Метод корреляции. Оценка тесноты связи

Социальные психологи, как правило, стремятся не только описать социальное поведение. Цель социальной науки - понять отношения между переменными и быть в состоянии предсказать, когда и как будут себя вести люди в разных социальных ситуациях. Например, каковы взаимосвязи между порнографией, которую видят люди, и вероятностью их участия в актах насилия? Существует ли связь между количеством насилия, которое дети видят по телевизору, и их агрессивностью? Чтобы ответить на такие вопросы, исследователи часто используют другой подход - корреляционный метод.

Корреляционный метод (correlational method) - это техника, посредством которой систематически измеряются две или более переменные и отношения между ними. В корреляционном исследовании поведение людей и установки можно определить по-разному. Так же как и в методе наблюдения, исследователи иногда непосредственно наблюдают за человеческим поведением. Например, применив корреляцонный метод, психологи имеют возможность проверить взаимосвязь между детским агрессивным поведением и просмотром телевизионных передач с насилием. Они также могут наблюдать за детьми на игровой площадке, однако теперь стоит иная цель - оценить взаимозависимость, или корреляцию, между детской агрессивностью и другими факторами, как, например, их привычкой смотреть телевизор, что исследователи также измеряют.

Метод корреляции (correlational method) - техника, при помощи которой систематически измеряются две или более переменные и оценивается зависимость между ними (например, как можно, зная одну переменную, предсказать другую).

Исследователи проверяют наличие подобных взаимосвязей путем подсчета коэффициента корреляции, статистического показателя, оценивающего, насколько вы можете предсказывать одну переменную, зная другую, например, насколько вы можете предсказывать вес человека, зная его рост. Положительная корреляция означает, что увеличение значения одной переменной сопровождается повышением значения другой.

Высота и вес позитивно коррелируют между собой; чем человек выше, тем больше будет его вес. Отрицательная корреляция, наоборот, подразумевает, что увеличение показателей одной переменной связано с уменьшением показателей другой. Если бы высота и вес людей коррелировали отрицательно, мы бы выглядели очень смешно - коротышки, например, дети походили бы на пингвинов, а высонимно) об их поведении или отношениях. Опросы - наиболее удобный способ измерения отношений людей; например, людям можно позвонить по телефону и спросить, какого кандидата они будут поддерживать на приближающихся выборах или что они думают по поводу тех или иных социальных проблем. Исследователи нередко применяют корреляционный метод к результатам опросов, чтобы определить, насколько ответы испытуемых на одни вопросы предопределяют их ответы на другие. Политологи, например, могут быть заинтересованы в том, можно ли на основе мнений людей о какой-либо социальной проблеме, такой как регулирование торговли оружием, предсказывать, как они проголосуют. Психологи часто используют опросы для содействия пониманию социального поведения и отношений, например, рассматривая, связано ли то, что говорят люди о количестве читаемой ими порнографии, с их отношением к женщинам.

Опросы - исследования, в которых репрезентативной выборке людей задаются вопросы (часто анонимно) об их поведении или отношениях.

У опросов есть много преимуществ, в частности, они позволяют исследователям судить о взаимосвязях между труднонаблюдаемыми переменными, подобными тому, насколько часто люди занимаются безопасным сексом. Когда интересующие переменные нельзя легко пронаблюдать, исследователи полагаются на опросы, в которых людей спрашивают об их убеждениях, отношениях и поведении. Исследователь проверяет наличие взаимосвязей между полученными ответами, например, чаще ли кие люди, как игроки в баскетбол, были бы совсем тощими - «кожа и кости»! Возможно, конечно, что две переменные совершенно не коррелируют, так что исследователь не сможет предсказать одну переменную, зная другую.

Коэффициент корреляции (correlation coefficient) - статистическая величина, которая оценивает, насколько хорошо вы можете предсказать одну переменную, зная другую; скажем, насколько вы можете предсказать вес людей, зная их рост.

Коэффициент корреляции выражается числом от -1,00 до +1,00. Корреляция 1,00 означает, что две переменные полностью коррелируют в позитивном направлении; таким образом, зная один показатель у человека, исследователь может точно определить второй. В повседневной жизни полные корреляции, конечно, встречаются редко. Например, в одном исследовании было выявлено, что корреляция между ростом и весом составляет 0,47 для выборки мужчин в возрасте 18-24 лет (Freedman, Pisani, Purves & Adhikari, 1991). Это означает, что в среднем более высокие люди тяжелее низкорослых, но есть и исключения. Корреляция -1,00 означает полную отрицательную корреляцию, а нулевая корреляция означает, что две переменные не коррелируют.

В научных исследованиях часто возникает необходимость в нахождении связи между результативными и факторными переменными (урожайностью какой-либо культуры и количеством осадков, ростом и весом человека в однородных группах по полу и возрасту, частотой пульса и температурой тела и т.д.).

Вторые представляют собой признаки, способствующие изменению таковых, связанных с ними (первыми).

Понятие о корреляционном анализе

Существует множество Исходя из вышеизложенного, можно сказать, что корреляционный анализ — это метод, применяющийся с целью проверки гипотезы о статистической значимости двух и более переменных, если исследователь их может измерять, но не изменять.

Есть и другие определения рассматриваемого понятия. Корреляционный анализ — это метод обработки заключающийся в изучении коэффициентов корреляции между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков, для установления между ними статистических взаимосвязей. Корреляционный анализ — это метод по изучению статистической зависимости между случайными величинами с необязательным наличием строгого функционального характера, при которой динамика одной случайной величины приводит к динамике математического ожидания другой.

Понятие о ложности корреляции

При проведении корреляционного анализа необходимо учитывать, что его можно провести по отношению к любой совокупности признаков, зачастую абсурдных по отношению друг к другу. Порой они не имеют никакой причинной связи друг с другом.

