Образец для системы репарации днк. Репарация как механизм поддержаня генетического гомеостаза.виды и механизмы репарации


План лекции 1.Типы повреждений ДНК 1.Типы повреждений ДНК 2.Репарация ДНК, типы и механизмы: 2.Репарация ДНК, типы и механизмы: Прямая Прямая Эксцизионная Эксцизионная Пострепликативная Пострепликативная SOS репарация SOS репарация 3. Репарация и наследственные болезни 3. Репарация и наследственные болезни


Процесс восстановления исходной нативной структуры ДНК называют репарацией ДНК, или генетической репарацией, а системы, участвующие в нем - репарационными. Процесс восстановления исходной нативной структуры ДНК называют репарацией ДНК, или генетической репарацией, а системы, участвующие в нем - репарационными. В настоящее время известно несколько механизмов генетической репарации. Одни из них более просты и «включаются» сразу же после повреждения ДНК, другие требуют индукции большого числа ферментов, и их действие растянуто во времени. В настоящее время известно несколько механизмов генетической репарации. Одни из них более просты и «включаются» сразу же после повреждения ДНК, другие требуют индукции большого числа ферментов, и их действие растянуто во времени.


С позиций молекулярного механизма первичные повреждения в молекулах ДНК могут быть устранены тремя путями: С позиций молекулярного механизма первичные повреждения в молекулах ДНК могут быть устранены тремя путями: 1.прямым возвращением к исходному состоянию; 1.прямым возвращением к исходному состоянию; 2. вырезанием поврежденного участка и заменой его нормальным; 2. вырезанием поврежденного участка и заменой его нормальным; 3. рекомбинационным восстановлением в обход поврежденного участка. 3. рекомбинационным восстановлением в обход поврежденного участка.




Спонтанные повреждения ДНК Ошибки репликации (появление некомплементарных пар нуклеотидов) Ошибки репликации (появление некомплементарных пар нуклеотидов) Апуринизация (отщепление азотистых оснований из нуклеотида) Апуринизация (отщепление азотистых оснований из нуклеотида) Дезаминирование (отщепление аминогруппы) Дезаминирование (отщепление аминогруппы)


Индуцированные повреждения ДНК Димеризация (сшивание соседних пиримидиновых оснований с образованием димера) Димеризация (сшивание соседних пиримидиновых оснований с образованием димера) Разрывы в ДНК: однонитевые и двунитевые Разрывы в ДНК: однонитевые и двунитевые Поперечные сшивки между нитями ДНК Поперечные сшивки между нитями ДНК




ПРЯМАЯ РЕПАРАЦИЯ ДНК Этот тип репарации обеспечивает прямое восстановление исходной структуры ДНК или удаление повреждения. Этот тип репарации обеспечивает прямое восстановление исходной структуры ДНК или удаление повреждения. Широко распространенная система репарации такого рода фотореактивация пиримидиновых димеров. Широко распространенная система репарации такого рода фотореактивация пиримидиновых димеров. Это пока единственная, известная ферментная реакция, в которой фактором активации служит не химическая энергия, а энергия видимого света. Это пока единственная, известная ферментная реакция, в которой фактором активации служит не химическая энергия, а энергия видимого света. При этом активизируется фермент фотолиаза, которая разъединяет димеры. При этом активизируется фермент фотолиаза, которая разъединяет димеры.


Фоторепарация Схематически световая репарация выглядит следующим образом: 1. Нормальная молекула ДНК Облучение УФ-светом 2. Мутантная молекула ДНК – образование пиримидиновых димеров. Действие видимого света 3. Синтез фермента фотолиазы 4. Расщепление димеров пиримидиновых оснований 5. Восстановление нормальной структуры ДНК




Установлено, что большинство полимераз кроме 5"-3"-полимеразной активности имеют 3"-5"- экзонуклеазную активность, благодаря которой обеспечивается коррекция возможных ошибок. Установлено, что большинство полимераз кроме 5"-3"-полимеразной активности имеют 3"-5"- экзонуклеазную активность, благодаря которой обеспечивается коррекция возможных ошибок. Эта коррекция осуществляется в два этапа: сначала идет проверка соответствия каждого нуклеотида матрице перед включением его в состав растущей цепи, а затем перед включением в цепь следующего за ним нуклеотида. Эта коррекция осуществляется в два этапа: сначала идет проверка соответствия каждого нуклеотида матрице перед включением его в состав растущей цепи, а затем перед включением в цепь следующего за ним нуклеотида. РЕПАРАЦИЯ ДНК ЗА СЧЕТ ЭКЗОНУКЛЕАЗНОЙ АКТИВНОСТИ ДНК-ПОЛИМЕРАЗ


При встраивании неправильного нуклеотида двойная спираль деформируется. Это позволяет ДНК-П распознать в большинстве случаев дефект в растущей цепи. Если ошибочно встроенный нуклеотид не способен формировать водородную связь с комплементарным основанием, ДНК-П приостановит процесс репликации до тех пор, пока нужный нуклеотид не встанет на его место. У эукариот ДНК-П не обладает 3-5 экзонуклеазной активностью. При встраивании неправильного нуклеотида двойная спираль деформируется. Это позволяет ДНК-П распознать в большинстве случаев дефект в растущей цепи. Если ошибочно встроенный нуклеотид не способен формировать водородную связь с комплементарным основанием, ДНК-П приостановит процесс репликации до тех пор, пока нужный нуклеотид не встанет на его место. У эукариот ДНК-П не обладает 3-5 экзонуклеазной активностью.


