Центр масс. Центр масс: понятие, расчёт и основные положения Центр масс материальной системы

Когда мы имеем дело с системой частиц, удобно найти такую точку - центр масс, которая характеризовала бы положение и движение этой системы как целого. В системе из двух одинаковых частиц такая точка С, очевидно, лежит посередине между ними (рис. 110а). Это ясно из соображений симметрии: в однородном и изотропном пространстве эта точка выделена среди всех остальных, ибо для любой другой точки А, расположенной ближе к одной из частиц, найдется симметричная ей точка В, расположенная ближе ко второй частице.

Рис. 110. Центр масс двух одинаковых частиц находится в точке С с радиусом-вектором ; центр масс двух частиц с разной массой делит отрезок между ними в отношении, обратно пропорциональном массам чатиц (б)

Очевидно, что радиус-вектор точки С равен полусумме радиусов-векторов одинаковых частиц (рис. 110а): Другими словами, представляет собой обычное среднее значение векторов

Определение центра масс. Как обобщить это определение на случай двух частиц с разными массами Можно ожидать, что наряду с геометрическим центром системы, радиус-вектор которого по-прежнему равен полусумме будет играть определенную роль точка, положение которой определяется распределением

ем масс. Ее естественно определить так, чтобы вклад каждой частицы был пропорционален ее массе:

Определяемый формулой (1) радиус-вектор центра масс представляет собой среднее взвешенное значение радиусов-векторов частиц что очевидно, если переписать (1) в виде

Радиус-вектор каждйй частицы входит в с весом, пропорциональным ее массе. Легко видеть, что определяемый формулой (1) центр масс С лежит на отрезке прямой, соединяющей частицы, и делит его в отношении, обратно пропорциональном массам частиц: (рис. 110б).

Обратим внимание на то, что приведенное здесь определение центра масс связано с известным вам условием равновесия рычага. Представим себе, что точечные массы на которые действует однородное поле тяжести, соединены стержнем пренебрежимо малой массы. Такой рычаг будет в равновесии, если точку его опоры поместить в центр масс С.

Естественным обобщением формулы (1) на случай системы, состоящей из материальных точек с массами и радиусами-векторами является равенство

которое служит определением радиуса-вектора центра масс (или центра инерции) системы.

Скорость центра масс. Центр масс характеризует не только положение, но и движение системы частиц как целого. Скорость центра масс, определяемая равенством как следует из (2), следующим образом выражается через скорости образующих систему частиц:

В числителе правой части этого выражения, как следует из формулы (6) предыдущего параграфа, стоит полный импульс системы Р, а в знаменателе - ее полная масса М. Поэтому импульс системы частиц равен произведению массы всей системы М на скорость ее центра масс

Формула (4) показывает, что импульс системы связан со скоростью ее центра масс точно так же, как импульс отдельной частицы связан со скоростью частицы. Именно в этом смысле движение центра масс и характеризует движение системы как целого.

Закон движения центра масс. Закон изменения импульса системы частиц, выражаемый формулой (9) предыдущего параграфа, по существу представляет собой закон движения ее центра масс. В самом деле, из (4) при неизменной полной массе М системы имеем

что означает, что скорость изменения импульса системы равна произведению ее массы на ускорение центра масс. Сравнивая (5) с формулой (6) § 29, получаем

Согласно (6) центр масс системы движется так, как двигалась бы одна материальная точка массы М под действием силы, равной сумме всех внешних сил, действующих на входящие в систему частицы. В частности, центр масс замкнутой физической системы, на которую внешние силы не действуют, движется в инерциальной системе отсчета равномерно и прямолинейно либо покоится.

Представление о центре масс в ряде случаев позволяет получить ответы на некоторые вопросы еще проще, чем при непосредственном использовании закона сохранения импульса. Рассмотрим следующий пример.