В этом случае говорят о ложной корреляции.

Задачи корреляционного анализа

Исходя из приведенных выше определений, можно сформулировать следующие задачи описываемого метода: получить информацию об одной из искомых переменных с помощью другой; определить тесноту связи между исследуемыми переменными.

Корреляционный анализ предполагает определение зависимости между изучаемыми признаками, в связи с чем задачи корреляционного анализа можно дополнить следующими:

  • выявление факторов, оказывающих наибольшее влияние на результативный признак;
  • выявление неизученных ранее причин связей;
  • построение корреляционной модели с ее параметрическим анализом;
  • исследование значимости параметров связи и их интервальная оценка.

Связь корреляционного анализа с регрессионным

Метод корреляционного анализа часто не ограничивается нахождением тесноты связи между исследуемыми величинами. Иногда он дополняется составлением уравнений регрессии, которые получают с помощью одноименного анализа, и представляющих собой описание корреляционной зависимости между результирующим и факторным (факторными) признаком (признаками). Этот метод в совокупности с рассматриваемым анализом составляет метод

Условия использования метода

Результативные факторы зависят от одного до нескольких факторов. Метод корреляционного анализа может применяться в том случае, если имеется большое количество наблюдений о величине результативных и факторных показателей (факторов), при этом исследуемые факторы должны быть количественными и отражаться в конкретных источниках. Первое может определяться нормальным законом — в этом случае результатом корреляционного анализа выступают коэффициенты корреляции Пирсона, либо, в случае, если признаки не подчиняются этому закону, используется коэффициент ранговой корреляции Спирмена.

Правила отбора факторов корреляционного анализа

При применении данного метода необходимо определиться с факторами, оказывающими влияние на результативные показатели. Их отбирают с учетом того, что между показателями должны присутствовать причинно-следственные связи. В случае создания многофакторной корреляционной модели отбирают те из них, которые оказывают существенное влияние на результирующий показатель, при этом взаимозависимые факторы с коэффициентом парной корреляции более 0,85 в корреляционную модель предпочтительно не включать, как и такие, у которых связь с результативным параметром носит непрямолинейный или функциональный характер.

Отображение результатов

Результаты корреляционного анализа могут быть представлены в текстовом и графическом видах. В первом случае они представляются как коэффициент корреляции, во втором — в виде диаграммы разброса.

При отсутствии корреляции между параметрами точки на диаграмме расположены хаотично, средняя степень связи характеризуется большей степенью упорядоченности и характеризуется более-менее равномерной удаленностью нанесенных отметок от медианы. Сильная связь стремится к прямой и при r=1 точечный график представляет собой ровную линию. Обратная корреляция отличается направленностью графика из левого верхнего в нижний правый, прямая — из нижнего левого в верхний правый угол.

Трехмерное представление диаграммы разброса (рассеивания)

Помимо традиционного 2D-представления диаграммы разброса в настоящее время используется 3D-отображение графического представления корреляционного анализа.

Также используется матрица диаграммы рассеивания, которая отображает все парные графики на одном рисунке в матричном формате. Для n переменных матрица содержит n строк и n столбцов. Диаграмма, расположенная на пересечении i-ой строки и j-ого столбца, представляет собой график переменных Xi по сравнению с Xj. Таким образом, каждая строка и столбец являются одним измерением, отдельная ячейка отображает диаграмму рассеивания двух измерений.

Оценка тесноты связи

Теснота корреляционной связи определяется по коэффициенту корреляции (r): сильная — r = ±0,7 до ±1, средняя — r = ±0,3 до ±0,699, слабая — r = 0 до ±0,299. Данная классификация не является строгой. На рисунке показана несколько иная схема.

Пример применения метода корреляционного анализа

В Великобритании было предпринято любопытное исследование. Оно посвящено связи курения с раком легких, и проводилось путем корреляционного анализа. Это наблюдение представлено ниже.

Исходные данные для корреляционного анализа

Профессиональная группа

смертность

Фермеры, лесники и рыбаки

Шахтеры и работники карьеров

Производители газа, кокса и химических веществ

Изготовители стекла и керамики

Работники печей, кузнечных, литейных и прокатных станов

Работники электротехники и электроники

Инженерные и смежные профессии

Деревообрабатывающие производства

Кожевенники

Текстильные рабочие

Изготовители рабочей одежды

Работники пищевой, питьевой и табачной промышленности

Производители бумаги и печати

Производители других продуктов

Строители

Художники и декораторы

Водители стационарных двигателей, кранов и т. д.

Рабочие, не включенные в другие места

Работники транспорта и связи

Складские рабочие, кладовщики, упаковщики и работники разливочных машин

Канцелярские работники

Продавцы

Работники службы спорта и отдыха

Администраторы и менеджеры

Профессионалы, технические работники и художники

Начинаем корреляционный анализ. Решение лучше начинать для наглядности с графического метода, для чего построим диаграмму рассеивания (разброса).

Она демонстрирует прямую связь. Однако на основании только графического метода сделать однозначный вывод сложно. Поэтому продолжим выполнять корреляционный анализ. Пример расчета коэффициента корреляции представлен ниже.

С помощью программных средств (на примере MS Excel будет описано далее) определяем коэффициент корреляции, который составляет 0,716, что означает сильную связь между исследуемыми параметрами. Определим статистическую достоверность полученного значения по соответствующей таблице, для чего нам нужно вычесть из 25 пар значений 2, в результате чего получим 23 и по этой строке в таблице найдем r критическое для p=0,01 (поскольку это медицинские данные, здесь используется более строгая зависимость, в остальных случаях достаточно p=0,05), которое составляет 0,51 для данного корреляционного анализа. Пример продемонстрировал, что r расчетное больше r критического, значение коэффициента корреляции считается статистически достоверным.