Репарация алкилирующих повреждений Генетические повреждения, вызываемые присоединением алкильных или метильных групп, могут репарироваться в результате удаления этих групп специфическими ферментами. Специфический фермент О 6 метилгуанин трансфераза распознает О 6 метилгуанин в ДНК и удаляет метильную группу и возвращает основание в исходную форму. Генетические повреждения, вызываемые присоединением алкильных или метильных групп, могут репарироваться в результате удаления этих групп специфическими ферментами. Специфический фермент О 6 метилгуанин трансфераза распознает О 6 метилгуанин в ДНК и удаляет метильную группу и возвращает основание в исходную форму.


Действие полинуклеотидлигазы Например, под действием ионизирующего облучения могут возникнуть однонитевые разрывы ДНК. Фермент полинуклеотидлигаза воссоединяет разорванные концы ДНК. Например, под действием ионизирующего облучения могут возникнуть однонитевые разрывы ДНК. Фермент полинуклеотидлигаза воссоединяет разорванные концы ДНК.


Этапы эксцизионной репарации 1. Узнавание повреждения ДНК эндонуклеазой 1. Узнавание повреждения ДНК эндонуклеазой 2. Инцизия (надрезание) цепи ДНК ферментом по обе стороны от повреждения 2. Инцизия (надрезание) цепи ДНК ферментом по обе стороны от повреждения 3. Эксцизия (вырезание и удаление) повреждения при помощи геликазы 3. Эксцизия (вырезание и удаление) повреждения при помощи геликазы 4. Ресинтез: ДНК-П застраивает брешь и лигаза соединяет концы ДНК 4. Ресинтез: ДНК-П застраивает брешь и лигаза соединяет концы ДНК


Мисмэтч-репарация Во время репликации ДНК бывают ошибки спаривания, когда вместо комплементарных пар А-Т, Г-Ц образуются некомплементарные пары. Неправильное спаривание затрагивает только дочернюю цепь. Система репарации мисмэтч должна найти дочернюю цепь и произвести замену некомплементарных нуклеотидов. Во время репликации ДНК бывают ошибки спаривания, когда вместо комплементарных пар А-Т, Г-Ц образуются некомплементарные пары. Неправильное спаривание затрагивает только дочернюю цепь. Система репарации мисмэтч должна найти дочернюю цепь и произвести замену некомплементарных нуклеотидов.


Мисмэтч репарация Как отличить дочернюю цепь от материнской? Как отличить дочернюю цепь от материнской? Оказывается, специальные ферменты метилазы присоединяют метильные группы к аденинам в последовательности ГАТЦ на материнскую цепь и она становится метилированной, в отличие неметилированной дочерней. У E.coli продукты 4-х генов отвечают зп мисмэтч репарацию: mut S, mut L, mut H, mut U. Оказывается, специальные ферменты метилазы присоединяют метильные группы к аденинам в последовательности ГАТЦ на материнскую цепь и она становится метилированной, в отличие неметилированной дочерней. У E.coli продукты 4-х генов отвечают зп мисмэтч репарацию: mut S, mut L, mut H, mut U.




ПОСТРЕПЛИКАТИВНАЯ РЕПАРАЦИЯ ДНК Пострепликативная репарация осуществляется в тех случаях, когда повреждение доживает до фазы репликации (слишком много повреждений, или повреждение возникло непосредственно перед репликацией) или имеет такую природу, которая делает невозможным его исправление с помощью эксцизионной репарации (например, сшивка цепей ДНК). Эта система играет особенно важную роль у эукариот, обеспечивая возможность копирования даже с поврежденной матрицы (хотя и с увеличенным количеством ошибок). Одна из разновидностей этого типа репарации ДНК - рекомбинационная репарация.




SOS -репарация Обнаружена в 1974 г. М.Радманом. Он дал название, включив в него международный сигнал бедствия. Включается тогда, когда повреждений в ДНК настолько много, что они угрожают жизни клетки. Индуцируется синтез белков, которые присоединяются к ДНК-П комплексу и строят дочернюю цепь ДНК напротив дефектной матричной. В результате ДНК удваивается с ошибкой и может произойти клеточное деление. Но если были задеты жизненно важные функции клетка погибнет. Обнаружена в 1974 г. М.Радманом. Он дал название, включив в него международный сигнал бедствия. Включается тогда, когда повреждений в ДНК настолько много, что они угрожают жизни клетки. Индуцируется синтез белков, которые присоединяются к ДНК-П комплексу и строят дочернюю цепь ДНК напротив дефектной матричной. В результате ДНК удваивается с ошибкой и может произойти клеточное деление. Но если были задеты жизненно важные функции клетка погибнет.




