плоскости BDD 1 . Конечно, мы можем подставить координаты точек B, D и D 1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее - увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD 1 - это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Упростим систему:

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA 1 B 1 C 1 D 1 - прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA 1 D 1 D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B 1 D, если расстояние между прямыми A 1 C 1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства - как это делается в «классике»:-)

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать "параллелепипед".

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота - вроде не дана. Как же ее найти?

«Расстояние между прямыми A 1 C 1 и BD равно √3». Прямые A 1 C 1 и BD скрещиваются. Одна из них - диагональ верхнего основания, другая - диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A 1 C 1 и BD - это, очевидно, OO 1 , где O - точка пересечения диагоналей нижнего основания, O 1 - точка пересечения диагоналей верхнего. А отрезок OO 1 и равен высоте параллелепипеда.

Итак, AA 1 = √3

Плоскость AA 1 D 1 D - это задняя грань призмы на нашем чертеже. Нормаль к ней - это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B 1 D». Но позвольте, если плоскость перпендикулярна прямой B 1 D - значит, B 1 D и есть нормаль к этой плоскости! Координаты точек B 1 и D известны:

Координаты вектора - тоже.