Использование ПО при проведении корреляционного анализа

Описываемый вид статистической обработки данных может осуществляться с помощью программного обеспечения, в частности, MS Excel. Корреляционный предполагает вычисление следующих парамет-ров с использованием функций:

1. Коэффициент корреляции определяется с помощью функции КОРРЕЛ (массив1; массив2). Массив1,2 — ячейка интервала значений результативных и факторных переменных.

Линейный коэффициент корреляции также называется коэффициентом корреляции Пирсона, в связи с чем, начиная с Excel 2007, можно использовать функцию с теми же массивами.

Графическое отображение корреляционного анализа в Excel производится с помощью панели «Диаграммы» с выбором «Точечная диаграмма».

После указания исходных данных получаем график.

2. Оценка значимости коэффициента парной корреляции с использованием t-критерия Стьюдента. Рассчитанное значение t-критерия сравнивается с табличной (критической) величиной данного показателя из соответствующей таблицы значений рассматриваемого параметра с учетом заданного уровня значимости и числа степеней свободы. Эта оценка осуществляется с использованием функции СТЬЮДРАСПОБР (вероятность; степени_свободы).

3. Матрица коэффициентов парной корреляции. Анализ осуществляется с помощью средства «Анализ данных», в котором выбирается «Корреляция». Статистическую оценку коэффициентов парной корреляции осуществляют при сравнении его абсолютной величины с табличным (критическим) значением. При превышении расчетного коэффициента парной корреляции над таковым критическим можно говорить, с учетом заданной степени вероятности, что нулевая гипотеза о значимости линейной связи не отвергается.

В заключение

Использование в научных исследованиях метода корреляционного анализа позволяет определить связь между различными факторами и результативными показателями. При этом необходимо учитывать, что высокий коэффициент корреляции можно получить и из абсурдной пары или множества данных, в связи с чем данный вид анализа нужно осуществлять на достаточно большом массиве данных.

После получения расчетного значения r его желательно сравнить с r критическим для подтверждения статистической достоверности определенной величины. Корреляционный анализ может осуществляться вручную с использованием формул, либо с помощью программных средств, в частности MS Excel. Здесь же можно построить диаграмму разброса (рассеивания) с целью наглядного представления о связи между изучаемыми факторами корреляционного анализа и результативным признаком.

Лекция № 4

1. Сущность теории корреляции.

2. Вычисление коэффициента корреляции.

3. Оценка точности коэффициента корреляции.

4. Ранговая корреляция.

5. Получение эмпирических формул зависимости явлений.

6. Множественная корреляция.

7. Частная корреляция.

8. Компонентный и факторный анализы.

1 Сущность теории корреляции. Диалектический подход к изучению закономерностей природы и общества требует рассмотрения процессов и явлений в их сложных взаимосвязях.

Явления географической среды зависят от многих, часто неизвест­ных и меняющихся факторов. Выявить и изучить такие связи помогает теория корреляции - один из центральных разделов математической статистики, исключительно важный для исследователей.

Рисунок 4.1 – Функциональ­ная зависимость

Главные задачи корреляционного анализа - изучение формы, знака (плюс или минус) и тесноты связей.

Опишем кратко сущность теории корреляции.

Все связи делятся на функцио­нальные, рассматриваемые в курсах математического анализа, и корреля­ционные.

Функциональная зависимость предполагает однозначное соответ­ствие между величинами, когда численному значению одной величины, называемой аргументом, соответствует строго определенное значение другой величины - функции. При графическом изображении функцио­нальной связи в прямоугольной системе координат (х, у), если по оси абсцисс отложить значение одного признака, а по оси ординат - друго­го, все точки расположатся на одной линии (прямой или кривой). Функ­циональные (идеальные) связи встречаются в абстрактных математиче­ских обобщениях. Например, зависимость площади круга от радиуса (R) выразится на графике определенной кривой (рис. 1), построенной по формуле

В любой опытной науке экспериментатор имеет дело не с функ­циональными связями, а с корреляционными, для которых характерен известный разброс результатов эксперимента. Причина колеблемости заключается в том, что функция (изучаемое явление) зависит не только от одного или нескольких рассматриваемых факторов, но и от множест­ва других. Так, урожайность зерновых культур будет зависеть от ряда климатических, почвенных, экономических и других условий. Если связь урожайности с каким-либо из указанных факторов изобразить графически в системе координат (х, у), то получим разброс точек. Зако­номерности корреляционных связей и изучает теория корреляции.

В основе теории корреляции лежит представление о тесноте связи между изучаемыми явлениями (большая или малая связь). Для луч­шего уяснения редко встречаемого в географической литературе поня­тия «теснота связи» представим его в графической форме путем построения так называемого поля корреляции. Для этого результаты каждого наблюдения за элементами статистической совокупности по двум признакам отмечаем точкой в системе прямоугольных координат х и у. Таким путем, например, можно изобразить зависимость урожайно­сти зерновых по районам от гидротермического коэффициента. Чем больше разброс точек на поле корреляции, тем меньше теснота связи между изучаемыми явлениями. Рассмотрим два корреляционных поля (а и б, рис. 4.2). На поле а показана зависимость скорости роста оврагов (у) от площади водосбора (xi), на поле б - от угла наклона (хз). Меньший разброс точек первого корреляционного поля указывает на то, что скорость роста оврагов более тесно связана с площадями водосбо­ров, чем с углами наклона. Иначе можно сказать: изучаемое явление зависит от первого картометрического показателя в большей степени.



По общему направлению роя точек - слева вверх направо - можно заключить, что в обоих случаях связь положительная (со знаком плюс).