Космонавт вне корабля. Космонавт массы неподвижный относительно космического корабля массы с выключенным двигателем, начинает подтягиваться к кораблю с помощью легкого страховочного фала. Какие расстояния пройдут космонавт и корабль до встречи, если первоначально расстояние между ними равно

Центр масс корабля и космонавта находится на соединяющей их прямой, причем соответствующие расстояния обратно пропорциональны массам Так как то

сразу получаем

В далеком космосе, где внешние силы отсутствуют, центр масс этой замкнутой системы либо покоится, либо движется с постоянной скоростью. В той системе отсчета, где он покоится, космонавт и корабль пройдут до встречи расстояния , даваемые формулами (7).

Для справедливости подобных рассуждений принципиально важно использовать инерциальную систему отсчета. Если бы здесь мы опрометчиво связали систему отсчета с космическим кораблем, то пришли бы к заключению, что при подтягивании космонавта центр масс системы приходит в движение в отсутствие внешних сил: он приближается к кораблю. Центр масс сохраняет свою скорость только относительно инерциальной системы отсчета.

В уравнение (6), определяющее ускорение центра масс системы частиц, не входят действующие в ней внутренние силы. Значит ли это, что внутренние силы вообще никак не влияют на движение центра масс? В отсутствие внешних сил или когда эти силы постоянны, это действительно так. Например, в однородном поле тяжести центр масс разорвавшегося в полете снаряда продолжает движение по той же параболе, пока ни один из осколков еще не упал на землю.

Роль внутренних сил. В тех случаях, когда внешние силы могут изменяться, дело обстоит несколько сложнее. Внешние силы действуют не на центр масс, а на отдельные частицы системы. Эти силы могут зависеть от положения частиц, а положение каждой частицы при ее движении определяется всеми действовавшими на нее силами, как внешними, так и внутренними.

Поясним это на том же простом примере снаряда, разрывающегося в полете на мелкие осколки под действием внутренних сил. Пока все осколки в полете, центр масс, как уже говорилось, продолжает движение по той же параболе. Однако как только хотя бы один из осколков коснется земли и его движение прекратится, добавится новая внешняя сила - сила реакции поверхности земли, действующая на упавший осколок. В результате изменится ускорение центра масс, и он уже не будет двигаться по прежней параболе. Само появление этой силы реакции является следствием действия внутренних сил, разорвавших снаряд. Итак, действие внутренних сил в момент разрыва снаряда может привести к изменению ускорения, с которым будет двигаться центр масс в более поздние моменты времени и, следовательно, к изменению его траектории.

Приведем еще более яркий пример влияния внутренних сил на движение центра масс. Представим себе, что спутник Земли,

обращающийся вокруг нее по круговой орбите, под действием внутренних сил разделяется на две половины. Одна из половин останавливается и начинает отвесно падать на Землю. По закону сохранения импульса вторая половина должна в этот момент вдвое увеличить свою скорость, направленную по касательной к окружности. Как мы увидим ниже, при такой скорости эта половина улетит от Земли на бесконечно большое расстояние. Следовательно, и центр масс спутника, т. е. двух его половин, также удалится на бесконечно большое расстояние от Земли. И причина тому - действие внутренних сил при разделении спутника на две части, так как в противном случае неразделившийся на части спутник продолжал бы движение по круговой орбите.

Реактивное движение. Закон сохранения импульса замкнутой системы позволяет легко объяснить принцип реактивного движения. При сжигании топлива повышается температура и в камере сгорания создается высокое давление, благодаря чему образовавшиеся газы с большой скоростью вырываются из сопла двигателя ракеты. В отсутствие внешних полей полный импульс ракеты и вылетающих из сопла газов остается неизменным. Поэтому при истечении газов ракета приобретает скорость в противоположном направлении.

