Возникновение и эволюция галактик. Как появляются крупные галактики? Восстановление спирали у крупных галактик


Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), and the Westerlund 2 Science Team

Задали хороший вопрос о том, отражают ли все эти чудные снимки объектов Вселенной, которые в изобилии усеивают любой сайт астрономической направленности, то, «как видно глазу» или нет.

Ну что ж, давайте разберемся. Очень коротко, тезисно, не без упрощений, конечно.

ЦВЕТ - реакция нашего мозга на свет разной длины волны, попавший на колбочки на сетчатке глаз. Синтез миллионов цветов по сути происходит из трех основных - синего, зеленого и красного, более того, наши глаза имеют естественный встроенный фильтр с центром на длине волны около 555 нанометров, в желто-зеленой области. У каждого человека есть свои нюансы восприятия света - так, например, у меня левый глаз видит в слегка холодных, а правый - в немного теплых цветах, и, подозреваю, у других людей здесь может быть что-то свое:-/

Матрицы монохромны, лишены этих недостатков и имеют кучу своих, матричных. В бытовых фотоаппаратах, утрируя, на матрице не одна, а три точки, чья чувствительность к свету выровнена технически, условно, по основным цветам, и все миллионы цветов опять получаются сложением этих трех основных, хотя вовсе и не очевидно, что графики чувствительности матриц на разных длинах волн в точности повторяют наши глаза - по уже упомянутым выше причинам.

Любители-астрофотографы используют неплохие монохромные матрицы, вводя в поток света перед ними градуированные широкополосные фильтры RGB (красный, зеленый, синий) и, еще, иногда фильтр альфа водорода, чтобы подчеркнуть яркость отдельных областей туманностей и галактик. Процесс выглядит так: навел на объект, проверил фокус, на специальной револьверной головке поставил синий фильтр - щелк, сделал экспозицию (секунды, минуты, реже - десятки минут), убрал фильтр, проверил фокус, поставил зеленый фильтр - щелк, сделал экспозицию, и так далее... потом в специальной программе сложил многие изображения, сделанные через каждый отдельный фильтр, чтобы усилить, потом в Фотошопе приписал каждому фильтру свой цвет, сложил все вместе, и получил итоговое цветное изображение. Нелегка и неказиста...

Астрономы-профи предпочитают иметь дело с объективными, научными данными. Поэтому они используют график излучения черного тела, показывающий, сколько света на каких длинах волн пришло к нам от объекта. Из этого полного спектра узкополосными фильтрами вырезают четкие окна в диапазонах U - ультрафиолетовый (365 нм), B - синий (445 нм), V - визуальный (551 нм), R (658 нм) - красный, I (806 нм) - инфракрасный, и многие, многие другие, дополнительные полосы. В общем случае, ученых обычно интересует даже не флюксы (потоки излучения) на указанных длинах волн, а разница между ними - U-B, B-V и т.д. Теоретически можно опять таки в фотошопе приписать каждому узкому фильтру свой цвет и экспериментировать с этими изображениями до посинения. Судите сами, соответствует ли все это вашему представлению о том, «как видно глазу». Процесс калибровки узкополосных фотометрических фильтров будет похлеще Фауста Гёте, посему о нем умолчим, пощадив ваше время и нервы...

Наш любимый телескоп Хаббл, кроме фотометрического, использует еще и другой набор фильтров, пропускающих излучение строго определенной длины волны - ионизованного водорода, кислорода и серы, как основные цвета (ну, и несколько дополнительных тоже). Водороду припишем красный, кислороду - синий, а сере - зеленый, сложим опять все вместе в фотошопе, и на выходе мы получим именно то, что сейчас представляют почтеннейшей публике, как фото объектов Вселенной... называется палитра Хаббла.

Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.


Наконец, используя полный электромагнитный спектр, ученые стали приписывать условные цвета даже невидимым нам радио-, инфракрасному, рентгеновскому и гамма излучению. Очень часто теперь можно встретить снимки, где красным, например, кодированы какие-то волны из инфракрасного диапазона (скажем, от телескопа Спитцер), зеленым - визуального (Хаббл), а фиолетовым - рентгеновского (от обсерватории Чандра). Называется цветовое кодирование.

А теперь, в эру многосигнальной астрономии, ожидайте появления на снимках еще и гравитационных волн, выраженных каким-нибудь еще цветом:)

Подобные изображения используют уже не столько для восхищения и созерцания, сколько для серьезной науки, изучая морфологию и динамику объектов - например, сравнивая распределение горячего газа в скоплениях галактик с визуальными искажениями изображений галактик, которые дает гравитация, можно судить о наличии темной материи в этих скоплениях.

Насколько все это соответствует вашему интуитивному представлению «как надо»? Нет, совсем не соответствует? Погодите бежать с чемоданами через поле, мы еще немного усугубим общую картину...