Рисунок 4.2 – Корреляционная положительная связь:
а) большая теснота связи б) малая теснота связи

Рисунок 4.3 – Корреляционная отрицательная связь

При отрицательной (минусовой) зависимости рой точек направлен слева вниз направо (рис. 4.3). По характеру размещения точек в рое, их близо­сти к оси можно визуально определить не только тесноту и знак связи, но и ее форму, которая подразделяется на прямолинейную и криволинейную.

Первая форма связи воспроиз­ведена на рис. 4.2 а и б. Она условна и является частным случаем связи криволинейной. Однако именно прямолинейная связь (при всей ее условности) рассматривается в географических и других исследо­ваниях наиболее часто из-за простоты математико-статистического аппарата ее оценки и возможности применения при изучении многофакторных связей и зависимостей.

Рисунок 4.4 – Криволинейная форма связи

Степень кривизны географических корреляционных связей во многом зависит от меридиональной протяженности изучаемых терри­торий. На рисунке 4.4 показана в схематизированном виде криволинейная зависимость среднегодовой температуры (t) от географической широты t(j) в глобальном масштабе - от южного полюса (ЮП) через экватор (Э) до северного полюса (СП). Чем меньше протяженность изучаемой территории с юга на север, тем больше оснований назвать ее прямолинейной.

Так, на восходящем отрезке АВ (южное полушарие) связь прямолинейная положительная, а на нисходящем отрезке CD (северное полушарие) - прямолинейная отрицательная. На приэкваториальном отрезке ВС связь сохраняется криволинейной.

Визуально-графический способ изучения тесноты и формы связи прост, нагляден, но недоста­точно точен. Математико-статистическая обработка результатов наблюдений позволяет определить чи­словые значения, характеризующие как форму, так и тесноту связей.

2 Вычисление коэффициента корреляции. Наиболее распространенным показателем тесноты прямолинейной связи двух количественных признаков считается коэффициент корре­ляции (r). Его абсолютное численное значение находится в пределах от О до 1. Чем теснее связь, тем больше абсолютное значение г.

Если r = 0, то связи нет, если он равен ±1, то связь функциональ­ная (точки расположатся строго по линии). Знак «плюс» (+) указывает на прямую (положительную) зависимость, «минус» – на обратную (отрицательную). Предельные значения коэффициента корреляции (r = + 1, 0 и - 1) в практике географических исследований не встречаются; обычно их числовые значения находятся между нулем и положительной или отрицательной единицей.

Рассмотрим наиболее распространенную схему вычисления, опирающуюся на предварительные расчеты средних арифметически, центральных отклонений и средних квадратических отклонений да каждого количественного признака. Предположим, необходимо найти тесноту связи между количеством осадков в июле (х) и урожайностью пшеницы (у). Эти данные вносятся в первые два столбца таблицы 1.

Схема вычисления коэффициента корреляции

– сумма по столбцу 5; n – число наблюдений; d x и d у – средние квадратические отклонения признаков х и у, вычисленные по формуле, при­веденной в лекции 2. В нашем примере связь хорошая.

Таблица 1

X У Х-Х У-У (х-х).(у-у) (Х-Х) 2 (У-У) 2
-50 -10
-50 -6
-10 -6
-1 -10
-10 -7
1 600
800 180 0 0 1560 8600 464

Затем вычисляем разности между конкретными значениями ис­ходных величин и их средними арифметическими. Результаты этих расчетов записываем в столбцы 3 и 4. Вычисление чисел в столбцах 5, б и 7 вполне понятно из надписей над соответствующими столбцами. Под каждым столбцом подсчитываем суммы. Коэффициент корреляции (г) вычисляем по формуле

Особо ценен 5-й столбец схемы, представляющий собой совокуп­ность произведений центральных отклонений и названный ковариаци­онным столбцом. Он позволяет проверить правильность определения знака и численного значения коэффициента корреляции по соотноше­нию сумм плюсовых и минусовых показателей членов ковариационного ряда. Чем больше разнятся суммы плюсов и минусов, тем теснее связь исходных показателей. Примерное равенство их свидетельствует о низ­кой связи. Знак коэффициента корреляции будет соответствовать знаку превышения одной суммы над другой.

Коэффициент корреляции, как и d, проще определяется без вы­числения отклонений от средней. Приведем схему такого вычисления по данным предыдущего примера. Схема проста, и для ее понимания достаточно надписей над столбцами таблицы 2.

3 Оценка точности коэффициента корреляции. Как и всякая другая выборочная математико-статистическая ха­рактеристика, коэффициент корреляции имеет свою ошибку репрезен­тативности, вычисляемую при больших выборках (n > 50) по формуле

Таким образом, точность вычисления коэффициента корреляции повышается с увеличением объема выборки; она велика также при большой тесноте связи (r близок к +1 или -1).

Приведем пример вычисления ошибки выборочного r.

Коэффици­ент корреляции между заболеваемостью дизентерией и одним из клима­тических факторов r = 0,82.

Показатель тесноты связи вычисляется по данным 64 пунктов. Тогда

Получив суммы по всем столбцам, вычисляем коэффициент корреляции по формуле

С точностью определения коэффициента корреляции тесно связан вопрос о реальности существования этой связи между рассматриваемы­ми признаками. При малом объеме выборки или малой тесноте связи часто ошибки, коэффициента корреляции оказываются настолько боль­шими и сопоставимыми с самим коэффициентом, что встает вопрос, не случайно ли его значение отличается от нуля и соответствует ли опре­деленный знак связи действительной ее направленности (плюсовой или минусовой?) Этот вопрос разрешается численным сравнением r

чаться от нуля случайно, и связь явлений не доказывается.

Проверим, существует ли связь между явлениями в нашем примере

связь недостоверна, то есть ее может и не быть.