Уравнение Мещерского. Получим уравнение, описывающее движение ракеты. Пусть в некоторый момент времени ракета в какой-то инерциальной системе отсчета имеет скорость Введем другую инерциальную систему отсчета, в которой в данный момент времени ракета неподвижна. Назовем такую систему отсчета сопутствующей. Если работающий двигатель ракеты за промежуток выбрасывает газы массы со скоростью относительно ракеты, то спустя время скорость ракеты в этой сопутствующей системе будет отлична от нуля и равна

Применим к рассматриваемой замкнутой физической системе ракета плюс газы закон сохранения импульса. В начальный момент в сопутствующей системе отсчета ракета и газы покоятся, поэтому полный импульс равен нулю. Спустя время импульс ракеты равен а импульс выброшенных газов Поэтому

Полная масса системы ракета плюс газы сохраняется, поэтому масса выброшенных газов равна убыли массы ракеты:

Теперь уравнение (8) после деления на промежуток времени переписывается в виде

Переходя к пределу получаем уравнение движения тела переменной массы (ракеты) в отсутствие внешних сил:

Уравнение (9) имеет вид второго закона Ньютона, если его правую часть рассматривать как реактивную силу, т. е. силу, с которой действуют на ракету вылетающие из нее газы. Масса ракеты здесь не постоянна, а убывает со временем из-за потери вещества, т. е. Поэтому реактивная сила; направлена в сторону, противоположную скорости вылетающих из сопла газов относительно ракеты. Видно, что эта сила тем больше, чем больше скорость истечения газов и чем выше расход топлива в единицу времени.

Уравнение (9) получено в определенной инерциальной системе отсчета - сопутствующей системе. Вследствие принципа относительности оно справедливо и в любой другой инерциальной системе отсчета. Если, кроме реактивной силы, на ракету действуют и какие-либо другие внешние силы например сила тяжести и сила сопротивления воздуха, то их следует добавить в правую часть уравнения (9):

Это уравнение впервые было получено Мещерским и носит его имя. При заданном режиме работы двигателя, когда масса представляет собой определенную известную функцию времени, уравнение Мещерского позволяет рассчитать скорость ракеты в любой момент времени.

Какие физические соображения свидетельствуют о целесообразности определения центра масс с помощью формулы (1)?

В каком смысле центр масс характеризует движение системы частиц как целого?

О чем говорит закон движения центра масс системы взаимодействующих тел? Влияют ли внутренние силы на ускорение центра масс?

Могут ли внутренние силы влиять на траекторию центра масс системы?

В задаче о разрыве снаряда, рассмотренной в предыдущем параграфе, закон движения центра масс позволяет сразу найти дальность полета второго осколка, если его начальная скорость горизонтальна. Как это сделать? Почему эти соображения неприменимы в случае, когда его начальная скорость имеет вертикальную составляющую?

В процессе разгона ракеты ее двигатель работает в постоянном режиме, так что относительная скорость истечения газов и расход топлива в единицу времени неизменны. Будет ли при этом ускорение ракеты постоянным?

Выведите уравнение Мещерского, используя вместо сопутствующей системы отсчета инерциальную систему, в которой ракета уже имеет скорость

Формула Циолковского. Допустим, что разгон ракеты происходит в свободном пространстве, где на нее не действуют внешние силы. По мере вырабатывания топлива масса ракеты убывает. Найдем зависимость между массой израсходованного топлива и набранной ракетой скоростью.

После включения двигателя покоившаяся ракета начинает набирать скорость, двигаясь по прямой линии. Спроецировав векторное уравнение (9) на направление движения ракеты, получим

Будем в уравнении (11) рассматривать массу ракеты как функцию набранной ракетой скорости Тогда скорость изменения массы со временем можно представить следующим образом:

(хотя чаще всего совпадает).

Энциклопедичный YouTube

  • 1 / 5

    Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом :

    r → c = ∑ i m i r → i ∑ i m i , {\displaystyle {\vec {r}}_{c}={\frac {\sum \limits _{i}m_{i}{\vec {r}}_{i}}{\sum \limits _{i}m_{i}}},}

    где r → c {\displaystyle {\vec {r}}_{c}} - радиус-вектор центра масс, r → i {\displaystyle {\vec {r}}_{i}} - радиус-вектор i -й точки системы, m i {\displaystyle m_{i}} - масса i -й точки.