РЕПАРАЦИЯ ДНК И НАСЛЕДСТВЕННЫЕ БОЛЕЗНИ ЧЕЛОВЕКА Нарушение системы репарации у человека является причиной: Преждевременного старения Онкозаболеваний (80-90 % всех раковых заболеваний) Аутоиммунных заболеваний (ревматоидный артрит, СКВ, болезнь Альцгеймера)


Болезни, связанные с нарушением репарации Пигментная ксеродерма Пигментная ксеродерма Атаксия-телеангиэктазия или синдром Луи-Бар Атаксия-телеангиэктазия или синдром Луи-Бар Синдром Блума Синдром Блума Трихотиодистрофия (ТТД) Трихотиодистрофия (ТТД) Синдром Коккейна Синдром Коккейна Анемия Фанкони Анемия Фанкони Прогерия детей (синдром Хатчинсона-Гилфорда) Прогерия детей (синдром Хатчинсона-Гилфорда) Прогерия взрослых (синдром Вернера) Прогерия взрослых (синдром Вернера)





Атаксия-телеангиэктазия или синдром Луи- Бар: А-Р, мозжечковая атаксия, нарушение координации движений, телеангиэктазы – локальное чрезмерное расширение мелких сосудов, иммунодефицит, предрасположенность к онкозаболеваниям. Синдром Блума: А-Р, высокая чувствительность к УФ лучам, гиперпигментация, краснота на лице в виде бабочки.


Трихотиодистрофия: А-Р, нехватка серы в клетках волос, ломкость, напоминают тигровый хвост, аномалии кожи, зубов, дефекты полового развития. Синдром Коккейна: А-Р, карликовость при норме гормонов роста, глухота, атрофия зрительного нерва, ускорение старения, чувствительны к солнечному свету. Анемия Фанкони: уменьшение кол-ва всех клеточных элементов крови, скелетные нарушения, микроцефалия, глухота. Причина- нарушение вырезания пиримидиновых димеров и нарушение репарации межцепочечных сшивок ДНК.








Литература: 1. Генетика. Под ред. Иванова В.И. М., Жимулев И.Ф. Общая и молекулярная генетика. Новосибирск, Муминов Т.А., Куандыков Е.У. Основы молекулярной биологии (курс лекций). Алматы, Мушкамбаров Н.Н., Кузнецов С.Л. Молекулярная биология. М., 2003.





Репарация - это свойство живой клетки бороться с различными повреждениями ДНК. В окружающем мире существует множество факторов, способных вызвать необратимые изменения в живом организме. Чтобы сохранить свою целостность, избежать патологических и несовместимых с жизнью мутаций, должна существовать система самостоятельного восстановления. Как нарушается целостность генетического материала клетки? Рассмотрим этот вопрос более подробно. Также выясним, какие существуют восстановительные механизмы организма и как они работают.

Нарушения в ДНК

Молекула дезоксирибонуклеиновой кислоты может быть разорвана как в ходе биосинтеза, так и под влиянием вредных веществ. К негативным факторам, в частности, относят температуру или физические силы различного происхождения. Если разрушение произошло, клетка запускает процесс репарации. Так начинается восстановление исходной структуры За репарацию отвечают особые ферментные комплексы, присутствующие внутри клеток. С невозможностью отдельных клеток осуществлять восстановление связаны некоторые заболевания. Наука, изучающая процессы репарации, - это биология. В рамках дисциплины проведено достаточно много опытов и экспериментов, благодаря которым становится более понятным процесс восстановления. Надо отметить, что механизмы репарации ДНК очень интересны, как и история открытия и изучения данного феномена. Какие факторы способствуют началу восстановления? Для того чтобы процесс запустился, необходимо, чтобы на ДНК воздействовал стимулятор репарации тканей. Что это такое, подробнее расскажем чуть ниже.

История открытия

Это удивительное явление начал изучать американский ученый Кельнер. Первым значимым открытием на пути исследования репарации стал такой феномен, как фотореактивация. Этим термином Кельнер назвал эффект снижения вреда от ультрафиолетового облучения при последующей обработке поврежденных клеток ярким излучения видимого спектра.

"Световое восстановление"

Впоследствии исследования Кельнера получили свое логическое продолжение в работах американских биологов Сетлоу, Руперта и некоторых других. Благодаря труду этой группы ученых было достоверно установлено, что фотореактивация является процессом, который запускается благодаря особому веществу - ферменту, катализирующему расщепление димеров тимина. Именно они, как выяснилось, образовывались в ходе экспериментов под воздействием ультрафиолета. При этом яркий видимый свет запускал действие фермента, который способствовал расщеплению димеров и восстановлению первоначального состояния поврежденных тканей. В данном случае речь идет о световой разновидности восстановления ДНК. Определим это более четко. Можно сказать, что световая репарация - это восстановление под воздействием света первоначальной структуры ДНК после повреждений. Однако данный процесс не является единственным, способствующим устранению повреждений.