4 Ранговая корреляция. В географических исследованиях при малых объемах выбора часто требуется обработать статистический материал быстро, не претендуя на высокую точность. Для этого можно ограничиться вычислением не коэффициента корреляции, а ранговой корреляции. Суть этого показателя состоит в том, что действительные значения количественных признаков заменяются их рангами, то есть последовательным рядом простых чисел, начиная с единицы в порядке возрастания признака Например, имеются данные об урожайности зерновых культур (у) и количестве осадков за два месяца перед колошением (х) по пяти районам (табл. 3, столбцы 1 и 2). Требуется вычислить тесноту связи. Заме­няем значения признаков их рангами Хр и Ур (столбцы 3 и 4), находим разности рангов (столбец 5), затем вычисляем квадраты этих разностей (столбец 6).

Ранговый коэффициент корреляции (r) вычисляется по формуле

Этот показатель тесноты связи рассчитывается главным образом то­гда, когда достаточно выяснить приближенную величину тесноты связи, и поэтому полученные результаты можно округлять лишь до десятого знака. Ранговый коэффициент корреляции представляет ценность еще и потому, что в распоряжение географа-исследователя часто поступают данные о многих природных и социально-экономических явлениях, заранее выраженные в рангах или баллах, а последние легко перевести в ранги.

5 Получение эмпирических формул зависимости явлений. Корреляционные методы позволяют определить не только тесноту связи явлений, но и эмпирические формулы зависимости, с помощью которых можно по одним признакам находить другие, часто недоступ­ные или мало доступные наблюдению.

При вычислении коэффициента корреляции обычно получают пять основных статистических показателей - , , d x , d у и r. Эти пока­затели дают возможность легко и быстро рассчитать параметры линей­ной зависимости у от х. Известно, что такая зависимость выражается формулой

Параметры а и b вычисляются по формулам

Например, необходимо построить эмпирическую формулу линей­ной зависимости урожайности (у) от процента гумуса в почве (х). При вычислении коэффициента корреляции были получены следующие

По найденной формуле можно представить примерную урожай­ность, зная процент гумуса на любом участке изучаемой территории. Так, если процент гумуса равен 10, то следует ожидать урожайность у = 7+0,6-х ==7+0,6-10 =13 ц/га.

Чем больше абсолютная величина r , тем более точной и надежной будет эмпирическая формула зависимости.

6 Множественная корреляция. При изучении многофакторных связей встает проблема определе­ния степени совместного влияния нескольких факторов на исследуемое явление.

Корреляционный анализ обычно начинается с вычисления парных коэффициентов корреляции (r xy), выражающих степень зависимости изучаемого явления (у) от какого-либо фактора (х). Например, опреде­ляются коэффициенты корреляции между урожайностью зерновых культур, с одной стороны, и рядом климатических, почвенных и эконо­мических факторов - с другой. Анализ полученных парных коэффициентов корреляции позволяет выявить наиболее важные факторы уро­жайности.

Следующая ступень корреляционного анализа заключается в том, что вычисляется коэффициент множественной корреляции (R), показы­вающий степень совместного влияния важнейших факторов (x 1 , x 2 , ... x n) на изучаемое явление (у), например, на урожайность зерновых куль­тур. Расчет для множества факторов представляет собой очень трудоем­кий процесс, часто требующий применения ЭВМ.

Рассмотрим простейший пример вычисления степени совокупного влияния на урожайность (у) только двух факторов: гидротермического коэффициента (x 1) и стоимости основных средств производства (х 2). Для этого вначале следует определить коэффициенты корреляции меж­ду тремя признаками (у, x 1 , и х 2) попарно. Оказалось, что

1) коэффициент корреляции между урожайностью зерновых культур (у) и гидротермическим коэффициентом (х 1) == 0,80;

2) коэффициент корреляции между урожайностью зерновых культур (у) и стоимостью основных средств производства (х 2) == 0,67;

3) коэффициент корреляции между самими факторами урожайности (гидротермическим коэффициентом и стоимостью основных средств производства) = 0,31.

Коэффициент множественной корреляции, выражающий зависи­мость изучаемого явления от совокупного влияния двух факторов, вы­числяется по формуле

В нашем примере

Совокупное влияние нескольких факторов на изучаемое явление больше, чем каждого из этих факторов в отдельности. Действительно, 0,92 больше как 0,80, так и 0,67.

Квадрат коэффициента множественной корреляции (R 2 = 0,84) означает, что колеблемость урожайности зерновых объясняется воздей­ствием учтенных факторов (гидротермические коэффициенты и стои­мость основных средств производства) на 84%. На долю остальных неучтенных факторов приходится всего 16%.

Линейную зависимость одной переменной (у) от двух других можно выразить уравнением

7 Частная корреляция. В предыдущем параграфе была рассмотрена схема вычисления я коэффициента множественной корреляции, выражающего степень совместного воздействия двух факторов (x 1 и х 2) на изучаемое явление у. Представляет интерес выявить, как тесно связан у с x 1 при постоянстве величине х 2 ; или у с х 2 при исключении влияния x 1 . Для этого следу вычислить коэффициент частной корреляции () по формуле:

, (13)

Где ryx 1 – коэффициент корреляции между первым фактором и изучаемым явлением (у), ryx 2 – коэффициент корреляции между вторым фактором (х 2) и изучаемым явлением (у), rx 1 x 2 – коэффициент корреляции между факторами (х 1) (х 2)

Пользу коэффициента частной корреляции покажем на приме изучения овражной эрозии. Известно, что скорость роста оврагов во многом зависит от энергии поверхностного стока, определяемой eё объемом и скоростью. Первая характеристика может быть выражена таким морфометрическим показателем, как площадь водосбора при вершине оврага, а скорость стока - углом наклона у вершины оврага. Были измерены скорости роста n-го числа оврагов (у), углы наклов (x 1) и площади водосбора (х 2), вычислены парные коэффициенты корреляции: =: - 0,2, = 0,8; == - 0,7. Отрицательное значение первого коэффициента корреляции выглядит парадоксальным. Действительно, трудно представить, чтобы скорости роста оврагов были тем больше, чем меньше угол наклона.