Глаз - замечательный инструмент, само совершенство (хотя и не настолько, как собачий нос), но он имеет еще недостатки - например, слепое пятно, из которого пучок проводящих нервов идет в мозг, естественные физиологические отклонения - астигматизм, близорукость/дальнозоркость, дальтонизм как неспособность различать цвета...

Есть и еще один недостаток. При низком освещении колбочки, которые дают ощущение цвета, почти не работают, мы видим так называемыми «палочками», которым цвет особо ни к чему, их задача - обеспечить вас ночным зрением. Ночью все кошки серы, правда? В отличие от матриц, умеющих накапливать фотон за фотоном, при низком освещении - сколько не гляди, сильно больше не увидишь. Под утро зрачок вследствие естественной адаптации расширяется почти до максимального предела - до 6 или 8 мм, у кого как, но такой разницы, как у матриц между экспозициями в секунду и в десятки минут, нет и близко.

Сев на космический корабль, и прилетев к какой-нибудь туманности, мы, в зависимости от ее яркости и площади, занимаемой в нашем поле зрения, вполне можем увидеть вместо шикарного разноцветного калейдоскопа форм и цветов, просто серое, невнятное и непривлекательное скопление пыли и газа... разочарование? Гнев? Отрицание? Отчаяние?

И как вам теперь с этим знанием? Умножил вашу скорбь?

Истинная красота Вселенной заключена даже не в зрелищах, коими она насыщена чуть более, чем полностью, а в том, что она дает пытливому уму возможность понимать красоту законов, ей управляющих...

Согласно существующей гипотезе, наша галактика возникла примерно 14 миллиардов лет назад. Первоначально это было огромное газовое облако, четверть объема которого было представлено гелием, а остальная часть водородом. Оно медленно вращалось и постепенно сжималось, под действием гравитации. Этот процесс продолжался около трех миллиардов лет и, в конечном итоге, привел к распаду облака на отдельные части, из которых и были сформированы первые звезды.

Согласно той же гипотезе, процесс рождения звезды стартует после того, как газовое облако, в своей центральной части, достигает необходимой, для начала термоядерной реакции, плотности и температуры. Эти процессы, внутри образовавшихся звезд, происходят и сегодня. В них участвуют элементы, масса которых несколько тяжелее гелия. В водородно – геливое облако они попадают в результате взрывов космических объектов, а также естественным образом. При взрыве сверхновой звезды в космическое пространство выбрасывается огромное количество различных элементов, молекулярная масса которых больше железа. Они также оказываются захваченными газовым облаком. В конечном итоге, оно до предела напитывается различными химическими элементами, которые и приводят к образованию звезд первого поколения. На сегодняшний день они считаются самыми древними. В их основу входят: водород, гелий, тяжелые металлы (в небольших количествах).

Однако в звезды первого поколения трансформируется лишь малая часть газа. Остальной его объем продолжает процесс сжатия по направлению к центру галактики, что приводит к образованию новых звезд. Это космические объекты второго поколения. В их составе уже гораздо больше тяжелых элементов, ведь возникли они из обогащенного газа.

Из оставшегося газа возникает новый диск, который начинает вращаться и сжиматься под действием гравитации. В результате формируются современные звезды.

К моменту прекращения сжатия газового облака, кинетическая энергия диска галактики полностью компенсируется силой гравитации образовавшихся звезд. Создаются благоприятные условия для возникновения галактической спирали, в пределах которой и будет происходить зарождение звезд нового поколения. Кстати, именно к таким космическим объектам и относится наше солнце, в недрах которого происходит реакция термоядерного синтеза.

Что произойдет после этого?

По мнению ученых, количество газа будет постепенно снижаться, а вместе с этим, значительно снизится интенсивность процесса звездообразования. После того, как все газовые запасы будут исчерпаны, галактика изменит свою спиральную форму, на линзообразную. Вместе с этим эволюция звезд выйдет на свою последнюю стадию. Ну а галактика будет состоять из малых звезд, представленных белыми и красными карликами

Галилео Галилей заметил, что Вселенная - это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведёт за собой через бесконечное пространство и время - от микрокосма субатомных частиц к макрокосму Вселенной.

Согласно первой точке зрения, пространство не меняется, а галактики движутся сквозь него, как шоколадные крошки на поднимающейся сдобной булке под действием добавленного в тесто разрыхлителя. Все галактики (шоколадные крошки) удаляются друг от друга, и чем больше расстояние между ними - тем быстрее. В частности, если вы встанете на конкретную крошку (галактику), вы увидите, что движение всех остальных относительно неё подчиняется закону Хаббла: все они удаляются от вас радиально, и с увеличением расстояния вдвое их скорость также удваивается. Примечательно, что всё выглядит совершенно одинаково независимо от того, с какой шоколадной крошки (галактики) вести наблюдение, так как если у распределения галактик нет границы, то расширение не имеет центра - оно кажется одинаковым отовсюду.