"Темновое" восстановление

Спустя некоторое время после открытия световой была обнаружена темновая репарация. Это явление происходит без какого-либо воздействия световых лучей видимого спектра. Данная способность к восстановлению обнаружилась во время исследования чувствительности некоторых бактерий к ультрафиолетовым лучам и Темновая репарация ДНК - это способность клеток убирать любые патогенные изменения дезоксирибонуклеиновой кислоты. Но следует сказать, что это уже не фотохимический процесс, в отличие от светового восстановления.

Механизм "темнового" устранения повреждений

Наблюдения за бактериями показали, что спустя некоторое время после того, как одноклеточный организм получил порцию ультрафиолета, вследствие чего некоторые участки ДНК оказались поврежденными, клетка регулирует свои внутренние процессы определенным образом. В результате измененный кусочек ДНК просто отрезается от общей цепочки. Получившиеся же промежутки заново заполняются необходимым материалом из аминокислот. Иными словами, осуществляется ресинтез участков ДНК. Открытие учеными такого явления, как темновая репарация тканей, - это еще один шаг в изучении удивительных защитных способностей организма животного и человека.

Как устроена система репарации

Эксперименты, позволившие выявить механизмы восстановления и само существование этой способности, проводились с помощью одноклеточных организмов. Но процессы репарации присущи живым клеткам животных и человека. Некоторые люди страдают Это заболевание вызвано отсутствием способности клеток ресинтезировать поврежденную ДНК. Ксеродерма передается по наследству. Из чего же состоит репарационная система? Четыре фермента, на которых держится процесс репарации - это ДНК-хеликаза, -экзонуклеаза, -полимераза и -лигаза. Первый из этих соединений способен распознавать повреждения в цепи молекулы дезоксирибонуклеиновой кислоты. Он не только распознает, но и обрезает цепь в нужном месте, чтобы удалить измененный отрезок молекулы. Само устранение осуществляется с помощью ДНК-экзонуклеазы. Далее происходит синтез нового участка молекулы дезоксирибонуклеиновой кислоты из аминокислот с целью полностью заменить поврежденный отрезок. Ну и финальный аккорд этой сложнейшей биологической процедуры совершается с помощью фермента ДНК-лигазы. Он отвечает за прикрепление синтезированного участка к поврежденной молекуле. После того как все четыре фермента сделали свою работу, молекула ДНК полностью обновлена и все повреждения остаются в прошлом. Вот так слаженно работают механизмы внутри живой клетки.

Классификация

На данный момент ученые выделяют следующие разновидности систем репарации. Они активируются в зависимости от разных факторов. К ним относятся:

  1. Реактивация.
  2. Рекомбинационное восстановление.
  3. Репарация гетеродуплексов.
  4. Эксцизионная репарация.
  5. Воссоединение негомологичных концов молекул ДНК.

Все одноклеточные организмы обладают как минимум тремя ферментными системами. Каждая из них обладает способностью осуществлять процесс восстановления. К этим системам относят: прямую, эксцизионную и пострепликативную. Этими тремя видами восстановления ДНК обладают прокариоты. Что касается эукариот, то в их распоряжении находятся дополнительные механизмы, которые называются Miss-mathe и Sos-репарация. Биология подробно изучила все эти виды самовосстановления генетического материала клеток.

Структура дополнительных механизмов

Прямая репарация — это наименее сложный способ избавления от патологических изменений ДНК. Ее осуществляют особые ферменты. Благодаря им восстановление структуры молекулы ДНК происходит очень быстро. Как правило, процесс протекает в течение одной стадии. Одним из вышеописанных ферментов является O6-метилгуанин-ДНК-метилтрансфераза. Эксцизионная система репарации - это тип самовосстановления дезоксирибонуклеиновой кислоты, который подразумевает вырезание измененных аминокислот и последующую замену их заново синтезированными участками. Этот процесс уже осуществляется в несколько стадий. В ходе пострепликативного восстановления ДНК в структуре этой молекулы могут образовываться бреши величиной в одну цепочку. Затем они закрываются при участии белка RecA. Пострепликативная система репарации уникальна тем, что в ее процессе отсутствует этап распознавания патогенных изменений.


Кто отвечает за механизм восстановления

На сегодняшний день ученым известно, что такое простейшее существо, как кишечная палочка, обладает не менее чем полусотней генов, отвечающих непосредственно за репарацию. Каждый ген выполняет определенные функции. К ним относят: распознавание, удаление, синтез, прикрепление, идентификацию последствий воздействия ультрафиолета и так далее. К сожалению, любые гены, в том числе и те, что отвечают за процессы репарации в клетке, подвергаются мутационным изменениям. Если это происходит, то они запускают более частые мутации и во всех клетках организма.

