Научные достижения эллинизма. Эллинистическая наука

Эпоха эллинизма стала периодом расцвета античной науки. Именно в это время наука стала отдельной сферой культуры, окончательно отделившись от философии. Ученых-энциклопедистов, подобных Аристотелю, теперь уже почти не было, но зато каждую научную дисциплину представляли имена крупных ученых. Немалую роль в развитии научных знаний сыграла всемерная поддержка науки эллинистическими правителями. В частности, Птолемеи способствовали превращению александрийского Мусея в главный научный центр цивилизованного мира того времени. В III-I вв. до н. э. большинство известных ученых либо активно работали в нем, либо получили в нем образование.

Античная наука имела ряд особенностей, отличающих ее от науки Нового времени, причем именно в эпоху эллинизма эти особенности проявились в полной мере. Так, в работе греческих ученых крайне малое место занимал эксперимент; главными методами научного исследования были наблюдение и логическое умозаключение. Представители эллинистической науки были скорее рационалистами, чем эмпириками. Еще важнее то, что во времена античности наука была почта совершенно оторвана от практики. В ней видели самоцель, не снисходящую до «низменных» практических потребностей. А потому в эллинистическом мире при очень большом прогрессе в теоретических науках весьма слабо была развита техника. С точки зрения теории античная наука была не только готова к изобретению паровой машины, но и совершила это техническое открытие. Механик Герон Александрийский (он жил на рубеже I в. до н. э. – I в. н. э.) изобрел механизм, в котором вырывавшийся из отверстия пар своей силой подталкивал и заставлял вращаться металлический шарик. Но ни к каким практическим результатам его изобретение не привело. Для ученого паровое устройство было не более чем оригинальным плодом игры ума, а те, кто наблюдал за действием механизма, видели в нем занятную игрушку. Тем не менее Герон продолжал изобретать. В его кукольном театре выступали куклы-автоматы, которые самостоятельно разыгрывали целые пьесы, т. е. действовали по заданной сложной программе. Но и это изобретение в то время никак не было использовано на практике. Техника развивалась лишь в сферах, связанных с военным делом (осадные орудия, фортификационные сооружения) и строительством монументальных сооружений. Что же касается основных отраслей экономики, будь то сельское хозяйство или ремесло, то их техническая оснащенность из века в век оставалась примерно на одном и том же уровне.

Величайшим ученым эпохи эллинизма был математик, механик и физик Архимед из Сиракуз (ок. 287-212 до н. э.). Он получил образование в александрийском Мусее и некоторое время работал там, а затем возвратился в родной город и стал придворным ученым тирана Гиерона II. В своих многочисленных трудах Архимед развил ряд принципиальных теоретических положений (суммирование геометрической прогрессии, весьма точное вычисление числа «пи» и др.), обосновал закон рычага, открыл основной закон гидростатики (с тех пор его называют законом Архимеда). Среди античных ученых Архимед выделялся стремлением сочетать научно-теоретическую и практическую деятельность. Ему принадлежит большое количество инженерных изобретений: «архимедов винт», применявшийся для полива полей, планетарий – модель небесной сферы, позволявшая проследить движение небесных тел, мощные рычаги и др. Когда римляне осадили Сиракузы, по проектам Архимеда были сооружены многочисленные оборонительные орудия и машины, с помощью которых жителям города удавалось в течение долгого времени сдерживать натиск врагов и наносить им значительный урон. Однако, даже работая над устройствами, рассчитанными на практическое применение, ученый постоянно выступает в защиту «чистой» науки, развивающейся по собственным законам, а не под влиянием запросов жизни.


Как и ранее в греческом мире, в эпоху эллинизма приоритетной сферой математики была геометрия. В школьных учебниках изложение основных геометрических аксиом и теорем и по сей день дается в основном в той же последовательности, которую предложил ученый из Александрии Евклид (II Iв. до н.э.).

В области астрономии уже в начале эпохи эллинизма было совершено выдающееся открытие, намного опередившее свое время. Почти за две тысячи лет до Николая Коперника Аристарх Самосский (ок. 310-230 до н. э.) выдвинул гипотезу, согласно которой не Солнце и планеты вращаются вокруг Земли, как полагали раньше, а Земля и планеты вращаются вокруг Солнца. Однако Аристарх не сумел должным образом обосновать свою идею, допустил серьезные ошибки в вычислениях и тем скомпрометировал свою гелиоцентрическую теорию. Она не была воспринята наукой, по-прежнему признававшей геоцентрическую систему, основывающуюся на том, что Земля являлась центром мироздания. Отказ от признания теории Аристарха не был связан с причинами религиозного характера. Просто ученые посчитали, что эта концепция неадекватно объясняет природные явления. Сторонником геоцентризма был и Гиштрх (ок. 180/190-125 до н. э.). Именно этот известный астроном составил лучший в античности каталог видимых звезд, разбив их на классы в зависимости от звездной величины (яркости). Классификация Гиппарха, несколько модифицированная, принята в астрономии и по сей день. Греческий ученый весьма точно вычислил расстояние от Земли до Луны, уточнил продолжительность солнечного года и лунного месяца.

В эпоху эллинизма бурно развивается география . После дальних походов Александра Македонского грекам стали известны многие новые земли, причем не только на Востоке, но и на Западе. Примерно в то же время путешественник Пифей (Питеас) из Массилии (IV в. до н. э.) совершил плавание в северную часть Атлантического океана. Он обогнул Британские острова и, возможно, достиг берегов Скандинавии. Накопление новых эмпирических данных требовало их теоретического осмысления. Этот процесс связан в первую очередь с именем великого ученого Эратосфена Киренского (ок. 276-194 до н. э.), работавшего в Александрии и в течение многих лет возглавлявшего библиотеку Мусея. Эратосфен был одним из последних античных энциклопедистов: астрономом, математиком, филологом. Но наибольший вклад он внес в развитие географии. Эратосфен первым предположил существование на Земле Мирового океана. С удивительной для того времени точностью он вычислил длину земной окружности по меридиану и нанес на карты сетку параллелей. При этом за основу была взята восточная шестидесятеричная система (окружность Земли делится на 360 градусов), сохраняющаяся и по сей день. Уже на исходе эпохи эллинизма Страбон (64/63 до н.э. – 23/24 н. э.) составил описание всего известного тогда мира – от Британии до Индии. Хотя он был не ученым-исследователем, делавшим оригинальные открытия, а скорее популяризатором науки, тем не менее его фундаментальный труд весьма ценен.