    Для случая непрерывного распределения масс:

    r → c = 1 M ∫ V ρ (r →) r → d V , {\displaystyle {\vec {r}}_{c}={1 \over M}\int \limits _{V}\rho ({\vec {r}}){\vec {r}}dV,} M = ∫ V ρ (r →) d V , {\displaystyle M=\int \limits _{V}\rho ({\vec {r}})dV,}

    где M {\displaystyle M} - суммарная масса системы, V {\displaystyle V} - объём, ρ {\displaystyle \rho } - плотность. Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.

    Можно показать, что если система состоит не из материальных точек, а из протяжённых тел с массами M i {\displaystyle M_{i}} , то радиус-вектор центра масс такой системы R c {\displaystyle R_{c}} связан с радиус-векторами центров масс тел R c i {\displaystyle R_{ci}} соотношением :

    R → c = ∑ i M i R → c i ∑ i M i . {\displaystyle {\vec {R}}_{c}={\frac {\sum \limits _{i}M_{i}{\vec {R}}_{ci}}{\sum \limits _{i}M_{i}}}.}

    Иначе говоря, в случае протяжённых тел справедлива формула, по своей структуре совпадающая с той, что используется для материальных точек.

    Центры масс плоских однородных фигур

    Координаты центра масс однородной плоской фигуры можно вычислить по формулам (следствие из теорем Паппа - Гульдина):

    x s = V y 2 π S {\displaystyle x_{s}={\frac {V_{y}}{2\pi S}}} и y s = V x 2 π S {\displaystyle y_{s}={\frac {V_{x}}{2\pi S}}} , где V x , V y {\displaystyle V_{x},V_{y}} - объём тела, полученного вращением фигуры вокруг соответствующей оси, S {\displaystyle S} - площадь фигуры.

    Центры масс периметров однородных фигур

    Во избежание ошибок следует понимать, что в СТО центр масс характеризуется не распределением массы, а распределением энергии. В курсе теоретической физики Ландау и Лифшица предпочтение отдается термину «центр инерции». В западной литературе по элементарным частицам применяется термин «центр масс» (англ. center-of-mass ): оба термина эквивалентны.

    Скорость центра масс в релятивистской механике можно найти по формуле:

    v → c = c 2 ∑ i E i ⋅ ∑ i p → i . {\displaystyle {\vec {v}}_{c}={\frac {c^{2}}{\sum \limits _{i}E_{i}}}\cdot \sum \limits _{i}{\vec {p}}_{i}.} вес массы P = m·g зависит от параметра гравитационного поля g ), и, вообще говоря, даже расположен вне стержня.

    В однородном гравитационном поле центр тяжести всегда совпадает с центром масс. В некосмических задачах гравитационное поле обычно может считаться постоянным в пределах объёма тела, поэтому на практике эти два центра почти совпадают.

    По этой же причине понятия центр масс и центр тяжести совпадают при использовании этих терминов в геометрии, статике и тому подобных областях, где применение его по сравнению с физикой можно назвать метафорическим и где неявно предполагается ситуация их эквивалентности (поскольку реального гравитационного поля нет, то и учёт его неоднородности не имеет смысла). В этих применениях традиционно оба термина синонимичны, и нередко второй предпочитается просто в силу того, что он более старый.

    Дифференциальные уравнения движения системы

    Рассмотрим систему, состоящую из $n$ материальных точек. Выделим какую-нибудь точку системы с массой $m_{k}.$ Обозначим равнодействующую всех приложенных к точке внешних сил (и активных, и реакций связей) через $\overline{F}_{k}^{e} $, а равнодействующую всех внутренних сил -- через $\overline{F}_{k}^{l} $. Если точка имеет при этом ускорение $\overline{a_{k} }$, то по основному закону динамики:

    Аналогичный результат получим для любой точки. Следовательно, для всей системы будет:

    Уравнения (1) представляют собой дифференциальные уравнения движения системы в векторной форме.

    Проектируя равенства (1) на координатные оси, получим уравнения движения системы в дифференциальной форме в проекциях на эти оси.

    Однако при решении многих конкретных задач необходимость находить закон движения каждой из точек системы не возникает, а бывает достаточно найти характеристики, определяющие движение всей системы в целом.