Согласно второй точке зрения, пространство подобно тесту сдобной булки: оно расширяется так, что шоколадные крошки относительно теста неподвижны, а галактики не двигаются сквозь пространство. То есть можно считать галактики покоящимися в пространстве (рис. 3.2 , справа), при этом все расстояния между ними изменяются. Это всё равно, что поменять отметки на воображаемых линейках, соединяющих галактики, сделав их из миллиметровых сантиметровыми, отчего все межгалактические расстояния станут в 10 раз больше прежних.

Это даёт ответ ещё на один вопрос: не нарушают ли галактики, удаляющиеся быстрее света, теорию относительности? Закон Хаббла v = Hd говорит, что галактики будут удаляться от нас быстрее скорости света c , если расстояние до них больше c /H ? 14 млрд световых лет, и у нас нет оснований сомневаться, что такие галактики существуют. Не противоречит ли это утверждению Эйнштейна о том, что никакой объект не может двигаться быстрее света? Ответ - и да, и нет. Это нарушает специальную теорию относительности 1905 года, но не противоречит общей теории относительности 1915 года, которая стала последним словом Эйнштейна по данному вопросу. Следовательно, всё в порядке. Общая теория относительности ослабила световой барьер: если специальная теория относительности утверждает, что никакие два объекта не могут двигаться быстрее света друг относительно друга ни при каких обстоятельствах , то общая говорит, что они не могут двигаться быстрее света друг относительно друга, когда они находятся в одном и том же месте . Однако галактики, удаляющиеся со сверхсветовой скоростью, находятся очень далеко от нас. Если настаивать на том, что пространство расширяется, можно перефразировать это соображение: ничему не позволено двигаться быстрее света сквозь пространство , но само пространство может растягиваться с какой ему угодно скоростью.

Кстати, о далёких галактиках. Я видел газетные статьи, где говорилось о галактиках, отстоящих от нас на 30 млрд световых лет. Если возраст нашей Вселенной всего 14 млрд лет, то как мы видим объекты в 30 млрд световых лет? Каким образом их свету хватило времени, чтобы добраться до нас? Более того, они удаляются от нас быстрее света, что делает абсурдным сам разговор о возможности их увидеть. Ответ в данном случае состоит в том, что мы видим эти далёкие галактики не там, где они находятся теперь, а там, где они были, когда испускали свет, который сейчас доходит до нас. Точно так же, как Солнце мы видим таким, каким оно было 8 минут назад, и в том месте, где оно было 8 минут назад, далёкие галактики мы можем видеть такими, какими они были 13 млрд лет назад, и в тех местах, где они были тогда, - примерно в 8 раз ближе к Земле, сравнительно с их нынешним положением. Так что свету из таких галактик достаточно пройти сквозь пространство всего 13 млрд световых лет, а разница добирается за счёт растяжения пространства. Это похоже на то, как по бегущей дорожке в аэропорту можно пройти 20 метров, сделав всего 10 шагов.

Как расширяется Вселенная?

Не случится ли там, вдали, куда направлено разбегание галактик, какого-нибудь космического ДТП, когда они врежутся в то, что находится там, куда они расширяются? Если наша Вселенная расширяется согласно уравнениям Фридмана, такой проблемы не существует: как показано на рис. 3.2, расширение выглядит одинаково повсюду в космосе, так что подобных проблемных мест быть не может. Если принять ту точку зрения, что далёкие галактики удаляются сквозь статическое пространство, причина, по которой они никогда не сталкиваются с более далёкими галактиками, состоит в том, что те удаляются ещё быстрее: вам не удастся врезаться сзади в разгоняющийся «Порше», если сами вы сидите за рулём ископаемого «Форда-Т». Если же считать, что пространство расширяется, то объяснение состоит просто в том, что его объём не сохраняется. Новости с Ближнего Востока приучили нас к той мысли, что нельзя получить больше места иным путём, кроме как отобрав его у кого-нибудь. Однако общая теория относительности утверждает прямо противоположное: дополнительный объём может быть создан в определённой области между некоторыми галактиками без того, чтобы он расширялся в другие области. Этот объём просто остаётся между галактиками (рис. 3.2 , справа).

Космическая классная комната

Как бы безумно это ни звучало, представление о расширении Вселенной логически последовательно и поддерживается астрономическими наблюдениями. Со времени Эдвина Хаббла подтверждающих эту теорию наблюдений стало гораздо больше благодаря современным технологиям и новым открытиям. Самый фундаментальный вывод состоит в том, что изменениям подвержена вся Вселенная: отодвинув рубеж наших знаний на миллиарды лет, мы обнаружили Вселенную, которая ещё не настолько сильно расширилась и поэтому была плотнее и гуще населена. Таким образом, мы обитаем не в скучном статическом пространстве, аксиоматизированном Евклидом, а в динамичном эволюционирующем пространстве, которое пережило своего рода детство и даже, возможно, рождение - около 14 млрд лет назад.