Рисунок 4.5 – Продольный профиль балки растущего оврага

Объяснить эту аномалию может обычно вогнутая форма продольного профиля балки, где растет овраг (рис. 4.5). Благодаря такой форме профиля наблюдается противоположность воздействия двух рассматриваемых факторов (x 1 , и х 2) на ско­рость роста оврагов (у): овраг, начинающий свое развитие в устье балка имеет малый угол наклона (a i), но зато наибольшую площадь водосбо­ра, обеспечивающую максимальный объем стекающей воды. По мера приближения вершины оврага к водоразделу угол наклона растет (a 1 , a 2 , a 3 , a 4 , a 5), но площадь водосбора уменьшается (S 1 – S 5). Преоб­ладающее воздействие площади водосбора (объема воды) над воздейст­вием угла наклона (ее скорости) и привело к отрицательному значению зависимости скорости роста оврагов от угла наклона. Разнонаправленность воздействия двух рассмотренных факторов объясняет также ми­нусовой знак их корреляционной взаимозависимости (== - 0.7). Для того, чтобы определить, насколько велика зависимость скорости роста оврагов от угла наклона при исключении влияния другого фактора (площади водосбора), необходимо вычислить коэффициент частной корреляции по формуле (13). Оказалось, что

Таким образом, только в результате корреляционных расчетов ста­ло возможным убедиться в прямой, а не обратной зависимости скорости роста оврагов от угла наклона, но только при условии исключения воз­действия площади водосбора.

8 Компонентный и факторный анализы. Из множества известных показателей тесноты корреляционных связей следует подчеркнуть особо важное значение коэффициента кор­реляции. Его отличает прежде всего повышенная информативность -способность оценивать не только тесноту, но и знак связи. Коэффици­енты корреляции лежат в основе вычисления более сложных показате­лей, характеризующих взаимосвязи не двух, а большего числа факторов.

Рассмотренный в настоящей лекции аппарат множественной и ча­стной корреляции правомерно считать начальным этапом изучения многофакторных корреляционных связей и зависимостей в географии. В условиях активной информатизации и компьютеризации человеческо­го общества наших дней перспектива развития этого направления ви­дится в использовании более сложного аппарата факторного и компо­нентного анализов. Их объединяет: наличие исключительно большого объема разнообразной информации, необходимость ее математической обработки с помощью ЭВМ, способность «сжимать» информацию, выделять главные и исключать второстепенные показатели, факторы и компоненты.

Факторный анализ предназначен для сведения множества исходныx количественных показателей к малому числу факторов. На их основе вычисляются интегральные показатели, несущие в себе информацию нового качества. В основе математических расчетов лежит создание матрицы, элементами которой выступают обычные коэффициенты корреляции или ковариации, отражающие попарные связи между всеми исходными количественными показателями.

Компонентный анализ (метод главных компонент) в отличие о факторного анализа опирается на массовые расчеты не корреляций, дисперсий, характеризующих колеблемость количественных признаке; л

В результате таких математических расчетов любое самое большое число исходных данных заменяется ограниченным числомглавных компонент, отличающихся наиболее высокой дисперсностью, а, следовательно, и информативностью.

Желающим глубже познакомиться с теорией, методикой и накопленным опытом использования факторного и компонентного анализов в географических исследованиях следует обратиться к работам С.Н. Сербенюка (1972), Г.Т. Максимова (1972), П.И. Рахлина (1973), В.Т. Жукова, С.Н. Сербенюка, B.C. Тикунова (1980), В.М. Жуковской (1964), B.M. Жуковской, И.М. Кузиной (1973), В.М. Жуковской, И.Б. Мучник (1976):

В заключение отметим, что при криволинейных зависимостях коэффициенту корреляции не всегда можно доверять, особенно когда изучаются природные явления на территориях значительной протяжен­ности с севера на юг. В этом случае лучше вычислять корреляционные отношения, которые нуждаются в большом объеме статистической со­вокупности и в предварительной группировке данных (Лукомский, 1961).

ВОПРОСЫ И ЗАДАНИЯ

1. Назовите главные задачи корреляционного анализа.

2. Опишите схему вычисления коэффициента корреляции.

3. Как вычисляется ошибка выборочного коэффициента корреляции?

4. Какова схема вычисления рангового коэффициента корреляции?

5. Опишите получение эмпирических формул зависимости для двух показателей. Каково их использование?

6. В чем сущность множественного коэффициента корреляции?

7. Каково назначение частного коэффициента корреляции?

8. Что такое компонентный анализ?

9. Дайте определение факторного анализа.

Все явления в природе и обществе находятся во взаимной связи. Выяснение

наличия связей между изучаемыми явлениями ― одна из важных

задач статистики. Многие медико-биологические и медико-социальные

исследования требуют установления вида связи (зависимости) между

случайными величинами. Сама постановка большого круга задач

в медицинских исследовательских работах предполагает построение

и реализацию алгоритмов «фактор ― отклик», «доза ― эффект».

Зачастую нужно установить наличие эффекта при имеющейся дозе

и оценить количественно полученный эффект в зависимости от дозы. Решение

этой задачи напрямую связано с вопросом прогнозирования определенного

эффекта и дальнейшего изучения механизма возникновения именно такого

Как известно, случайные величины X и Y могут быть либо независимыми,

либо зависимыми. Зависимость случайных величин подразделяется на

функциональную и статистическую (корреляционную).

Функциональная зависимость ― такой вид зависимости, когда каждому

значению одного признака соответствует точное значение другого.