Чем опасно повреждение ДНК

Каждый день ДНК клеток нашего организма подвергаются опасности повреждений и патологических изменений. Этому способствуют такие факторы окружающей среды, как пищевые добавки, химические вещества, перепады температур, магнитные поля, многочисленные стрессы, запускающие определенные процессы в организме, и многое другое. Если структура ДНК будет нарушена, это может вызвать тяжелую мутацию клетки, а может в будущем привести к раку. Именно поэтому у организма есть комплекс мер, призванных бороться с такими повреждениями. Даже если ферментам не удается вернуть ДНК в первозданный вид, система репарации работает на то, чтобы свести повреждения к минимуму.

Гомологичная рекомбинация

Разберемся, что это такое. Рекомбинация являет собой обмен генетическим материалом в процессе разрыва и соединения молекул дезоксирибонуклеиновой кислоты. В том случае, когда в ДНК возникают разрывы, начинается процесс гомологичной рекомбинации. В ходе него осуществляется обмен фрагментами двух молекул. Благодаря этому точно восстанавливается первоначальная структура дезоксирибонуклеиновой кислоты. В некоторых случаях может происходить проникновение ДНК. Благодаря процессу рекомбинации возможна интеграция этих двух разнородных элементов.

Механизм восстановления и здоровье организма

Репарация - это обязательное условие нормального функционирования организма. Подвергаясь ежедневно и ежечасно угрозам повреждений и мутаций ДНК, многоклеточная структура приспосабливается и выживает. Это происходит в том числе и за счет налаженной системы репарации. Отсутствие нормальной восстановительной способности вызывает болезни, мутации и другие отклонения. К ним относятся различные патологии развития, онкология и даже само старение. Наследственные болезни вследствие нарушений репарации могут приводить к тяжелым злокачественным опухолям и другим аномалиям организма. Сейчас определены некоторые заболевания, вызываемые именно сбоями систем репарации ДНК. Это такие, например, патологии, как ксеродерма, неполипозный рак толстой кишки, трихотиодистрофия и некоторые раковые опухоли.

В клетках имеются разнообразные "ремонтные бригады", которые следят за сохранностью информации, хранящейся на ДНК. Такие клеточные системы, исправляющие повреждения ДНК, называют системами репарации.

У бактерии кишечной палочки сейчас известно более 50 генов, контролирующих процессы репарации. Эти гены кодируют ферменты, которые умеют, например, вырезать поврежденные участки одной цепи ДНК. ДНК-полимераза достраивает это место цепи до нормы, а ДНК-лигазы "зашивают" разрыв в месте встроенного участка. Имеются специальные ферменты, которые устраняют повреждения, создаваемые ультрафиолетом, и т.д.

Если мутации возникают в каком-то гене системы репарации, то это ведет к увеличению частоты мутаций. Таким образом, есть гены, мутации в которых увеличивают частоту мутаций в других генах организма.

Существуют и сложные клеточные механизмы, которые обеспечивают правильное расхождение хромосом в гаметы. Если эти механизмы дают сбой, в одну гамету попадает лишняя хромосома, а в другой возникает нехватка хромосомы. Такие геномные мутации обычно приводят к гибели эмбрионов, врожденным уродствам или к наследственным заболеваниям .

Ежедневно в молекулах ДНК каждой клетки человеческого тела около 100000 звеньев повреждаются за счет разнообразных эндогенных процессов и экзогенных генотоксичных воздействий. Повреждение ДНК может приводить к появлению мутаций, провоцировать гибель клетки или служить толчком к ее злокачественному перерождению. Для предотвращения таких последствий в клетке существует несколько взаимодополняющих ферментативных систем, которые поддерживают процессы, носящие общее название репарация ДНК . Главная цель всех этих систем - восстановление последовательности ДНК, существовавшей до ее повреждения, или, если это невозможно, сведение изменений к минимуму. Системы репарации ДНК обеспечивают точность воспроизведения и сохранения генетической информации . Репаративные механизмы, которые использует клетка для поддержания стабильности информации, заложенной в ДНК универсальны - функциональная, а иногда и структурная гомология элементов, образующих эти механизмы, прослеживается от бактерий до человека. Чем сложнее клетка, тем большее количество структурных и регуляторных генов и их продуктов участвуют в процессах репарации ДНК, хотя принципиальная схема конкретного процесса, как правило, остается неизменной. Репаративные механизмы образуют сложную сеть, сплетенную функциональными связями или заимствованиями структурных элементов, которая обеспечивает баланс между стабильностью информации в ДНК и ее эволюционной изменчивостью. Точность воспроизведения ДНК и передачи информации, в ней заложенной, обеспечивается двумя матричными процессами - репликацией и транскрипцией ДНК. Хотя ДНК-полимераза обладает корректирующей активностью, репликация не абсолютно точна, и, если возникают неспаренные основания, то системы коррекции оснований исправляют ошибку.