Радикально усовершенствованные телескопы усилили наше зрение настолько, что теперь мы можем непосредственно наблюдать за эволюцией пространства. Представьте, что вы выступаете с презентацией перед большой аудиторией. Внезапно вы замечаете нечто забавное. Ближайший к вам ряд кресел занят людьми примерно вашего возраста. Однако в десятом ряду вы видите лишь подростков. За ними - кучку маленьких детей, а ряд позади них занят младенцами. Вглядываясь во Вселенную, мы видим нечто подобное. Вблизи множество больших, зрелых галактик, похожих на нашу, а очень далеко мы видим в основном маленькие юные галактики, которые не кажутся вполне развитыми. А за ними и вовсе нет галактик, лишь темнота. Поскольку свету требуется больше времени, чтобы прийти издалека, заглядывание на большие расстояния равносильно наблюдению прошлого. Темнота позади галактик - это эпоха до образования всех галактик. В то время пространство было заполнено водородом и гелием в виде газа, тяготение которого ещё не успело превратить его сгущения в галактики, а поскольку этот газ прозрачен, как гелий в воздушных шарах, он невидим в телескоп.

Но есть загадка: во время презентации вы неожиданно замечаете, что из-за последнего пустого ряда поступает энергия - задняя стена аудитории не вполне тёмная, а испускает слабое излучение в виде микроволн! Почему? Мы видим именно такое свечение, когда заглядываем очень далеко во Вселенной.

<<< Назад
Вперед >>>

Галактикой называют крупные формирования звезд, газа, пыли, которые удерживаются вместе силой гравитации. Эти крупнейшие соединения во Вселенной могут различаться формой и размерами. Большая часть космических объектов входит в состав определенной галактики. Это звезды, планеты, спутники, туманности, черные дыры и астероиды. Некоторые из галактик обладают большим количеством невидимой темной энергии. Из-за того, что галактики разделяет пустое космическое пространство, их образно называют оазисами в космической пустыне..

Эллиптическая галактика Спиральная галактика Неправильная галактика
Сфероидальный компонент Галактика целиком Есть Очень слаб
Звёздный диск Нет или слабо выражен Основной компонент Основной компонент
Газопылевой диск Нет Есть Есть
Спиральные ветви Нет или только вблизи ядра Есть Нет
Активные ядра Встречаются Встречаются Нет
20% 55% 5%

Наша галактика

Ближайшая к нам звезда Солнце относится к миллиарду звезд в галактике Млечный путь. Посмотрев на ночное звездное небо, тяжело не заметить широкую полосу, усыпанную звездами. Скопление этих звезд древние греки назвали Галактикой.

Если бы у нас была возможность посмотреть на эту звездную систему со стороны, мы бы заметили сплюснутый шар, в котором насчитывается свыше 150 млрд. звезд. Наша галактика имеет такие размеры, которые тяжело представить в своем воображении. Луч света путешествует с одной ее стороны на другую сотню тысяч земных лет! Центр нашей Галактики занимает ядро, от которого отходят огромные спиральные ветви, заполненные звездами. Расстояние от Солнца до ядра Галактики составляет 30 тысяч световых лет. Солнечная система расположена на окраине Млечного пути.

Звезды в Галактике несмотря на огромное скопление космических тел встречаются редко. Например, расстояние между ближайшими звездами в десятки миллионов раз превышает их диаметры. Нельзя сказать, что звезды разбросаны во Вселенной хаотично. Их местоположение зависит от сил гравитации, которые удерживают небесное тело в определенной плоскости. Звездные системы со своими гравитационными полями и называют галактиками. Кроме звезд, в состав галактики входит газ и межзвездная пыль.

Состав галактик.

Вселенную составляет также множество других галактик. Наиболее приближенные к нам отдалены на расстояние 150 тыс. световых лет. Их можно увидеть на небе южного полушария в виде маленьких туманных пятнышек. Их впервые описал участник Магеллановой экспедиции вокруг мира Пигафетт. В науку они вошли под названием Большого и Малого Магеллановых Облаков.

Ближе всего к нам расположена галактика под названием Туманность Андромеды. Она имеет очень большие размеры, поэтому видна с Земли в обычный бинокль, а в ясную погоду – даже невооруженным глазом.

Само строение галактики напоминает гигантскую выпуклую в пространстве спираль. На одном из спиральных рукавов за ¾ расстояния от центра находится Солнечная система. Все в галактике кружится вокруг центрального ядра и подчиняется силе его гравитации. В 1962 году астрономом Эдвином Хабблом была проведена классификация галактик в зависимости от их формы. Все галактики ученый разделил на эллиптические, спиральные, неправильные и галактики с перемычкой.