В математике функциональную зависимость переменной X от переменной

Y называют зависимостью вида X= f (Y), где каждому допустимому значению

Y ставится в соответствие по определенному правилу единственно возможное

значение X.

Например: взаимосвязь площади круга (S) и длины окружности (L). Известно,

что площадь круга и длина окружности связаны вполне определенным

отношением S = r L, где r – радиус круга. Умножив длину окружности

на половину ее радиуса, можно точно определить площадь крута. Такую

изменение одного признака изменением другого. Этот вид связи характерен

для объектов, являющихся сферой приложения точных наук.

В медико-биологических исследованиях сталкиваться с функциональной

связью приходится крайне редко, поскольку объекты этих исследований

имеют большую индивидуальную вариабельность (изменчивость). С

другой стороны, характеристики биологических объектов зависят,

как правило, от комплекса большого числа сложных взаимосвязей и не могут

быть сведены к отношению двух или трех факторов. Во многих

медицинских исследованиях требуется выявить зависимость какой-либо

величины, характеризующей результативный признак, от нескольких

факториальных признаков.

Дело в том, что на формирование значений случайных величин X и Y

оказывают влияние различные факторы. Обе величины ― и X, и

Y ― являются случайными, но так как имеются общие факторы, оказывающие

влияние на них, то X и Y обязательно будут взаимосвязаны. И связь эта

уже не будет функциональной, поскольку в медицине и биологии часто

бывают факторы, влияющие лишь на одну из случайных величин и

разрушающие прямую (функциональную) зависимость между значениями

X и Y. Связь носит вероятностный, случайный характер, в численном выражении

меняясь от испытания к испытанию, но эта связь определенно присутствует

и называется корреляционной.

Корреляционной является зависимость массы тела от роста, поскольку

на нее влияют и многие другие факторы (питание, здоровье,

наследственность и т.д.). Каждому значению роста (X) соответствует множество

значений массы (Y), причем, несмотря на общую тенденцию, справедливую

для средних: большему значению роста соответствует и большее

значение массы, ― в отдельных наблюдениях субъект с большим ростом

может иметь и меньшую массу. Корреляционной будет зависимость

заболеваемости от воздействия внешних факторов, например

запыленности, уровня радиации, солнечной активности и т.д. Имеется

корреляционная зависимость между дозой ионизирующего излучения и

числом мутаций, между пигментом волос человека и цветом глаз, между

показателями уровня жизни населения и смертностью, между числом

пропущенных студентами лекций и оценкой на экзамене.

Именно корреляционная зависимость наиболее часто встречается в

природе в силу взаимовлияния и тесного переплетения огромного множества

самых разных факторов, определяющих значение изучаемых показателей.

Корреляционная зависимость ― это зависимость, когда при изменении

одной величины изменяется среднее значение другой.

Строго говоря, термин «зависимость» при статистической обработке

материалов медико-биологических исследований должен использоваться

весьма осторожно. Это связано с природой статистического анализа,

который сам по себе не может вскрыть истинных причинно-следственных

отношений между факторами, нередко опосредованными третьими факторами,

причем эти третьи факторы могут лежать вообще вне поля зрения

исследователя. С помощью статистических критериев можно дать только

формальную оценку взаимосвязей. Попытки механически

перенести данные статистических расчетов в объективную реальность

могут привести к ошибочным выводам. Например, утверждение: «Чем

громче утром кричат воробьи, тем выше встает солнце», несмотря на явную

несуразность, с точки зрения формальной статистики вполне правомерно.

Таким образом, термин «зависимость» в статистическом анализе подразумевает

только оценку соответствующих статистических критериев.

Корреляционные связи называют также статистическими (например,

зависимость уровня заболеваемости от возраста населения). Эти связи

непостоянны, они колеблются от нуля до единицы. Ноль означает отсутствие

зависимости между признаками, а единица ― полную, или функциональную,

связь, когда имеется зависимость только от одного признака.

Мерой измерения статистической зависимости служат раз личные

коэффициенты корреляции. Выбор метода для определения взаимосвязей

обусловлен видом самих признаков и способами их группировки.

Для количественных данных применяют линейную регрессию и

коэффициент линейной корреляции Пирсона. Для качественных признаков

применяются таблицы сопряженности и рассчитываемые на их основе

коэффициенты сопряженности (С и Ф), Чупрова (К). Для при знаков,

сформированных в порядковой (ранговой, балльной) шкале, можно применять

ранговые коэффициенты корреляции Спирмена или Кендэла.

Любую существующую зависимость по направлению связи можно

подразделить на прямую и обратную. Прямая зависимость

― это зависимость, при которой увеличение или уменьшение значения

одного признака ведет, соответственно, к увеличению или уменьшению второго.

Например: при увеличении температуры возрастает давление газа

(при его неизменном объеме), при уменьшении температуры снижается

и давление. Обратная зависимость имеется тогда, когда при увеличении

одного признака второй уменьшается, и наоборот: при уменьшении

одного второй увеличивается. Обратная зависимость, или обратная

связь, является основой нормального регулирования почти

всех процессов жизнедеятельности любого организма.

Оценка силы корреляционной связи проводится в соответствии со шкалой тесноты.

Если размеры коэффициента корреляции от ±0,9(9) до ±0,7, то связь

сильная, коэффициенты корреляции от ±0,31 до ±0,69 отражают связь средней

силы, а коэффициенты от ±0,3 до нуля характеризуют слабую связь.

Известное представление о наличии или отсутствии корреляционной связи

между изучаемыми явлениями или признаками (например, между массой тела и

ростом) можно получить графически, не прибегая к специальным расчетам. Для

этого достаточно на чертеже в системе прямоугольных координат отложить,

например,

на оси абсцисс величины роста, а на оси ординат ― массы тела и нанести ряд точек,

каждая из которых соответствует индивидуальной величине веса при данном

росте обследуемого. Если полученные точки располагаются кучно по наклонной

прямой к осям ординат в виде овала (эллипса) или по кривой линии,

то это свидетельствует о зависимости между явлениями. Если же точки

расположены беспорядочно или на прямой, параллельной абсциссе либо ординате,

то это говорит об отсутствии зависимости.