    Теорема о движении центра масс системы

    Для определения характера движения системы требуется знать закон движения ее центра масс. Центром масс или центром инерции системы называется такая воображаемая точка, радиус-вектор $R$которой выражается через радиус векторы $r_{1} ,r_{2} ,...$материальных точек по формуле:

    $R=\frac{m_{1} r_{1} +m_{2} r_{2} +...+m_{n} r_{n} }{m} $, (2)

    где $m=m_{1} +m_{2} +...+m_{n} $ - общая масса всей системы.

    Чтобы найти этот закон, обратимся к уравнениям движения системы (1) и сложим почленно их левые и правые части. Тогда получим:

    $\sum m_{k} \overline{a}_{k} =\sum \overline{F}_{k}^{e} +\sum \overline{F}_{k}^{l} $. (3)

    Из формулы (2) имеем:

    Беря вторую производную по времени, получаем:

    $\sum m_{k} \overline{a}_{k} =M\overline{a}_{c} $, (4)

    где $\overline{a}_{c} $- ускорение центра масс системы.

    Так как по свойству внутренних сил в системе $\sum \overline{F}_{k}^{l} =0$, получим окончательно из равенства (3), учтя (4):

    $M\overline{a}_{c} =\sum \overline{F}_{k}^{e} $. (5)

    Уравнение (5) выражает теорему о движении центра масс системы: произведение массы системы на ускорение ее центра масс равно геометрической сумме всех действующих на систему внешних сил или центр масс системы движется как материальная точка , масса которой равна массе всей системы и к которой приложены все внешние силы, действующие на систему.

    Проецируя обе части равенства (5) на координатные оси, получим:

    $M\ddot{x}_{c} =\sum \overline{F}_{kx}^{e} $, $M\ddot{y}_{c} =\sum \overline{F}_{ky}^{e} $, $M\ddot{z}_{c} =\sum \overline{F}_{kz}^{e} $. (6)

    Эти уравнения представляют собой дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.

    Значение теоремы состоит в следующем:

    Теорема

    • Поступательно движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе тела. В остальных случаях тело можно рассматривать как материальную точку лишь тогда, когда практически для определения положения тела достаточно знать положение его центра масс и допустимо по условиям задачи не принимать во внимание вращательную часть движения тела;
    • Теорема позволяет исключать из рассмотрения все наперед неизвестные внутренние силы. В этом ее практическая ценность.

    Пример

    Металлическое кольцо, подвешенное на нити к оси центробежной машины равномерно вращается с угловой скоростью $\omega $. Нить составляет угол $\alpha $с осью. Найти расстояние от центра кольца до оси вращения.

    \[\omega \] \[\alpha \]

    На нашу систему действует сила тяжести $\overline{N}$ $\overline{N}$ $\alpha \alpha$, сила натяжения нити и центростремительное ускорение.

    Запишем второй закон Ньютона для нашей системы:

    Спроецируем обе части на оси x и y:

    \[\left\{ \begin{array}{c} N\sin \alpha =ma; \\ N\cos \alpha =mg; \end{array} \right.(4)\]

    Разделив одно уравнение на другое, получим:

    Так как $a=\frac{v^{2} }{R} ;$$v=\omega R$, находим искомое расстояние:

    Ответ: $R=\frac{gtg\alpha }{\omega ^{2} } $

    Движение системы, кроме действующих сил, зависит также от её суммарной массы и распределения масс. Масса системы равна арифметической сумме масс всех точек или тел, образующих систему

    В однородном поле тяжести, для которого , вес любой частицы тела будет пропорционален ее массе. Поэтому о распределении масс в теле можно судить по положению его центра тяжести. Преобразуем формулы, определяющие координаты центра тяжести:

    , , . (1)

    В полученные равенства входят только массы материальных точек (частиц), образующих тело, и координаты этих точек. Следовательно, положение точки С (x C , y C , z C) действительно харак­теризует распределение масс в теле или в любой механической си­стеме, если под , понимать соответственно массы и координаты точек этой системы.