В части Вселенной, доступной для астрономических исследований, расположены миллиарды галактик. В совокупности их астрономы называют Метагалактикой.

Галактики Вселенной

Галактики представлены крупными группировками звезд, газа, пыли, удерживаемых вместе гравитацией. Они могут существенно отличаться по форме и размерам. Большинство космических объектов относятся к какой-либо галактике. Это черные дыры, астероиды, звезды со спутниками и планетами, туманности, нейтронные спутники.

Большинство галактик Вселенной включают огромное количество невидимой темной энергии. Так как пространство между различными галактиками считается пустотным, то их нередко называют оазисами в пустоте космоса. Например, звезда по имени Солнце – одни из миллиардов звезд в галактике «Млечный Путь», находящейся в нашей Вселенной. В ¾ расстояния от центра данной спирали находится Солнечная система. В этой галактике все беспрерывно движется вокруг центрального ядра, которое подчиняется его гравитации. Однако и ядро тоже движется вместе с галактикой. При этом все галактики двигаются на сверхскоростях.
Астроном Эдвин Хаббл в 1962 году провел логическую классификацию галактик Вселенной с учетом их формы. Сейчас галактики разделяются на 4 основные группы: эллиптические, спиральные, галактики с баром (перемычкой) и неправильные.
Какая самая большая галактика в нашей Вселенной?
Наиболее крупной галактикой во Вселенной является линзовидная галактика сверхгиганских размеров, находящаяся в скоплении Abell 2029.

Спиральные галактики

Они представляют собой галактики, которые по своей форме напоминают плоский спиралевидный диск с ярким центром (ядром). Млечный Путь – типичная спиральная галактика. Спиральные галактики принято называть с буквы S, они разделяются на 4 подгруппы: Sa, Sо, Sc и Sb. Галактики, относящиеся к группе Sо, отличаются светлыми ядрами, которые не имеют спиральных рукавов. Что касается галактик Sа, то они отличаются плотными спиральными рукавами, плотно обмотанными вокруг центрального ядра. Рукава галактик Sc и Sb редко окружают ядро.

Спиральные галактики каталога Мессье

Галактики с перемычкой

Галактики с баром (перемычкой) похожи на спиральные галактики, но все же имеют одно отличие. В таких галактиках спирали начинаются не от ядра, а от перемычек. Около 1/3 всех галактик входят в эту категорию. Их принято обозначать буквами SB. В свою очередь, они разделяются на 3 подгруппы Sbc, SBb, SBa. Разница между этими тремя группами определяется формой и длиной перемычек, откуда, собственно, и начинаются рукава спиралей.

Спиральные галактики с перемычкой каталога Мессье

Эллиптические галактики

Форма галактик может варьироваться от идеально круглой до вытянутого овала. Их отличительной чертой является отсутствие центрального яркого ядра. Они обозначаются буквой Е и разделяются на 6 подгрупп (по форме). Такие формы обознаются от Е0 до Е7. Первые имеют почти круглую форму, тогда как Е7 характеризуются чрезвычайно вытянутой формой.

Эллиптические галактики каталога Мессье

Неправильные галактики

Они не имеют какой-либо выраженной структуры или формы. Неправильные галактики принято разделять на 2 класса: IO и Im. Наиболее распространенным является Im класс галактик (он имеет только незначительный намек на структуру). В некоторых случаях прослеживаются спиральные остатки. IO относится к классу галактик, хаотических по форме. Малые и Большие Магеллановы Облака – яркий пример Im класса.

Неправильные галактики каталога Мессье

Таблица характеристик основных видов галактик

Эллиптическая галактика Спиральная галактика Неправильная галактика
Сфероидальный компонент Галактика целиком Есть Очень слаб
Звёздный диск Нет или слабо выражен Основной компонент Основной компонент
Газопылевой диск Нет Есть Есть
Спиральные ветви Нет или только вблизи ядра Есть Нет
Активные ядра Встречаются Встречаются нет
Процент от общего числа галактик 20% 55% 5%

Большой портрет галактик

Не так давно астрономы начали работать над совместным проектом для выявления расположения галактик во всей Вселенной. Их задача – получить более детальную картину общей структуры и формы Вселенной в больших масштабах. К сожалению, масштабы Вселенной сложно оценить для понимания многими людьми. Взять хотя бы нашу галактику, состоящую более чем из ста миллиардов звезд. Во Вселенной существуют еще миллиарды галактик. Обнаружены дальние галактики, но мы видим их свет таким, который был практически 9 млрд лет назад (нас разделяет такое большое расстояние).

Астрономам стало известно, что большинство галактик относятся к определенной группе (ее стали называть «кластер»). Млечный путь – часть кластера, который, в свою очередь, состоит из сорока известных галактик. Как правило, большинство таких кластеров представлены частью еще большей группировки, которую называют сверхскоплениями.