Естествоиспытатель и философ, ученик Аристотеля, руководивший после него Ликеем, Феофраст (Теофраст, 372-287 до н. э.) стал основоположником ботаники . В III в. до н. э. врачи Герофил (р. ок. 300 до н. э.) и Эрасистрат (ок. 300 – ок. 240 до н. э.), практиковавшие в Александрии, разработали научные основы анатомии . Прогрессу анатомических знаний во многом способствовали местные условия: вскрытие трупов в Египте не только не было запрещено, как в Греции, но, напротив, регулярно делалось при мумифицировании. В эпоху эллинизма была открыта нервная система, составлено правильное представление о системе кровообращения, установлена роль мозга в мышлении.

Из наук, которые ныне принято называть гуманитарными, в эпоху эллинизма наибольший приоритет получила филология. Ученые, работавшие в Александрийской библиотеке, составляли каталоги ее книжных богатств, исследовали и сопоставляли рукописи с целью определения наиболее аутентичных текстов древних авторов, писали комментарии к произведениям литературы. Крупными филологами были Аристофан Византийский (III в. до н. э.), Дидим (I в. до н. э.) и др.

Характерной чертой интеллектуальной жизни периода эллинизма было отделение специальных наук от философии. Количественное накопление научных знаний, объединение и переработка достижений разных народов вызвали дальнейшую дифференциацию научных дисциплин.

Общие построения натурфилософии прошлого помогли удовлетворять уровню развитии наук, требовавших определения законов и правил для каждой отдельной дисциплины.

Развитие научных знаний требовало систематизации и хранения накопленной информации. В ряде городов создаются библиотеки, самые знаменитые на них - в Александрии и Пергаме.

Крупные ученые обычно работали при дворах эллинистических монархов, которые давали им средства к существованию. При дворе Птолемеев было создано специальное учреждение, объединявшее ученых, так называемый Мусейон («храм муз»).

В развитии астрономии велика была роль вавилонских ученых. Кидинну из Сипнара, живший на рубеже IV и III вв. до н.э. вычислил продолжительность года весьма близко к истинной и, как предполагают, составил таблицы видимых движений Луны и планет.

Военные походы и торговые путешествия вызвали повышенный интерес к географии. Из других естественных наук следует отмстить медицину, которая объединила в этот период достижения египетской и греческой медицины; науку о растениях (ботанику).

Эллинистическая наука при всех ее достижениях носила в основном умозрительный характер.

Технические достижения эллинистических государств проявились главным образом в военном деле и строительстве, т.е. в тех отраслях, в развитии которых были заинтересованы правители этих государств и на которые они тратили большие средства. Прогресс осадной техники вызывал совершенствование оборонительных сооружений: стены становились выше и толще, в многоэтажных стенах делались бойницы для стрелков и метательных орудий. Необходимость возведения мощных стен повлияла на общее развитие строительной техники.

В религиозных верованиях народностей Восточного Средиземноморья ясно отразились черты социальной психологии, о которых говорилось выше. В период эллинизма широкое распространение получили культы различных восточных божеств, объединение культов богов разных народов (синкретизм), магия, верования в богов-спасителей.

Философы и поэты пытались переосмыслить древние мифы, придать им нравственную ценность. Но философские построения оставались достоянием лишь образованных слоев общества. Восточные религии оказались более притягательными не только для основного населения эллинистических государств, но и для переселившихся туда греков. Во многих случаях, даже когда божества носили имена греческих богов, сам культ был совсем не греческим.

Наряду с системами, созданными на основе древнегреческой философии, в эллинистический период создавались произведения, где продолжались и обобщались традиции древневосточного философствования. Эллинистические философские системы оказали значительное влияние па дальнейшее развитие философии в странах Восточного Средиземноморья, а также - через различные восточные учения и римский стоицизм - на христианство.

Эпоха эллинизма – время между двумя датами: смертью Александра Македонского (323 г. до н.э.) и падением под натиском Рима династии Селевкидов (31 г. до н.э.).

В этот краткий период истории возникает мощный интеллектуальный всплеск в математических знаниях, гуманитарных исследованиях, в естествознании, наблюдается постепенная дифференциация наук и формирование конкретных предметных областей с собственной лексикой, проблематикой, принципами обоснования истинности, инструментарием. Рождение научной географии, теоретической астрономии, лингвистики, филологии, исторической науки, геометрии и алгебры (как отдельных математических дисциплин) связывают именно с эпохой эллинизма.

Невероятному расцвету всех областей знания способствовали разные факторы, но все они, так или иначе, связаны с последствиями походов Александра Македонского, спровоцировавших глобальное смешение культур. Греки получили доступ к знаниям покоренных соседей, а высокий престиж греческой культуры у местной элиты (правителей и знати) обеспечил материальную поддержку библиотекам и научным центрам.

Римская империя, поглотившая государства греко-македонцев, сохранила греческие достижения в математике и естествознании, поддержала развитие гуманитарных наук (истории и филологии) и внесла свой творческий вклад в юриспруденцию. Органичная связь культурных явлений Рима и предшествовавшей ей греко-македонской цивилизации позволяет говорить о двух эпохах, не разделяя их.

Уникальным явлением своего времени стал Александрийский Мусейон. Фактически, во времена правления Птолемеев произошло своеобразное институциональное оформление производства, хранения и передачи знаний. Организационные принципы аристотелевского Ликея, перенесенные Деметрием Фалерским на александрийскую землю, дали возможность нескольким поколениям ученых работать в благоприятных условиях: две библиотеки (насчитывающие в сумме более 700 тыс. свитков), отдельные рабочие кабинеты, крытые галереи для прогулок и совместных дискуссий, место для общей трапезы, аудитории для обучения, анатомический кабинет, зоологический и ботанический сады, вполне возможно, лаборатории и астрономическая башня. Прибавьте к этому государственное жалованье и всеобщее уважение.

Лучшие годы Александрийской школы пришлись на первые века ее существования, в которые с ней связаны, прямо или косвенно, самые яркие математики, астрономы, врачи, филологи и историки: Зенодот, Евклид, Аристарх Самосский, Архимед, Эратосфен Киренский, Аполлоний Пергский, Аристарх Самофракийский, Аполлоний Родосский, Гиппарх Никейский.

С конца II в. до н.э. жизнь школы полна рутины (комментарии, компиляции, переводы), Мусейон все больше превращался из научного центра в учебное заведение. В 47 г. до н.э. во время пожара погибла бо́льшая часть рукописей царской Библиотеки. В 390 г. н.э., после указа о закрытии языческих храмов, фанатичной христианской толпой был разгромлен Серапийон и его библиотека. Это был фактический конец Александрийской школы. Другая символическая дата гибели школы – 415 г., когда была растерзана подобной же толпой Гипатия – единственная известная нам женщина- математик того времени.