Если в ДНК появляются одно- и двунитевые разрывы, то в действие вступает гомологичная рекомбинация , которая за счет сестринских обменов точно восстанавливает целостность ДНК. Однако рекомбинация - это "тяжелая артиллерия", и предназначена она более всего для изменчивости . При поступлении в клетку ДНК, которая лишь частично гомологична ДНК клетки, вероятна ее интеграция в геном с помощью гомологичной рекомбинации. На страже точности этого процесса стоит система корекции неспаренных оснований с длинным ресентезируемым участком (ДКНО), которая прерывает рекомбинацию, если гомология взаимодействующих молекул ДНК излишне несовершенна. Более того, ДКНО ликвидирует большинство рекомбинационных застроек на уровне онДНК, если они нарушают комплементарность спаривания нуклеотидов. Тем самым ДКНО снижает частоту рекомбинационных обменов в ДНК. Так система ДКНО отстаивает стабильность генома и его видоспецифичность. Наследственные нарушения клеточных репаративных систем у человека приводят к тяжелым врожденным аномалиям и/или предрасположенности к развитию раковых заболеваний.

Системы репарации отличаются друг от друга используемыми субстратами, ферментами и механизмами устранения поврежденных звеньев. На текущий момент выделяют 6 главных систем репарации-систему реактивации и остальные системы репарации, которые действуют с деградацией и повторным синтезом поврежденной части ДНК.

В случае сильного повреждения ДНК - образования двуцепочечных разрывов, обширных однонитевых брешей, сшивок между цепочками - функционирует система рекомбинационной репарации , при которой поврежденная ДНК исправляется за счет рекомбинации с полноценной копией генетического материала, если та присутствует в клетке. Двуцепочечные разрывы также могут лигироваться в процессе воссоединения негомологичных концов, что, однако, ведет к потере части генетического материала.

Неканонические пары оснований и короткие гетеродуплексы в ДНК узнаются системой репарации гетеродуплексов , которая удаляет фрагмент ДНК длиной до нескольких сотен дезоксинуклеотидов, включающий неканонический элемент, и застраивает образовавшуюся брешь.

Высокая стабильность ДНК обеспечивается не только консервативностью её структуры и высокой точностью репликации, но и наличием в клетках всех живых организмов специальных систем репарации , устраняющих из ДНК возникающие в ней повреждения.

Действие различных химических веществ, ионизирующей радиации а также ультрафиолетового излучения может вызвать следующие нарушения структуры ДНК:

· повреждения одиночных оснований (дезаминирование, ведущее к превращению цитозина в урацил, аденина в гипоксантин; алкилирование оснований; включение аналогов оснований, инсерции и делеции нуклеотидов);

· повреждение пары оснований (образование тиминовых димеров);

· разрывы цепей (одиночные и двойные);

· образование перекрестных связей между основаниями, а также сшивок ДНК-белок.

Некоторые из указанных нарушений могут возникать и спонтанно, т.е. без участия каких-либо повреждающих факторов.

Любой тип повреждений ведет к нарушению вторичной структуры ДНК, что является причиной частичного или полного блокирования репликации. Такие нарушения конформации и служат мишенью для систем репарации. Процесс восстановления структуры ДНК основан на том, что генетическая информация представлена в ДНК двумя копиями – по одной в каждой из цепей двойной спирали. Благодаря этому повреждение в одной из цепей может быть удалено репарационным ферментом, а данный участок цепи ресинтезирован в своем нормальном виде за счет информации, содержащейся в неповрежденной цепи.

В настоящее время выявлены три основных механизма репарации ДНК: фотореактивация, эксцизионная и пострепликативнаярепарация. Последние два типа называются также темновой репарацией.

Фотореактивация заключается в расщеплении ферментом фотолиазой , активируемой видимым светом, тиминовых димеров, возникающих в ДНК под действием ультрафиолетового излучения.

Эксцизионная репарация заключается в узнавании повреждения ДНК, вырезании поврежденного участка, ресинтезе ДНК по матрице интактной цепочки с восстановлением непрерывности цепи ДНК. Такой способ называют также репарацией по типу выщепления – замещения, или более образно механизм «режь – латай». Эксцизионная репарация представляет собой многоэтапный процесс и заключается в:

1) «узнавании» повреждения;

2) надрезании одной цепи ДНК вблизи повреждения (инцизии);

3) удалении поврежденного участка (эксцизии);

4) ресинтезе ДНК на месте удаленного участка;

5) восстановлении непрерывности репарируемой цепи за счет образования фосфодиэфирных связей между нуклеотидами
(Рис 6.2)

Рис. 6.2 Схема эксцизионной репарации

Репарация начинается с присоединения ДНК-N-гликозилазы к поврежденному основанию. Существует множество ДНК-N-гликозилаз, специфичных к разным модифицированным основаниям. Ферменты гидролитически расщепляют N-гликозидную связь между измененным основанием и дезоксирибозой, это приводит к образованию АП (апуринового-апиримидинового) сайта в цепи ДНК (первый этап). Репарация АП-сайта может происходить при участии только ДНК-инсертазы , которая присоединяет к дезоксирибозе основание в соответствии с правилом комплементарности. В этом случае нет необходимости разрезать цепь ДНК, вырезать неправильный нуклеотид и репарировать разрыв. При более сложных нарушениях структуры ДНК необходимо участие всего комплекса ферментов, участвующих в репарации (Рис. 6.2.): АП-эндонуклеаза распознает АП-сайт и разрезает возле него цепь ДНК (II этап). Как только в цепи возникает разрыв, в работу вступает АП-экзонуклеаза , которая удаляет фрагмент ДНК, содержащий ошибку (III этап). ДНК-полимераза b застраивает возникшую брешь по принципу комплементарности (IV этап). ДНК-лигаза соединяет 3¢-конец вновь синтезированного фрагмента с основной цепью и завершает репарацию повреждения (V этап).