Наш кластер – часть сверхскопления, которое принято называть скоплением Девы. Такой массивный кластер состоит больше чем из 2 тыс. галактик. В то время, когда астрономы создали карту расположения данных галактик, сверхскопления начали принимать конкретную форму. Большие сверхскопления собрались вокруг того, что представляется как бы гигантскими пузырями или пустотами. Что это за структура, никто еще не знает. Мы не понимаем, что может находиться внутри этих пустот. По предположению, они могут быть заполнены определенным типом неизвестной ученым темной материи или же иметь внутри пустое пространство. Перед тем как мы узнаем природу таких пустот, пройдет много времени.

Галактические вычисления

Эдвин Хаббл является основоположником галактических исследований. Он первый, кому удалось определить, как можно вычислить точное расстояние до галактики. В своих исследованиях он опирался на метод пульсирующих звезд, которые более известны как цефеиды. Ученый смог заметить связь между периодом, который нужен для завершения одной пульсации яркости, и той энергией, которую выделяет звезда. Результаты его исследований стали серьезным прорывом в области галактических исследований. Помимо этого, он обнаружил, что есть корреляция между красным спектром, излучаемым галактикой, и расстоянием до нее (постоянная Хаббла).

В наше время астрономы могут измерять расстояние и скорости галактики посредством измерения количества красного смещения в спектре. Известно, что все галактики Вселенной движутся друг от друга. Чем дальше галактика находится от Земли, тем больше ее скорость движения.

Чтобы визуализировать данную теорию, достаточно представить себя за рулем авто, который двигается на скорости 50 км в час. Перед Вами едет авто быстрее на 50 км в час, что говорит о том, что скорость его передвижения составляет 100 км в час. Перед ним есть еще одно авто, которое движется быстрее еще на 50 км в час. Несмотря на то что скорость всех 3 машин будет разной на 50 км в час, первый автомобиль на самом деле движется от Вас на 100 км в час быстрее. Поскольку красный спектр говорит о скорости движения галактики от нас, получается следующее: чем больше красное смещение, тем, соответственно, галактика быстрее движется и тем большее ее расстояние от нас.

Сейчас мы располагаем новыми инструментами, помогающими ученым в поисках новых галактик. Благодаря космическому телескопу Хаббла ученым удалось увидеть то, о чем раньше оставалось только мечтать. Высокая мощность этого телескопа обеспечивает хорошую видимость даже мелких деталей в ближних галактиках и позволяет изучать более дальние, которые никому еще не были известны. В настоящее время новые инструменты наблюдения космоса находятся в стадии разработки, а в скором будущем они помогут получить более глубокое понимание структуры Вселенной.

Типы галактик

  • Спиральные галактики. По форме напоминают плоский спиралевидный диск с ярко выраженным центром, так называемым ядром. Наша галактика Млечный путь относится к этой категории. В данном разделе портала сайт Вы встретите много различных статей с описанием космических объектов нашей Галактики.
  • Галактики с перемычкой. Напоминают спиральные, только от них они отличаются одним существенным отличием. Спирали отходят не от ядра, а от так называемых перемычек. К этой категории можно отнести треть всех галактик Вселенной.
  • Эллиптические галактики обладают различными формами: от досконально круглой до овально вытянутой. Сравнительно со спиральными, у них отсутствует центральное ярко выраженное ядро.
  • Неправильные галактики не обладают характерной формой или структурой. Их нельзя отнести к какому-либо из перечисленных выше типов. Неправильных галактик насчитывается куда меньшее количество на просторах Вселенной.

Астрономы в последнее время запустили совместный проект по выявлению расположения всех галактик во Вселенной. Ученые надеются получить более наглядную картину ее структуры в большом масштабе. Размер Вселенной тяжело оценить человеческому мышлению и пониманию. Одна только наша галактика – это соединение сотней миллиардов звезд. А таких галактик насчитываются миллиарды. Мы можем видеть свет от обнаруженных дальних галактик, но не подразумевать даже того, что смотрим в прошлое, ведь световой луч доходит до нас за десятки миллиардов лет, настолько великое расстояние нас разделяет.

Астрономы также привязывают большинство галактик к определенным группам, которые называют кластерами. Наш Млечный путь относится к кластеру, который состоит из 40 разведанных галактик. Такие кластеры объединяют в большие группировки, называющиеся сверхскоплениями. Кластер с нашей галактикой входит в сверхскопление Девы. В составе этого гигантского кластера находится более 2 тысяч галактик. После того как ученые начали рисовать карту размещения данных галактик, сверхскопления получили определенные формы. Большинство галактических сверхскоплений окружали гигантские пустоты. Никто не знает, что может быть внутри этих пустот: космическое пространство наподобие межпланетного или же новая форма материи. Понадобится много времени, чтобы раскрыть эту загадку.