Научные школы Александрии наследуют заложенные еще в классическом периоде и зафиксированные в трудах Платона и Аристотеля характерные особенности греческого познания, связанные с разделением знаний и видов деятельности по своей значимости на два уровня. Первый уровень – это знания "технэ", знания прикладные, следовательно, низменные, которые не считаются собственно научными и получены в процессе какой-либо материально-практической деятельности. К этому уровню знаний относились результаты наблюдательной астрономии (рецепты составления календарей и астрологических прогнозов), логистики (различные частные приемы счета для конкретных практических задач), описательной географии ("объезды" и "дорожные карты"), механики (военные "хитрые" машины, которые делали тяжелое легким, а медленное быстрым). Второй уровень – знания созерцательного уровня (умозрения ), оперирующие идеальными объектами, образами и моделями, полученными на основе рационально-теоретического мышления и строгого, логически выверенного доказательства. Только второй вид деятельности считался достойным звания ученого мужа и философа и являлся собственно научным занятием.

Математика была одним из ведущих направлений в деятельности Мусейона. Геометрическая алгебра зародилась еще в сочинениях пифагорейцев классической Греции V в. до н.э., а затем активно развивалась в платоновской Академии. Для того периода было характерно в любых математических операциях видеть взаимоотношения не между числами, а между фигурами и их свойствами. Так, знаменитая теорема Пифагора связывала нс длины сторон треугольника, а площади трех квадратов.

Александрийская школа стала вершиной геометрической алгебры, достойным приемником традиций Академии. Приемником не только собственно математического содержания, но и отношения к методам и принципам организации теории, ее равнодушия к возможностям практического применения полученных знаний, ее абсолютно созерцательного характера исследований: геометр занимался поиском чистой истины, описывая сущность космоса с помощью идеальных математических объектов по тщательно выверенным законам логики и диалектики.

Расцвет Александрийской математической школы приходится на IV– III в. до н.э. – время торжества дедуктивно-аксиоматического метода, получившего свой канонический вид сначала в трудах Евклида, а затем – в работах Архимеда из Сиракуз и Аполлония Пергского.

Евклид (IV в. до н.э. – умер между 275 и 270 гг. до н.э.) в 13 книгах "Начал" обобщил и систематизировал математические знания многочисленных своих предшественников: Гиппократа Хиосского, Архита из Терента, Теэтета, Евдокса Книдского. Геометрия на плоскости, стереометрия, теория чисел, теория отношений, метод исчерпывания, иррациональные числа, теория правильных многогранников – все это нашло свое отражение в фундаментальном сочинении Евклида, которое стало образцом теории вплоть до середины XIX в., а во многом и до сегодняшнего дня.

Архимед из Сиракуз (287–212 гг. до н.э.) – ярчайшая фигура того времени. Инженер-механик, математик, физик, он, с одной стороны, был продолжателем греческой математической традиции, с другой стороны, всеми своими занятиями и исследованиями противопоставлял себя духу чистой созерцательности. Его математические идеи навеяны размышлениями над механическими задачами, а физические теории равновесия и гидростатики построены по канонам геометрического сочинения. В истории математики Архимед занимался предварением интегрального счисления (в трактате "Псаммит" (исчисление песчинок)), исследованиями соотношений свойств объемных фигур, изучением различных геометрических кривых.

Аполлоний Пергский (ок. 260 – ок. 170 гг. до н.э.) в "Конических сечениях" дал полное и законченное описание эллипса, параболы и гиперболы как сечений кругового конуса. Именно у Аполлония впервые встречается требование выполнять все геометрические построения с помощью циркуля и линейки. Его сочинение закрыло дверь в геометрическую алгебру .

Герои Александрийский, механик и математик, спускает математику с заоблачных небес и начинает исследовать частные задачи новыми методами: он отходит от отождествления числа и геометрического отрезка и проводит операции с числами как таковыми. Алгебра и арифметика начали свое отделение от геометрии.

Крупнейший математик и астроном римского периода – Клавдий Птолемей (90–168 гг. н.э.) в "Великом собрании" ("Альмагесте") дал тригонометрические формулы и таблицу хорд для плоской поверхности (соответствующую таблице синусов для углов от 0 до 90°), а также определил особенности соотношений длин для фигур на сферической поверхности.

В "Арифметике" Диофанта (II–III вв.) продолжилась дифференциация математического знания: Диофант уже систематически использует алгебраические символы, занимается не последовательным изложением теории вопроса, а разбором отдельных алгебраических задач, сводимых к системе уравнений второй и третьей степени, не прибегая к методам геометрической алгебры. Правда, устраивают его в качестве решений исключительно положительные рациональные числа. Свое развитие идеи Диофанта получат в сочинениях алгебраистов арабского Востока, в греческой науке алгебра оказалась на длительное время без должного внимания и интереса .

Последняя значительная личность в истории античной математики – Папп Александрийский (III в.) Благодаря его "Математическому сборнику" имена многих ученых и результаты их исследований дошли до следующих поколений. Он словно предчувствовал конец эпохи, собирая и обобщая математические достижения своего времени. В силу того, что огромное количество математических трудов, на которые ссылается Папп, утеряно, невозможно вычленить его собственные идеи. Скорее всего, Папп был очень хорошо образованным математиком и знатоком истории математики, великолепным компилятором и комментатором.

В эпоху эллинизма греческая астрономия успешно реализует исследовательскую программу Платона, который ясно размежевал наблюдаемые (видимые) и истинные движения небесных тел. "Это сложные и разнообразные узоры... далеко уступают истинным движениям, совершающимся по истинным траекториям и с истинными скоростями. Эти истинные движения не могут быть восприняты нашими чувствами и постигаются только с помощью рассуждений и разума. Они-то и составляют предмет той астрономии, которую следует считать наукой в собственном смысле слова" . Идеальным считалось только движение по окружности и с постоянной скоростью, поэтому задача теоретической астрономии сводилась к вопросу: "Какие из равномерных, круговых и упорядоченных движений должны быть положены в основу, чтобы можно было объяснить явления, связанные с “блуждающими” светилами?" . Несмотря па разнообразие решений, все теоретические модели александрийцев находятся в строгом соответствии с заветом Платона. Приверженность круговым равномерным движениям продержится больше полутора тысячи лет, вплоть до Коперника, и только работы Кеплера освободят астрономов от этой догмы.