Пострепликативная репарация включается в тех случаях, когда эксцизионная не справляется с устранением всех повреждений ДНК до её репликации. В этом случае воспроизведение поврежденных молекул приводит к появлению ДНК с однонитевыми пробелами, а нативная структура восстанавливается при рекомбинации.

Врожденные дефекты системы репарации являются причиной таких наследственных заболеваний, как пигментная ксеродерма, атаксия-телеангиэктазия, трихотиодистрофия, прогерия.

Репарация ДНК - это ее починка, т. е. исправление ошибок, возникающих в структуре молекулы. Слово «репарация» происходит от английского «repair», переводимого как «ремонт», «починка» и т. п.

Под ошибками в структуре ДНК, которые могут быть репарированы, чаще всего понимают нарушение последовательности нуклеотидов - структурных единиц, из которых состоит каждая цепь ДНК. Молекула ДНК состоит из двух цепей-нитей, комплементарных друг другу. Это значит, что если повреждения возникают в одной из цепей, то по второй неповрежденной можно восстановить испорченный участок первой. Кроме этого, в клетках эукариот каждая хромосома имеет гомологичную, т. е. содержащую тот же набор генов (но не аллелей). В крайнем случае, когда поврежден участок на обеих нитях молекулы, он может копироваться с гомологичной хромосомы. Также после S-фазы клеточного цикла , когда произошла репликация (самокопирование), каждая хромосома состоит из двух двухцепочечных идентичных друг другу хроматид, т. е. по-сути из двух идентичных молекул ДНК. Это также может быть использовано для восстановления исходной структуры поврежденной молекулы.

В процессе эволюции появилось много различных клеточных молекулярных механизмов, ответственных за репарацию ДНК. В основном это различные ферменты и их комплексы. Часть из них участвует также в репликации. Особо опасны повреждения генов, которые кодирую такие ферменты. Это приводит к утрате того или иного репарационного механизма. В этом случае в клетках происходит более быстрое накопление повреждений и мутаций. Нередко это служит причиной возникновения бесконтрольно делящихся клеток, т. е. появления опухолей.

С другой стороны, если повреждения ДНК особенно сильны, то в клетках включается механизм самоуничтожения (апоптоза ). Таким образом к делению такие клетки не допускаются, а значит следующее поколение не будет содержать значительные повреждения ДНК.

Ошибки в структуре ДНК могут возникать на различных этапах ее существования (во время синтеза, в пред- и постсинтетические периоды), по разным причинам (случайно, под действием химически активных веществ, радиации и др.). Также изменения бывают разными (потеря химической группы нуклеотида или присоединение дополнительной, замена нуклеотида на другой, установление химической связи между двумя соседними нуклеотидами, разрыв цепи, потеря участка и др.). В связи с таким разнообразием существует трудность классификации репарационных механизмов. Часто их делят на те, которые происходят во время репликации, сразу после нее и в течение остального жизненного цикла клетки. Ниже перечислены наиболее изученные причины изменения структуры ДНК и способы репарации.

Следует иметь в виду, что не все ошибки исправляются, относительно мелкие и не критичные могут передаваться следующему поколению клеток и организмов. Их нельзя назвать повреждениями, скорее - мутациями. Большинство мутаций вредны, однако те, что нейтральны или полезны в данных условиях окружающей среды, служат материалом для эволюции. Таким образом несовершенство механизмов репарации ДНК обеспечило разнообразие жизни на нашей планете.

Коррекция нуклеотидной последовательности при репликации

ДНК-полимеразы выполняют основную работу при репликации ДНК, присоединяя нуклеотид за нуклеотидом к новой цепи. Помимо основной функции, многие полимеразы способны удалять неправильно присоединенный последний нуклеотид, т. е. не комплементарный нуклеотиду матричной цепи.

Химическая структура нуклеотидов может несколько модифицироваться. При этом они начинают соединяться водородными связями не со своими комплементарными напарниками. Так, например, цитозин должен связываться с гуанином. Но его измененная форма устанавливает водородные связи с аденином, с которым должен был связаться тимин.

При синтезе новой нити ДНК очередной нуклеотид сначала связывается водородными связями с комплементарным основанием матрицы. После этого полимераза связывает его с концом растущей цепи ковалентной связью.
Однако, если это был модифицированный нуклеотид, который неправомерно связался с комплементарным основанием материнской цепи, то он обычно быстро возвращается в свою исходную форму и становится некомплементарным. Водородные связи разрываются, и получается, что конец новой цепи имеет свободно висящий нуклеотид, ковалентно связанный с синтезируемой цепью.