Взаимодействие галактик

Не менее интересным для взора ученых представляется вопрос о взаимодействии галактик как компонентов космических систем. Не секрет, что космические объекты находятся в постоянном движении. Галактики не исключение из этого правила. Некоторые из видов галактик могли бы стать причиной столкновения или слияния двух космических систем. Если вникнуть, какими представляются данные космические объекты, более понятными становятся масштабные изменения как результат их взаимодействия. Во время столкновения двух космических систем выплескивается гигантское количество энергии. Встреча двух галактик на просторах Вселенной – даже более вероятное событие, чем столкновение двух звезд. Не всегда столкновение галактик заканчивается взрывом. Небольшая космическая система может свободно пройти мимо своего более крупного аналога, изменив только незначительно его структуру.

Таким образом, происходит образование формирований, схожих внешним видом на вытянутые коридоры. В их составе выделяются звезды и газовые зоны, часто формируются новые светила. Бывают случаи, что галактики не ударяются, а только слегка соприкасаются друг с другом. Однако даже такое взаимодействие запускает цепочку необратимых процессов, которые приводят к огромным изменениям в структуре обеих галактик.

Какое будущее ожидает нашу галактику?

Как предполагают ученые, не исключено, что в далеком будущем Млечный путь сумеет поглотить крохотную по космическим размерам систему-спутник, которая расположена от нас на расстоянии 50 световых лет. Исследования показывают, что этот спутник имеет продолжительный жизненный потенциал, но при столкновении с гигантским соседом, вероятнее всего, закончит отдельное существование. Также астрономы предрекают столкновение Млечного пути и Туманности Андромеды. Галактики движутся друг другу навстречу со скоростью света. До вероятного столкновения ждать примерно три миллиарда земных лет. Однако будет ли оно на самом деле сейчас – тяжело рассуждать из-за нехватки данных о движении обеих космических систем.

Описание галактик на Kvant . Space

Портал сайт перенесет Вас в мир интересного и увлекательного космоса. Вы узнаете природу построения Вселенной, ознакомитесь со структурой известных больших галактик, их составляющими. Читая статьи о нашей галактике, нам становятся более понятными некоторые из явлений, которые можно наблюдать в ночном небе.

Все галактики от Земли находятся на огромном расстоянии. Невооруженным глазом можно увидеть только три галактики: Большое и малое Магеллановы облака и Туманность Андромеды. Все галактики сосчитать нереально. Ученые предполагают, что их количество составляет около 100 миллиардов. Пространственное расположение галактик неравномерно – одна область может содержать огромное их количество, во второй вовсе не будет ни одной даже маленькой галактики. Отделить изображение галактик от отдельных звезд астрономам не удавалось до начала 90-х годов. В это время насчитывалось около 30 галактик с отдельными звездами. Всех их причисляли к Местной группе. В 1990 году состоялось величественное событие в развитии астрономии как науки – на орбиту Земли был запущен телескоп Хаббла. Именно эта техника, а также новые наземные 10-метровые телескопы дали возможность увидеть значительно большее число разрешенных галактик.

На сегодняшний день «астрономические умы» мира ломают голову о роли темной материи в построении галактик, которая проявляет себя лишь в гравитационном взаимодействии. Например, в некоторых больших галактиках она составляет около 90% общей массы, в то время как карликовые галактики могут вовсе ее не содержать.

Эволюция галактик

Ученые считают, что возникновение галактик – это естественный этап эволюции Вселенной, который проходил под воздействием сил гравитации. Приблизительно 14 млрд. лет тому назад началось формирование протоскоплений в первичном веществе. Далее, под воздействием различных динамических процессов состоялось выделение галактических групп. Изобилие форм галактик объясняется разнообразием начальных условий в их формировании.

На сжатие галактики уходит около 3 млрд. лет. За данный период времени газовое облако превращается в звездную систему. Образование звезд происходит под воздействием гравитационного сжатия газовых облаков. После достижения в центре облака определенной температуры и плотности, достаточной для начала термоядерных реакций, образуется новая звезда. Массивные звезды образованы из термоядерных химических элементов, по массе превосходящих гелий. Данные элементы создают первичную гелиево-водородную среду. Во время грандиозных взрывов сверхновых звезд образуются элементы, тяжелее железа. Из этого следует, что галактика состоит из двух поколений звезд. Первое поколение – это наиболее старые звезды, состоящие из гелия, водорода и очень небольшого количества тяжелых элементов. Звезды второго поколения обладают более заметной примесью тяжелых элементов, поскольку они формируются из первичного газа, обогащенного тяжелыми элементами.