Математика того периода оказалась более подготовленной к поставленной задаче, нежели наблюдательная астрономия: измерения велись простейшими угломерными инструментами низкой точности, данные об определенных неоднородностях в движении светил носили очень примерный характер. Для получения данных более высокой точности Евдокс (408–355 до н.э.) еще в доэллинистический период организовал обсерваторию в Кизике, где ученики его математико-астрономической школы начали вести систематические наблюдения. Результатом этих наблюдений стал первый греческий звездный каталог. Евдокс решает задание Платона с помощью системы 27 гомоцентрических сфер (разновидность геоцентрической системы мира). Для своего времени гомоцентрическая модель давала неплохие предсказания, но расхождения с наблюдениями были очевидны, особенно для движений Марса.

Аполлоний Пергский (262–190 до н.э) ввел системы эпициклов и деферентов. Гиппарх из Никеи (160–125 гг. до н.э.), величайший астроном древности, добавил понятие эксцентра и определил основной набор окружностей для движения Солнца и Луны с высокой математической точностью. Спустя три века на основе работ Гиппарха и многочисленных собственных расчетов Клавдий Птолемей создал общую математическую систему, которая отражала движение всех небесных тел в полном согласии с наблюдениями. В практически неизменном виде она дожила до времен Коперника и Галилея.

Отклонением от мейнстрима является линия Гераклида Понтийского (387–312 до н.э.) и Аристарха Самосского (III в. до н.э.). Первый предложил смелое решение: вращается не тяжелый небосвод, а сама Земля. Другой его идеей было изменение центра вращения для Венеры и Марса: они, по Гераклиду, должны двигаться вокруг Солнца, которое, в свою очередь, движется вокруг быстро вращающейся Земли. Аристарх Самосский довел идеи понтийца до логического завершения, поместив в центр мира Солнце, что позволило еще сильнее упростить конструкцию и математические выкладки. Однако гелиоцентричная система Гераклида – Аристарха с неизменными круговыми равномерными движениями не могла объяснить различия в сроках сезонов, было непонятно, почему в своем движении Земля не теряет свою атмосферу, и ставило под вопрос теорию естественного движения тел Аристотеля (тяжелое – вниз, легкое – вверх).

Торговля, непрерывные войны, путешествия, поиск свободных земель расширяли представления древних греков о пределах Ойкумены, о населяющих ее народах, о рельефе, водных ресурсах, климате, о разнообразии животного и растительного мира. Эти знания находили свое отражение в различных устных преданиях и письменных источниках. Предметная область географии как отдельной области познания начинает вырисовываться с поэм Гомера (X–IX вв. до н.э.), с трудов Анаксимандра, Гекатея, Геродота и Аристотеля. Собственно с Аристотеля, с его "Метеорологии", географические исследования выделяются в отдельное научное направление. Первым применил термин "география" Эратосфен из Кирены (276– 194 гг. до н.э.) – выдающийся ученый-энциклопедист, хронограф, математик, филолог, географ, глава Александрийской библиотеки, который памятен определением лучшего значения длины земного меридиана за весь период Античности и Средневековья.

Одним из важнейших вопросов многих сочинений, граничащих с направлением в географии, связанным с составлением карт, были форма и размеры Земли. Так, например, еще Гекатей Милетский (550–490 гг. до н.э.) и Геродот (V–IV вв. до н.э.), как и многие их соотечественники, полагали, что Земля является плоской округлостью с опрокинутым на нее подобно чаше небом. В то же время уже существовали представления пифагорейцев о шарообразности Земли. Спустя сто лет Аристотель блистательно доказал сферическую форму земной поверхности: главным аргументом был вид земной тени в лунных затмениях. Аристотель же указал (вероятно, воспользовавшись результатами Евдокса), что длина земного меридиана равна 400 000 стадиям (63 200 км). Эратосфен во второй половине III в. до н.э. по высоте Солнца в Александрии измерил в градусах угол между параллелями Сиены и Александрии и получил, что длина дуги между городами соответствует 1/50 части всего меридиана, или 252 000 стадиям (примерно 39 816 км), что очень близко к современному значению – 40 004 км. Эратосфен первым начал говорить о возможности кругосветного плавания и новых путях в Индию: "Если б обширность Атлантического моря нс препятствовала нам, то можно было бы переплыть из Иберии в Индию по одному и тому же параллельному кругу" . Волею судеб общедоступным стал более поздний заниженный результат Посидония (180 000 стадиев или 28 400 км), который и кочевал из одной компиляции в другую, формируя неверные представления о размерах земного шара вплоть до времен Колумба.

Неимоверное количество неправильных данных было следствием скудного набора инструментов практического географа. Компас и хронограф были неизвестны, точно долготу места можно было определить лишь в моменты лунных и солнечных затмений. Для построения карт, отражающих взаимное положение пунктов и расстояние между ними, опирались на данные о среднем времени и скорости движения караванов.

Первая "географическая доска" и первый глобус приписываются уже Анаксимандру (611–546 гг. до н.э.). К V в. до н.э. карты Ойкумены – "Обходы Земли" – были уже в широком ходу. Наиболее известной считалась карта Гекатея Милетского, которому принадлежит и одно из первых географических сочинений – "Землеописание". Помимо "обходов", моряки, военные и торговцы использовали периплы – "объезды" – описания, указывающие расстояния между известными пунктами вдоль береговых линий.

Два века спустя Эратосфен в "Географии" дал подробное описание известной в его время суши и изобразил ее карту. Он усовершенствовал систему двух осевых линий Дикеарха из Мессины и впервые применил взаимно перпендикулярные линии меридианов и параллелей, которые проходили через известные пункты. У Эратосфена, как и у Дикеарха, нулевая отметка, через которую проходил главный меридиан, находилась на острове Родос. Карты стали собственно картами в привычном для нас понимании и представлении. Гиппарх предложил для градусной меры деление окружности на 360 частей (а не на 60, как было принято раньше) и стал проводить параллели и меридианы через равное число градусов, а не через известные точки. Герои Александрийский в своих трактатах по геометрии и геодезии поставил землемерные работы на прочный геометрический теоретический фундамент и описал диоптры – прототип теодолита, одного из основных инструментов любого геодезиста .

Величайший географ времен Римской империи Страбон (63 г. до н.э. – 21 г. н.э.) обобщил и подытожил знания, накопленные его предшественниками. Именно благодаря труду Страбона сохранились данные о многих его предшественниках. Само же сочинение великого географа, написанное в расчете на административный аппарат империи и управленцев разного ранга, было практически неизвестно его современникам и никак не повлияло на дальнейшее развитие географической мысли описываемого периода.

Труд Страбона нашел своих последователей лишь спустя шесть веков .