ДНК-полимераза в данном случае не может присоединить следующий нуклеотид, и ей ничего не остается, как только удалить этот ошибочный нуклеотид.

Если же водородные связи не разорвались, то за ошибочным нуклеотидом цепь продолжит нарастать далее, а точечная мутация сохранится. Она может быть устранена уже после репликации.

Репарация сразу после репликации

После того, как новая нить ДНК была синтезирована, определенные комплексы ферментов распознают неправильно спаренные основания. При этом существует проблема определения новой и старой цепей молекулы ДНК. Новая отличается отсутствием метилированных оснований и у эукариот наличием временных разрывов. По этим признакам ферментные комплексы идентифицируют именно вновь синтезированную цепь. Таким образом в некомплементарных парах оснований «ошибкой» считается нуклеотид новой цепи.

Как только ошибка найдена, другие ферменты вырезают целый участок ДНК, содержащий неправоменое основание, а не только один нуклеотид. После этого полимераза заново строит этот участок, а лигаза сшивает его с остальной цепью. Этот механизм, когда вырезается и вновь синтезируется участок ДНК, называется эксцизионной репарацией (от слова excision - отрезание, вырезание), он достаточно универсален и используется во многих случаях репарации, а не только при «проверке» ДНК сразу после репликации.

Репарационные механизмы при повреждении ДНК

ДНК организма может изменяться не только из-за ошибок во время репликации. Клетка живет, подвергается воздействию неблагоприятных внешних факторов, ее внутренняя биохимическая среда может изменяться, провоцируя пагубные для ДНК реакции. В результате генетический материал так или иначе повреждается. В зависимости от типа повреждения, его масштаба включаются различные репарационные механизмы, привлекающие несколько различающиеся наборы ферментативных комплексов.

1. Существуют ферменты, отменяющие изменения нуклеотидов на месте без удаления участков ДНК. Другими словами, если в цепи был нуклеотид, содержащий основание гуанин (Г), который в результате химической реакции присоединил метил-группу и превратился в метил-гуанин, то фермент превратит его обратно в гуанин. В основном подобная репарация ДНК касается присоединения-отсоединения определенных групп атомов.

2. В случае утраты пуриновых оснований может протекать эксцизионная репарация. В случае дезаминирования и некоторых других структурных изменений оснований, ферменты гликозилазы вырезают только поврежденное основание нуклеотида. И только после этого протекает стандартная эксцизионная репарация.

3. Вырезается участок и при образовании димеров, когда два соседних нуклеотида соединяются между собой. Обычно такие реакции протекают в результате воздействия ультрафиолетовых лучей. Образование димера провоцирует расхождение комплементарных нитей ДНК в этом и близлежащих участках. Образуется пузырь, который распознается ферментами. Далее запускается эксцизионная репарация.

4. Бывают столь сильные повреждения молекул ДНК, когда структура обеих ее цепей нарушается в одном и том же месте. При этом уже нельзя согласно принципу комплементарности восстановить одну цепь по другой. Одним из примеров подобного повреждения может является разрыв молекулы ДНК на две части, например, при действии сильного радиоактивного облучения.

В случае повреждения обеих нитей молекулы ДНК на помощь может прийти рекомбинативная репарация, когда вместо поврежденного участка вставляется участок с гомологичной хромосомы или сестринской хроматиды. В случае разрыва также существуют ферменты, способные обратно присоединять оторванный кусок ДНК. Однако при этом часть нуклеотидов может теряться, что в свою очередь может привести к серьезным мутациям.

Рекомбинативная репарация в пресинтетический период клеточного цикла может протекать только между гомологичными хромосомами, т. к. каждая хромосома в этот период состоит только из одной хроматиды. В постсинтетический период, когда хромосомы состоят из двух идентичных хроматид, участок может заимствоваться с сестринской хроматиды.

Следует подчеркнуть, что у сестринских хроматид набор аллелей исходно идентичен (если не было кроссинговера). У гомологичных хромосом - нет. Таким образом, настоящая рекомбинация с точки зрения генетики протекает только в случае обмена между гомологичными хромосомами. Хотя здесь в обоих случаях мы говорим о рекомбинации.

Рассмотрим такой пример. Допустим в ДНК возник тиминовый димер, который не был репарирован до репликации. В процессе репликации цепи исходной молекулы ДНК расходятся и на каждой строится новая комплементарная цепь. На той матричной цепи, которая содержит димер тимина, в этом участке не может быть построен участок новой цепи. В этом месте просто отсутствует нормальный шаблон. В дочерней нити появляется брешь, а в материнской остается димер. Т. е. данная молекула ДНК «не знает», какова правильная нуклеотидная последовательность участка.

Единственный выход в данном случае – позаимствовать кусок ДНК с другой хроматиды. Он переносится с одной из ее цепей. Образовавшаяся здесь брешь застраивается по шаблону комплементарной цепи. Перенесенный участок на поврежденной молекуле застраивает брешь дочерней цепи, материнская так и продолжит содержать димер, который может быть репарирован позже.