    Геометрическая точка С , координаты которой определяются указанными формулами, называется центром масс или центром инерции системы.

    Положение центра масс определяется его радиус-вектором

    где - радиус-векторы точек, образующих систему.

    Хотя положение центра масс совпадает с положением центра тя­жести тела, находящегося в однородном поле тяжести, понятия эти не являются тождественными. Понятие о центре тяжести, как о точке, через которую проходит линия действия равнодействующей сил тя­жести, по существу имеет смысл только для твердого тела, находя­щегося в однородном поле тяжести. Понятие же о центре масс, как о характеристике распределения масс в системе, имеет смысл для любой системы материальных точек или тел, причем, это понятие сохраняет свой смысл независимо от того, находится ли данная си­стема под действием каких-нибудь сил или нет.

    Момент инерции тела относительно оси. Радиус инер­ции.

    Положение центра масс характеризует распределение масс системы не полностью. Например (рис.32), если расстояния h от оси Oz каждого из одинаковых шаров А и В увеличить на одну и ту же величину, то положение центра масс системы не изменится, а распределение масс станет другим, и это скажется на движении системы (вращение вокруг оси Oz при прочих равных условиях будет происходить медленнее).

    Рис.32

    Поэтому в механике вводится еще одна характеристика распре­деления масс - момент инерции. Моментом инерциитела (системы) относительно данной оси Oz (или осевым моментом инерции) называется скалярная величина, равная сумме произведений масс всех точек тела (системы) на квадраты их расстояний от этой оси

    Из определения следует, что момент инерции тела (или системы) относительно любой оси является величиной положительной и не равной нулю.

    Заметим также, что момент инерции тела – это геометрическая характеристика тела, не зависящая от его движения.


    Осевой момент инерции играет при вращательном движении тела такую же роль, какую масса при поступательном, т.е. что осевой момент инерции является ме­рой инертности тела при вра­щательном движении.

    Согласно формуле момент инерции тела равен сумме момен­тов инерции всех его частей от­носительно той же оси. Для од­ной материальной точки, нахо­дящейся на расстоянии h от оси, .

    Часто в ходе расчетов пользуются понятием радиуса инерции. Радиусом инерции тела относительно оси Оz называется линейная величина , определяемая равенством

    где М - масса тела. Из определения следует, что радиус инерции геометрически равен расстоянию от оси Оz той точки, в которой надо сосредоточить массу всего тела, чтобы момент инерции одной этой точки был равен моменту инерции всего тела.

    В случае сплошного те­ла, разбивая его на элементарные части, найдем, что в пределе сумма, стоящая в равенстве , обратится в интеграл. В результате, учи­тывая, что , где - плотность, а V- объем, получим

    Интеграл здесь распространяется на весь объем V тела, а плотность и расстояние h зависят от координат точек тела.

    Моменты инерции некоторых однородных тел:

    1.Тонкий однородный стержень длины l и массы М. Вычислим его момент инерции относи­тельно оси Аz, перпендикулярной к стержню и прохо­дящей через его конец А (рис. 33).

    Рис.33

    Направим вдоль АВ координатную ось Ах. Тогда для любого элементарного отрезка длины dx величина h=x, а масса , где - масса единицы длины стержня. В результате

    Заменяя здесь его значением, найдем окончательно:

    2. Тонкое круглое однородное кольцо радиуса R и массы М. Найдем его момент инерции относительно оси Cz, перпендикулярной плоскости кольца и проходящей через его центр (рис.34,а). Так как все точки кольца находятся от оси Cz на расстоянии h k =R, то

    Следовательно, для кольца

    Очевидно, такой же результат получится для момента инерции тонкой цилиндрической оболочки массы М и радиуса R относитель­но ее оси.

    3. Круглая однородная пластина или цилиндр ра­диуса R и массы М. Вычислим момент инерции круглой пла­стины относительно оси Сz, перпендикулярной к пластине и прохо­дящей через ее центр (см. рис.34,а ). Для этого выделим элементарное кольцо радиуса r и ширины dr (рис.34,б ).