Птолемей очень подробно рассмотрел возможность изображения на плоскости деталей сферической поверхности. Отдельный том его сочинений включал таблицы координат местности для составления 27 карт и 26 карт отдельных стран. Несмотря на ряд ошибок, карты Птолемея были наиболее достоверными и подробными для своего времени и сохраняли свою ценность вплоть до XVI в. .

Отдельная тема всех географических сочинений – границы известного мира. Ко II в. н.э. Ойкумена жителей Средиземноморья простиралась от Канарских островов за Геркулесовыми Столбами на западе до Китая на востоке, от верховьев Нила и районов экваториальной Африки на юге до острова Фуле на севере.

Задумывались древние и о причинах землетрясений и извержений вулканов, о внутреннем строении Земли, о разных стадиях ее развития. Суммируя материал по развитию геотектонических идей , можно с большой долей уверенности говорить о том, что в Античности знали о многих проявлениях земной активности и их причинах: о подземных водах и пустотах; о неоднородности верхних слоев поверхности Земли; о том, что очертания суши и моря непрерывно меняются, суша и море могут подниматься и опускаться, сменяя друг друга, могут откалываться целые участки суши (острова) от материковой части. Все эти процессы, по мнению древних, имеют необратимый характер (Овидий) и очень длительный период накопления изменений.

С IX в. работы античных ученых по географии, математике, медицине, астрономии нашли своих достойных учеников в арабском мире, массовые переводы с греческого на арабский язык позволили сохранить достижения древних. В христианской Европе, за редким исключением, греческого языка не знали, сохранившиеся в отдельных монастырских библиотеках тексты были трудны для понимания и практически неизвестны. Образованные европейцы знакомились с античными трудами сквозь призму комментариев и толкований, сделанных арабскими мыслителями. Двойной перевод (с греческого на арабский, с арабского на латынь) увеличивал количество расхождений с источником. Массовое возвращение подлинных текстов на европейской территории начнется лишь с XV в. И тем не менее, связь времен не прерывалась. Слабым потоком, соединяющим народы и территории, оказалось образование: греческие Ликей и Академия, затем Александрийский Мусейон, сосуществовавшие с менее масштабными риторскими и философскими школами, затем сменились атенеями (от имени города Афин) и монастырскими школами, переросшими в средневековые университеты. Академии эпохи Возрождения замкнут цепочку.

Во всех этих учебных заведениях в том или ином виде изучались семь свободных искусств – тривиум (грамматика, логика, риторика) и квадриум (арифметика, геометрия, астрономия и музыка) – наследие Александрии и всей античной культуры. Флорентийская академия Козимо Медичи – хороший претендент на роль последователя Александрийской школы в плане возможности вести свободные исследования по самым разным направлениям, обсуждать с коллегами насущные проблемы, получая при этом еще и материальную поддержку извне. Флорентийские академики пытались противопоставить себя схоластическим университетам свободой и широтой тем и методов, но в качестве фундамента нового знания выкладывали старые камни – учения древних греков о мире, природе и человеке.

Бурное развитие как гуманитарных, так и естественных наук является характерной особенностью эллинистической эпохи. Правящие монархи для управления державами, для ведения продолжительных и многочисленных войн нуждались в применении новых эффективных методов и средств и могли их получить лишь используя результаты научного знания.

При дворах эллинистических правителей создаются коллективы ученых, занятые решением научных проблем. Естественно, правителей интересовала не столько наука как таковая, сколько возможность ее практического применения в военном деле, строительстве, производстве, мореплавании и др. Поэтому одна из особенностей научной мысли эллинистической эпохи состояла в повышении практического применения результатов научного исследования в различных областях государственного управления и жизни. Это способствовало отделению науки от философии и выделению ее в самостоятельную сферу человеческой деятельности. Если в классическое время каждый крупный мыслитель занимался собственно философией и многими конкретными науками, то в эллинистическое время наблюдается дифференциация и специализация научных дисциплин. Математика и механика, астрономия и география, медицина и ботаника, филология и история стали рассматриваться как особые научные специальности, имеющие свою специфическую проблематику, свои методы исследования, собственные перспективы развития.

Больших успехов достигли математика и астрономия. Выдающимися математиками (и вместе с тем представителями ряда отраслей физики) были три гиганта эллинистической науки: Эвклид из Александрии (конец IV- начало III вв. до н. э.), Архимед из Сиракуз (287–212 гг. до н. э.) и Аполлоний из Перги в Памфилии (вторая половина III в. до н. э.). Изложенные Эвклидом математические знания легли в основу элементарной математики Нового времени и, как таковые, используются в средней школе до сих пор. Архимед вычислил значение числа p (пи), заложил основы исчисления бесконечно малых и больших величин, много сделал для практического применения научных выводов. Он стал изобретателем сложного блока для передвижения тяжестей, бесконечного (так называемого архимедова) винта для откачивания воды из шахт, трюмов кораблей. Ряд его выводов применялся для улучшения конструкции осадных приспособлений и метательных машин. Крупнейшим вкладом Аполлония из Перги стала разработанная им теория конических сечений, основы геометрической алгебры и классификация иррациональных величин, которые предвосхитили открытия европейских математиков Нового времени.

Величайшим достижением эллинистической астрономии была разработка Аристархом Самосским гелиоцентрической системы мира. Энциклопедически образованным ученым был Эратосфен, которого по разносторонности и глубине знаний можно сравнить с великим Аристотелем. Известны его труды по исторической критике и хронологии, по математике и филологии, но наибольший вклад Эратосфен внес в астрономию и тесно связанную с изучением небесных светил теоретическую географию. Используя математический аппарат, включая элементы тригонометрических вычислений, наблюдения за небесными телами, Эратосфен измерил окружность земного экватора, определив его в 39 700 тыс. км, что очень близко действительному размеру (около 40 тыс. км), определил длину и ширину обитаемой части Земли - тогдашней ойкумены. Исследование поверхности земного шара привело Эратосфена к выводу, что можно достичь Индии, если плыть на запад от Испании. Это наблюдение впоследствии было повторено рядом других ученых, и им руководствовался знаменитый Христофор Колумб, когда отправлялся в свое знаменитое плавание в Индию в конце XV в.

Одним из самых прославленных ученых эллинизма был Гиппарх. Он не принял гелиоцентрическую систему Аристарха Самосского и, использовав идеи своих предшественников, дал наиболее обстоятельную разработку так называемой геоцентрической системы устройства Вселенной, которая была заимствована Клавдием Птолемеем и, освященная авторитетом последнего, стала господствующей системой в средние века, вплоть до Коперника.