В современной астрономии галактикам как космическим структурам отводится отдельное место. В деталях изучаются виды галактик, особенности их взаимодействия, сходства и отличия, делается прогноз их будущего. Эта область содержит еще много непонятного, того, что требует дополнительного изучения. Современная наука решила много вопросов относительно видов построения галактик, но осталось также много белых пятен, связанных с образованием этих космических систем. Современные темпы модернизации исследовательской техники, разработка новых методологий исследования космических тел дают надежды на значительный прорыв в будущем. Так или иначе, галактики всегда будут в центре научных исследований. И основано это не только на человеческом любопытстве. Получив данные о закономерностях развития космических систем, мы сможем спрогнозировать будущее нашей галактики под названием Млечный путь.

Самые интересные новости, научные, авторские статьи об изучении галактик Вам предоставит портал сайт. Здесь Вы сможете найти захватывающие видео, качественные снимки со спутников и телескопов, которые не оставляют равнодушными. Погружайтесь в мир неизведанного космоса вместе с нами!

Теорий и гипотез о происхождении Вселенной - огромное множество, все они разные и все как одна отвечают на вопрос: «Откуда взялась Вселенная?». Самое интересное, что, рассматривая одну теорию, анализируя ее, становишься ее сторонником, пока не переходишь к изучению другой теории, которая, в свою очередь, убеждает в собственной правоте, - и так без конца. Наверное, люди еще не скоро смогут найти правильный ответ на вопрос о том, откуда появилась Вселенная.

Если брать самую древнюю теорию происхождения Вселенной, то, в соответствии с неоспоримым для многих источником - Библией - мир был создан Творцом примерно в 5508 году до рождества Христова. Данная теологическая гипотеза происхождения мира достаточно известна, но ее придерживаются, в основном, представители духовенства и особо верующие люди. Ученые же, которые ставят под сомнение все и вся, в том числе и существование Бога, естественно, имеют другое представление о происхождении мира.

Если заглянуть в толковый словарь, то Вселенная - это система мироздания, которая включает в себя все космическое пространство и находящиеся в нем небесные тела. Альтернативное определение Вселенной - «скопление звезд и галактик».

Самой распространенной научной гипотезой, объясняющей, откуда взялась Вселенная, считается теория «Большого взрыва».

В соответствии с ней приблизительно 20 млрд. лет назад вся Вселенная подставляла собой очень маленькую субстанцию, размером меньше песчинки. Однако, несмотря на крошечные размеры, плотность этого вещества была огромной: приблизительно 1100 г/см3. Конечно, в веществе не было ни звезд, ни планет, ни галактик, к которым мы привыкли, но само оно представляло некий зародыш, потенциально могущий создать все это многообразие небесных тел. Это вещество можно сравнить с маленьким семенем, из которого в последующем вырастает могучее и ветвистое дерево.

Именно из-за высокой плотности изначального вещества произошел взрыв, который разделил эту мельчайшую частичку на миллиарды более мелких частиц - из них в последующем и возникла Вселенная.

Существует еще одна гипотеза о большом взрыве, отвечающая на вопрос, откуда взялась Вселенная. В принципе, суть этих двух теорий практически идентична, за исключение того, что в данной гипотезе вместо вещества, из которого появилась Вселенная, фигурирует физический вакуум. То есть, весь мир произошел из-за взрыва в вакуумной среде.

Вакуум в переводе с латыни означает «пустота», но смысл этого понятия намного шире: вакуум - это не пустота в общепринятом смысле слова, а состояние, в котором скрыто и потенциально содержится все сущее. Вакуум имеет свойство менять свою структуру - подобно тому, как вода превращается в лед или пар. В процессе перемены такой структуры и произошел взрыв, повлекший зарождение Вселенной.

Помимо теологических и научных гипотез, объясняющих, откуда взялась Вселенная, существует и научно-философская точка зрения на эту проблему. Она рассматривает принципиальную возможность создания Вселенной неким высшим разумным Началом. Такая теория подразумевает, что мир существовал не всегда: у него есть своя начальная точка, даже более того - вся Вселенная постоянно развивается и растет.

К такому выводу пришли ученые, изучающие состав и сияние звезд. Так, в 30-х годах ХХ века при исследовании Млечного пути было установлено, что излучаемый звездами свет смещен в красную область спектра. Чем дальше расстояние от нас до звезды, тем это смещение более выражено. Именно такое наблюдение дало ученым информацию о том, что Вселенная постоянно расширяется.

Вторым подтвердившим развитие Вселенной, стала «смерть» звезд. Исходя из химического состава звезды, ее тело состоит из водорода, который постоянно участвует в различных реакциях, превращаясь в более тяжелые элементы. Когда водород истощается, звезда «умирает». По некоторым теориям, все планеты нашей системы могут быть результатом «смерти» звезд.

Это открытие дало основание для еще одного вывода: так как распад водорода - естественный и необратимый процесс, Вселенная закономерно и постепенно движется к своему концу.