По форме корреляционные связи подразделяются на прямолинейные, когда

наблюдается пропорциональное изменение одного признака в зависимости от

изменения другого (графически эти связи изображаются в виде прямой линии или

близкой к ней), и криволинейные, когда одна величина признака

Корреляционный метод

Модификацией метода сравнения с эталоном является корреляционный метод, основанный на вычислении взаимокорреляционной функции между эталоном и изображением.

Корреляция -- статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом, изменения одной или нескольких из этих величин приводят к систематическому изменению другой или других величин. Математической мерой корреляции двух случайных величин служит коэффициент корреляции.

Корреляционный анализ -- метод обработки статистических данных, заключающийся в изучении коэффициентов корреляции между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков для установления между ними статистических взаимосвязей.

Цель корреляционного анализа -- обеспечить получение некоторой информации об одной переменной с помощью другой переменной. В случаях, когда возможно достижение цели, говорят, что переменные коррелируют. В самом общем виде принятие гипотезы о наличии корреляции означает что изменение значения переменной А, произойдет одновременно с пропорциональным изменением значения Б.

Классификация изображений проводится по результату: чем больше значение функции взаимной корреляции, тем с большей вероятностью эталон совпадает с изображением. Используя обозначения, принятые в выражении, формулу для вычисления взаимокорреляционной функции К можно представить в виде

Максимальное значение взаимокорреляционной функции равно,

и достигается при полном совпадении изображения с эталоном. Нормированная взаимокорреляционная функция

при совпадении эталона с изображением достигает максимального значения, равного единице.

Использование корреляционного метода и метода прямого сравнения с эталоном предъявляет к процессу предварительной обработки изображений общие требования. Они заключаются в том, что изображение и эталон должны быть одинаково ориентированы, иметь равный масштаб и не быть сдвинутыми друг относительно друга в поле изображения. Другим свойством этих методов, которое следует учитывать, является необходимость использования большого количества эталонов. Это особенно важно в тех случаях, когда решаются задачи распознавания объектов изменением их проекции.

Распознавание через связь шаблонов

Поиск объектов указанием связей между шаблонами

Часто наблюдаемый объект обладает внутренними степенями свободы, а это означает, что его внешний вид может сильно варьироваться (например, люди могут двигать руками и ногами, рыбы деформируются при плавании, змеи извиваются и т.д.). Данное явление может чрезвычайно затруднить сравнение с шаблоном, поскольку потребуется либо классификатор с гибкими границами (и множество образцов), либо много различных шаблонов.

Многие объекты названного типа содержат небольшое число компонентов, довольно строго упорядоченных. Можно попытаться согласовать данные компоненты как шаблоны, а затем определить, какие объекты присутствуют, изучив предложенные связи между найденными шаблонами. Например, вместо поиска лица по одному полному шаблону лица, можно искать глаза, нос и рот с приемлемым взаимным расположением.

Данный подход имеет несколько потенциальных преимуществ. Во-первых, узнать шаблон глаза может быть легче, чем узнать шаблон лица, поскольку первая структура очевидно проще. Во-вторых, можно получить и использовать относительно простые вероятностные модели, поскольку могут существовать некоторые свойства независимости, которые можно будет использовать. В-третьих, возможно, удастся согласовать большое число объектов с относительно небольшим числом шаблонов. Хороший пример этого явления -- морды животных; почти все животные с характерными мордами имеют глаза, нос и рот, отличается лишь пространственное расположение этих элементов. Наконец, из сказанного следует, что для построения сложных объектов можно использовать простые отдельные шаблоны. Например, люди могут двигать руками и ногами, и похоже, что обучить цельный явный шаблон обнаруживать людей целиком значительно сложнее, чем получить отдельные шаблоны для частей тела и вероятностную модель, описывающую их степени свободы.

Рассматриваемая тема не настолько хорошо изучена, чтобы к ней выработался какой-либо стандартный подход. В то же время основной вопрос достаточно очевиден -- как закодировать набор связей между шаблонами в форму, с которой легко работать. В данной главе изучается ряд различных подходов к данной задаче. Во-первых, каждый шаблон может указывать на объекты, которые он может представлять, а затем каким-то образом считается число указателей. Если построить некоторую явную вероятностную модель, для описания деталей пространственных отношений можно использовать больше весовых коэффициентов. Данную модель можно получить из функций правдоподобия; по сути, нужна функция распределения вероятностей, дающая большое значение, когда конфигурация компонентов подобна объекту, и малое -- в противном случае. Тогда поиск объектов превращается в поиск шаблонов, которые при подстановке в вероятностную модель дают большие значения. Нужно отметить, что следует внимательно относиться к сокращению поиска. Сложность этого подхода заключается в том, что даже при сокращении поиск может быть дорогим. Как утверждают Форсайт и Понс, в то же время при определенном классе вероятностных моделей можно провести эффективный поиск .

Простые модели объектов могут обеспечивать достаточно эффективное распознавание. Простейшая модель -- это рассматривать объект как набор фрагментов изображения (небольших окрестностей элементов характерного вида) нескольких различных типов, формирующих образ (pattern). Чтобы определить, какой образ наблюдается, находятся все фрагменты, каждый из которых указывает на все образы, в которые он входит. То изображение, на которое было указано наибольшее число, и считается присутствующим. Хотя данная стратегия проста, она довольно эффективна. Ниже описываются методы поиска фрагментов, а затем представляется ряд последовательно усложняющихся реализаций данной стратегии.