Большие успехи были сделаны в медицине. Здесь достижения греческих ученых V–IV вв. до н. э., в частности знаменитого Гиппократа, и богатейшие традиции древневосточной медицины дали плодотворные результаты. Крупными светилами эллинистической медицины были Герофил из Халкедона и Эрасистрат из Кеосак, создатели двух влиятельных медицинских школ III в. до н. э. Им принадлежат такие крупные открытия, как явление кровообращения, наличие нервной системы, установление различия между двигательными и чувствительными центрами и целый ряд других важных наблюдений в области физиологии и анатомии человека, которые были забыты и вновь открыты лишь в Новое время.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:


Бурное развитие как гуманитарных, так и естественных наук является характерной особенностью эллинистической эпохи. Правящие монархи для управления державами, для ведения продолжительных и многочисленных войн нуждались в применении новых эффективных методов и средств и могли их получить лишь используя результаты научного знания. При дворах эллинистических правителей создаются коллективы ученых, щедро субсидируемые правительством, занятые решением научных проблем. Естественно, правителей интересовала не столько наука как таковая, сколько возможность ее практического применения в военном деле, строительстве, производстве, мореплавании и др. Поэтому одна из особенностей научной мысли эллинистической эпохи состояла в повышении практического применения результатов научного исследования в различных областях государственного управления и жизни. Бурное развитие науки и практическое применение ее результатов способствовало отделению науки от философии и выделению ее в самостоятельную сферу человеческой деятельности. Если в классическое время каждый крупный мыслитель (Пифагор, Анаксагор, Демокрит, Платон, Аристотель и др.) занимался собственно философией и многими конкретными науками, то в эллинистическое время наблюдается дифференциация и специализация научных дисциплин. Математика и механика, астрономия и география, медицина и ботаника, филология и история стали рассматриваться как особые научные специальности, имеющие свою специфическую проблематику, свои методы исследования, собственные перспективы развития.

Больших успехов достигли математика и астрономия. Эти науки развивались на основе, заложенной в классический период Пифагором и его школой, Анаксагором и Евдоксом. Вместе с тем богатый опыт математических исследований и астрономических наблюдений, проведенных представителями древневосточной науки, в частности вавилонскими и египетскими учеными, способствовал разработке эллинистической математики, астрономии и других научных дисциплин.

Выдающимися математиками (и вместе с тем представителями ряда отраслей физики) были три гиганта эллинистической науки: Эвклид из Александрии (конец IV- начало III вв. до н. э.), Архимед из Сиракуз (287–212 гг. до н. э.) и Аполлоний из Перги в Памфилии (вторая половина III в. до н. э.). Наиболее известным произведением Эвклида стали его знаменитые «Начала», подлинная математическая энциклопедия своего времени, в которой автор систематизировал и придал формальную законченность многим идеям своих предшественников. Изложенные Эвклидом математические знания легли в основу элементарной математики Нового времени и, как таковые, используются в средней школе до сих пор.

Архимед был разносторонним ученым и внес огромный вклад в развитие античной математики и физики: он вычислил значение числа p (пи) (отношение длины окружности к диаметру), заложил основы исчисления бесконечно малых и больших величин, решил отношение объема шара к объему описывающего его цилиндра, стал основателем гидростатики. Архимед, может быть, больше, чем любой другой ученый эллинизма, сделал для практического применения научных выводов. Он стал изобретателем планетария, приводившегося в движение водой и изображавшего движение небесных тел, сложного блока (так называемая «барулка») для передвижения тяжестей, бесконечного (так называемого архимедова) винта для откачивания воды из шахт, трюмов кораблей. Ряд его выводов применялся для улучшения конструкции осадных приспособлений и метательных машин.

Крупнейшим вкладом Аполлония из Перги стала разработанная им теория конических сечений, основы геометрической алгебры и классификация иррациональных величин, которые предвосхитили открытия европейских математиков Нового времени.

Замечательны достижения эллинистических ученых в области астрономии. Самыми крупными из них были Аристарх Самосский (310–230 гг. до н. э.), Эратосфен Киренский (275–200 гг. до н. э.) и Гиппарх Никейский (ок. 190-ок. 126 гг. до н. э.). Величайшим достижением эллинистической астрономии была разработка Аристархом гелиоцентрической системы мира, поиск научных доказательств такого устройства Вселенной, которое предполагало огромные размеры Солнца. Вокруг него вращаются все планеты, в том числе и Земля, а звезды - это аналогичные Солнцу тела, находящиеся на громадных расстояниях от Земли и потому кажущиеся неподвижными. Энциклопедически образованным ученым был Эратосфен, которого по разносторонности и глубине знаний можно сравнить с великим Аристотелем. Известны его труды по исторической критике и хронологии, по математике и филологии, но наибольший вклад Эратосфен внес в астрономию и тесно связанную с изучением небесных светил теоретическую географию. Используя математический аппарат, включая элементы тригонометрических вычислений, наблюдения за небесными телами, Эратосфен измерил окружность земного экватора, определив его в 39 700 тыс. км, что очень близко действительному размеру (около 40 тыс. км), определил длину и ширину обитаемой части Земли - тогдашней ойкумены, наклон плоскости эклиптики. Исследование поверхности земного шара привело Эратосфена к выводу, что можно достичь Индии, если плыть на запад от Испании. Это наблюдение впоследствии было повторено рядом других ученых, и им руководствовался знаменитый Христофор Колумб, когда отправлялся в свое знаменитое плавание в Индию в конце XV в.

Одним из самых прославленных ученых эллинизма был Гиппарх. Он не принял гелиоцентрическую систему Аристарха Самосского и, использовав идеи своих предшественников, дал наиболее обстоятельную разработку так называемой геоцентрической системы устройства Вселенной, которая была заимствована Клавдием Птолемеем и, освященная авторитетом последнего, стала господствующей системой в средние века, вплоть до Коперника. Гиппарх сделал целый ряд важных открытий: обнаружил явление прецессии равноденствий, более точно установил продолжительность солнечного года и лунного месяца и тем самым внес уточнения в действующий календарь, точнее определил расстояние от Земли до Луны. Он составил лучший для древности каталог - в него включены более 800 звезд с определением их долготы и широты и разделением их по яркости на три класса. Высокая точность выводов Гиппарха основывалась на более широком, чем у других ученых, использовании тригонометрических соотношений и вычислений.

Основателем науки о растениях считается ближайший ученик Аристотеля Феофраст из Лесбоса (372–287 гг. до н. э.), разносторонний ученый, автор многочисленных работ по самым различным специальностям. Однако наибольшее значение для дальнейшего развития науки имели его труды по ботанике, в частности «Исследование растений» и «Происхождение растений». На основе тщательных исследований Феофраста в III–I вв. до н. э. появилось несколько специальных трактатов по сельскому хозяйству и агрономии.

Большие успехи были сделаны в медицине. Здесь достижения греческих ученых V–IV вв. до н. э., в частности знаменитого Гиппократа, и богатейшие традиции древневосточной медицины дали плодотворные результаты. Крупными светилами эллинистической медицины были Герофил из Халкедона и Эрасистрат из Кеосак, создатели двух влиятельных медицинских школ III в. до н. э. Им принадлежат такие крупные открытия, как явление кровообращения, наличие нервной системы, установление различия между двигательными и чувствительными центрами и целый ряд других важных наблюдений в области физиологии и анатомии человека, которые были забыты и вновь открыты лишь в Новое время. Асклепиад из Прусы в I в. до н. э. прославился эффективным лечением больных с помощью диеты, прогулок, массажа и холодных ванн и добился таких больших успехов, что даже возникла легенда, будто он воскресил умершего человека.

Из гуманитарных наук в Александрийском музее успешно развивались филология, историческая критика и текстология. Именно в эллинистическое время были выверены тексты и произведена классификация многих классических произведений древних авторов, которые впоследствии стали каноническими и в таком виде дошли до нашего времени. Каллимаху принадлежало интересное библиографическое руководство огромной ценности, настоящая историко-литературная энциклопедия (так называемые «Таблицы») в 120 книгах. В них были собраны сведения о наиболее известных писателях начиная с Гомера, с краткими аннотациями о содержании их произведений. «Таблицы» Каллимаха стали основой последующих филологических и историко-литературных исследований ученых эллинистического времени.

Заключение к разделу

Эллинизм как историческое явление представляет собой сочетание греческих и восточных элементов в экономике, социальных отношениях, государственности и культуре. В разных частях эллинистического мира это сочетание выражалось в разных формах: основание новых городов полисного типа, ограниченных территориально и юридически, сохранявших традиционные отношения, как в государстве Селевкидов; дарование полисных привилегий городам восточного типа, как в Сирии и Финикии; внедрение греческих приемов хозяйственной жизни в традиционную экономику, рациональных методов контроля и управления при сохранении старой структуры, как в Египте. Различен был и объем восточных и греческих элементов в разных странах, от преобладания восточных традиций в государстве Птолемеев до господства эллинских форм в Балканской Греции, Македонии или Великой Греции.

Синтез разнородных начал в каждом эллинистическом государстве породил дополнительные импульсы для роста экономики, создания более сложной социальной структуры, государственности и культуры. Новым фактором развития стало появление системы эллинистических государств, включавшей обширные территории от Сицилии на западе до Индии на Востоке, от Средней Азии на севере до первых порогов Нила на юге. Многочисленные войны разных эллинистических государств, сложная дипломатическая игра, активизация международной торговли и широкий обмен культурными достижениями в рамках этой обширной системы государств создавали дополнительные возможности для развития эллинистических обществ.

Строятся новые города, осваиваются ранее пустующие территории, появляются новые ремесленные мастерские, прокладываются новые торговые пути как по суше, так и по морю. В целом можно сказать, что внедрение греческих форм экономики и социальной структуры усилило рабовладельческие основы ближневосточной экономики в III–I вв. до н. э.

Однако двойственная природа эллинистических обществ, оплодотворяя и стимулируя процесс исторического существования в III в. до н. э., во II в. до н. э. стала проявлять и свою непрочность. Слияние греческих и восточных начал оказалось неполным, их сосуществование стало порождать напряженность, которая выливалась в разные формы этнических и социальных столкновений, неповиновение центральной власти. В эллинистических обществах в середине II в. до н. э., как некогда в греческом мире IV в. до н. э., начинает нарастать социальная и политическая нестабильность и разброд. Эллинистическая государственность не справляется с общими задачами поддержания порядка и стабильности внутри страны, охраны ее внешней безопасности. Династические распри в правящих царских домах, многочисленные внешние войны, которые довольно часто ведутся не столько из-за защиты государственных интересов, сколько из соображений престижа отдельных дворцовых группировок, истощают силы и средства эллинистических государств, высасывают соки из их подданных, еще более накаляют внутреннюю напряженность. К середине II в. до н. э. эллинистические государства внутренне дряхлеют и начинают распадаться на составные части (государство Селевкидов, Греко-Бактрийское царство). Этим процессом внутреннего ослабления и политического беспорядка умело пользуются две великие державы того времени - Рим на западе и Парфия на востоке. В серии военных столкновений Рим громит Македонию и греческие государства Балканского полуострова. Пергамский царь, не видя выхода из тупиковой ситуации, добровольно передает по завещанию свое царство Риму. Во II - первой половине I в. до н. э. одно за другим эллинистические государства Средиземноморья до Евфрата захватываются Римом. Парфия прибирает к рукам восточноэллинистические государства Средней Азии, Ирана, Месопотамии, и ее западная граница выходит к Евфрату. Оккупация Римом Египта в 30 г. до н. э. означала конец эллинистического мира, эллинистического этапа исторического развития Древней Греции.

Если включение эллинистических стран Средиземноморья до Евфрата в состав Римского государства усилило рабовладельческий характер производства и общества в этих частях, то в странах восточного эллинизма, завоеванных Парфией, зарождаются элементы новых общественных отношений, отношений восточного варианта феодального строя.

Заключение

Изучение истории Древней Греции с начала зарождения цивилизации и ранней государственности на рубеже III–II тысячелетий до н. э. и до падения эллинистических государств, захваченных Римом и Парфией, дает возможность проследить общие закономерности ее развития как органической части истории древнего мира. Вместе с тем оно позволяет выявить ряд кардинальных особенностей, выделяющих греческую цивилизацию как неповторимую историческую реальность, отличающуюся рядом существенных признаков от стран Древнего Востока, с одной стороны, и от Древнего Рима - с другой. Греческая цивилизация, так же как раннеклассовое общество и государство в странах Древнего Востока, вырастала на почве разложения родовых отношений через имущественную и социальную дифференциацию, формирование различных по их роли в производстве социальных групп, через создание органов государственной власти, которые выражали интересы господствующего класса.

Однако рождение раннеклассового общества и государства в Греции проходило в иной природной среде и на другой племенной основе.

На разных этапах исторического развития во II–I тысячелетиях до н. э. греки вступали в активные контакты с древневосточными государствами, сложным племенным миром Средиземноморья и Причерноморья, что способствовало взаимообогащению и древних греков, и других народов. Однако следует отметить благотворное воздействие древнегреческой цивилизации, ее стимулирующее влияние на исторические судьбы народов Восточного Средиземноморья и Причерноморья. Особенно сильным это влияние оказалось во время великой греческой колонизации VIII–VI вв. до н. э. и в эллинистический этап древнегреческой истории.

Древние греки внесли огромный вклад в развитие средиземноморской цивилизации. Наибольшие достижения греков проявились в трех основных областях: организации городской жизни с ее высоким уровнем благоустройства как одного из важных условий цивилизованного существования; установлением демократической республики (демократии) - наиболее прогрессивной формы государственного устройства; создании замечательной культуры.

Города и городская жизнь появились на Древнем Востоке еще в III тысячелетии до н. э. и к середине I тысячелетия до н. э. достигли высокого уровня развития. Однако при этом подавляющая масса населения проживала в сельской местности, в многочисленных деревенских поселениях, в которых протекала вся их производственная (как сельскохозяйственная, так и ремесленная) деятельность, их досуг, вся их жизнь. Древневосточный общинник мог прожить всю жизнь в микромире своего родного поселения, с ним неразрывно были связаны весь уклад жизни, образ мыслей и система ценностей.

Иное положение сложилось в Греции. Хотя в Греции существовало немалое число полисов, не имеющих городов (например, Спарта), однако греческий полис как таковой предполагал существование благоустроенного города в качестве естественного центра.

Как центр всей полисной округи греческий город был местом жительства не только ремесленников, торговцев и прочего городского люда, но включал также и сельское население, т. е. становился местом жительства большей части населения полиса, которое, таким образом, могло пользоваться всеми благами благоустроенной городской жизни.

Город как место жительства основной части граждан полиса стараниями греческих градостроителей благоустраивался и украшался и в классический период стал регулярным городом, т. е. городом, построенным по плану, с сеткой пересекающихся под прямым углом улиц, с правильным делением на кварталы, предусмотренными местами для главной площади, центральных святилищ, стадиона, театра, зданий общественного назначения. Строительство городов велось с учетом климатических и других экологических факторов. В самом городе сооружались не только удобные жилища для граждан, но и художественно украшенные святилища и места общественного отдыха. Непременной частью греческого города были театральные помещения, вмещавшие большую часть гражданского населения, гимнасии и стадионы, в которых граждане проводили значительную часть своего времени. Основные принципы регулярной планировки, появившиеся в классический период, были усовершенствованы в эллинистическое время и впоследствии оказали большое воздействие на европейское градостроительство.

Большим достижением древних греков в политической области было формирование такой организации государственного устройства, как демократическая республика (более совершенное воплощение - афинская демократия). Полисная демократия представляла собой разработанную политическую систему, обеспечивавшую участие в государственном управлении основной массы граждан. Суверенитет гражданского коллектива в целом осуществлялся через наделение реальной властью Народного собрания. Организация судебной и исполнительной власти исключала возможность сосредоточения ее в руках отдельных лиц, обеспечивала участие в исполнительных органах практически всех граждан независимо от их имущественного положения. Афинская демократия проводила целенаправленную политику материальной и политической поддержки обедневших граждан, предоставляя им земельные участки в клерухиях, обеспечивая их участие в управлении небольшой платой (в объеме прожиточного минимума). Конечно, нельзя идеализировать афинскую, так же как и полисную в целом, демократию и считать ее эталоном демократии как таковой. Как явствует из вышеизложенной истории Греции, это была демократия лишь для граждан, в то время как женщины, негражданское свободное население (довольно многочисленное в Афинах) не говоря, конечно, о рабах, стояли вне демократических институтов и не принимали никакого участия в управлении. Тем не менее структура демократической республики, конкретный механизм ее действия в политической жизни Греции был огромным шагом в истории политических учреждений и государственных форм, обеспечивающих привлечение значительно большего числа населения, чем при каком-либо ином государственном устройстве. И не случайно греческая и особенно афинская демократия привлекает к себе большое внимание всех историков государства и права, исследующих историю политических учреждений и политической мысли. Одним из важных достижений политической мысли древних греков была выработка понятия гражданина, наделенного совокупностью неотъемлемых юридических прав: личной свободы как полной независимости от какого-либо лица или учреждения, права на земельный участок в своем полисе как основы благосостояния и нормальной жизни, права на службу в ополчении и ношения оружия, права участвовать в деятельности Народного собрания и управлении государством. Осознание этих прав, их использование в повседневной жизни делало гражданина греческого полиса, по словам Аристотеля, политическим человеком, расширяло кругозор, обогащало самосознание, стимулировало творческие способности.

Великим оказался вклад древних греков в развитие мировой культуры. Высокий уровень греческой культуры, многообразие и глубина, разработанность ее направлений, создание шедевров и выработка плодотворных идей, вошедших затем в сокровищницу мировой цивилизации, выделяют феномен древнегреческой культуры среди многих других национальных культурных систем.

Успехи греческих мастеров были поразительно велики во всех областях культурного творчества: в философии это разработка развитых систем материализма (Демокрит и Эпикур), идеализма (Платон), системы Аристотеля и стоиков; в архитектуре - появление регулярного градостроительства и знаменитой ордерной системы, на много столетий определившей направление римской, средиземноморской, а затем и европейской архитектуры; в литературе - создание многих жанров (трагедия, эпос, лирика, комедия, ученая поэзия), а в каждом жанре - шедевров мирового значения; блестящие научные открытия (формулировка принципов гелиоцентрической концепции Вселенной, учение об эволюции организмов, атомистическая схема строения вещества, принципы формальной логики и элементарной математики и многое другое). Следует отметить одну из особенностей культуры древних греков - это ее гуманистический характер. В центре культурного творчества греческих мастеров стоял гражданин как носитель лучших человеческих качеств, притом в демократических полисах не аристократ - богатый и получивший специальное воспитание, а гражданин вообще, независимо от его имущественного положения… Совершенство греческой культуры объясняется и богатым экономическим потенциалом греческих полисов, созданным за счет рациональной организации рабского труда, благоприятными возможностями политической деятельности для граждан и развитостью личности самого гражданина, знатока культурных ценностей, потребности и интересы которого вдохновляли мастеров на создание этих ценностей.

Влияние древних греков на последующее развитие народов Средиземноморья в период Римской империи, европейской, а затем и мировой цивилизации стало весьма значительным и плодотворным. Оно не только питало это развитие, но целый ряд достижений древних греков (принципы демократии как власти народа, регулярные города, стадионы, театры, скульптурные образы, художественные типы греческой литературы, научные открытия и др.) вошли в структуру современной цивилизации как ее органическая и неотъемлемая часть.