Определители второго порядка и система линейных уравнений. Продолжаем решать системы методом Крамера вместе

КОСТРОМСКОЙ ФИЛИАЛ ВОЕННОГО УНИВЕРСИТЕТА РХБ ЗАЩИТЫ

Кафедра «Автоматизации управления войсками»

Только для преподавателей

"Утверждаю"

Начальник кафедры № 9

полковник ЯКОВЛЕВ А.Б.

«____»______________ 2004 г.

доцент А.И.СМИРНОВА

"ОПРЕДЕЛИТЕЛИ.

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ"

ЛЕКЦИЯ № 2 / 1

Обсуждено на заседании кафедры № 9

«____»___________ 2004г.

Протокол № ___________

Кострома, 2004.

Введение

1. Определители второго и третьего порядка.

2. Свойства определителей. Теорема разложения.

3. Теорема Крамера.

Заключение

Литература

1. В.Е. Шнейдер и др., Краткий курс высшей математики, том I, гл. 2, п.1.

2. В.С. Щипачев, Высшая математика, гл.10, п.2.

ВВЕДЕНИЕ

На лекции рассматриваются определители второго и третьего порядков, их свойства. А также теорема Крамера, позволяющая решать системы линейных уравнений с помощью определителей. Определители используются также в дальнейшем в теме "Векторная алгебра" при вычислении векторного произведения векторов.

1-ый учебный вопросОПРЕДЕЛИТЕЛИ ВТОРОГО И ТРЕТЬЕГО

ПОРЯДКА

Рассмотрим таблицу из четырех чисел вида

Числа в таблице обозначены буквой с двумя индексами. Первый индекс указывает номер строки, второй – номер столбца.

ОПРЕДЕЛЕНИЕ 1. Определителем второго порядка называют выражение вида :

(1)

Числа а 11, …, а 22 называют э л е м е т а м и определителя.

Диагональ, образованная элементами а 11 ; а 22 называется г л а в н ой, а диагональ, образованная элементами а 12 ; а 21 -п о б о ч н ой.

Таким образом, определитель второго порядка равен разности произведений элементов главной и побочной диагоналей.

Заметим, что в ответе получается число.

ПРИМЕРЫ. Вычислить:

Рассмотрим теперь таблицу из девяти чисел, записанных в три строки и три столбца:

ОПРЕДЕЛЕНИЕ 2. Определителем третьего порядка называется выражение вида :

Элементы а 11; а 22 ; а 33 – образуют главную диагональ.

Числа а 13; а 22 ; а 31 – образуют побочную диагональ.

Изобразим, схематически, как образуются слагаемые с плюсом и с минусом:


" + " " – "

С плюсом входят: произведение элементов на главной диагонали, остальные два слагаемых являются произведением элементов, расположенных в вершинах треугольников с основаниями, параллельными главной диагонали.

Слагаемые с минусом образуются по той же схеме относительно побочной диагонали.

Это правило вычисления определителя третьего порядка называют

п р а в и л о м т р е у г о л ь н и к о в.

ПРИМЕРЫ. Вычислить по правилу треугольников:


ЗАМЕЧАНИЕ. Определители называют также д е т е р м и н а н т а м и.

2-ой учебный вопросСВОЙСТВА ОПРЕДЕЛИТЕЛЕЙ.

ТЕОРЕМА РАЗЛОЖЕНИЯ

Свойство 1. Величина определителя не изменится, если его строки поменять местами с соответствующими столбцами.

.

Раскрывая оба определителя, убеждаемся в справедливости равенства.

Свойство 1 устанавливает равноправность строк и столбцов определителя. Поэтому все дальнейшие свойства определителя будем формулировать и для строк и для столбцов.

Свойство 2. При перестановке двух строк (или столбцов) определитель изменяет знак на противоположный, сохраняя абсолютную величину .

.

Свойство 3. Общий множитель элементов строки (или столбца ) можно выносить за знак определителя.

.

Свойство 4. Если определитель имеет две одинаковые строки (или столбца), то он равен нулю.

Это свойство можно доказать непосредственной проверкой, а можно использовать свойство 2.

Обозначим определитель за D. При перестановке двух одинаковых первой и второй строк он не изменится, а по второму свойству он должен поменять знак, т.е.

D = - DÞ 2 D = 0 ÞD = 0.

Свойство 5. Если все элементы какой–то строки (или столбца ) равны нулю, то определитель равен нулю.

Это свойство можно рассматривать как частный случай свойства 3 при

Свойство 6. Если элементы двух строк (или столбцов ) определителя пропорциональны, то определитель равен нулю.

.

Можно доказать непосредственной проверкой или с использованием свойств 3 и 4.

Свойство 7. Величина определителя не изменится, если к элементам какой-либо строки (или столбца) прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и то же число.

.

Доказывается непосредственной проверкой.

Применение указанных свойств может в ряде случаев облегчить процесс вычисления определителей, особенно третьего порядка.

Для дальнейшего нам понадобится понятия минора и алгебраического дополнения. Рассмотрим эти понятия для определения третьего порядка.

ОПРЕДЕЛЕНИЕ 3. Минором данного элемента определителя третьего порядка называется определитель второго порядка, полученный из данного вычеркиванием строки и столбца, на пересечении которых стоит данный элемент.

Минор элемента а i j обозначается М i j . Так для элемента а 11 минор

Он получается, если в определителе третьего порядка вычеркнуть первую строку и первый столбец.

ОПРЕДЕЛЕНИЕ 4. Алгебраическим дополнением элемента определителя называют его минор, умноженный на (-1) k , где k - сумма номеров строки и столбца, на пересечении которых стоит данный элемент.

Алгебраическое дополнение элемента а i j обозначается А i j .

Таким образом, А i j =

.

Выпишем алгебраические дополнения для элементов а 11 и а 12.

. .

Полезно запомнить правило: алгебраическое дополнение элемента определителя равно его минору со знаком плюс , если сумма номеров строки и столбца, в которых стоит элемент, четная, и со знаком минус , если эта сумма нечетная .

Задана система N линейных алгебраических уравнений (СЛАУ) с неизвестными, коэффициентами при которых являются элементы матрицы , а свободными членами — числа

Первый индекс возле коэффициентов указывает в каком уравнении находится коэффициент, а второй — при котором из неизвестным он находится.

Если определитель матрицы не равен нулю

то система линейных алгебраических уравнений имеет единственное решение.

Решением системы линейных алгебраических уравнений называется такая упорядоченная совокупность чисел , которая при превращает каждое из уравнений системы в правильную равенство.

Если правые части всех уравнений системы равны нулю, то систему уравнений называют однородной. В случае, когда некоторые из них отличны от нуля – неоднородной

Если система линейных алгебраических уравнений имеет хоть одно решение, то она называется совместной, в противном случае — несовместимой.

Если решение системы единственное, то система линейных уравнений называется определенной. В случае, когда решение совместной системы не единственный, систему уравнений называют неопределенной.

Две системы линейных уравнений называются эквивалентными (или равносильными), если все решения одной системы является решениями второй, и наоборот. Эквивалентны (или равносильны) системы получаем с помощью эквивалентных преобразований.

Эквивалентные преобразования СЛАУ

1) перестановка местами уравнений;

2) умножение (или деление) уравнений на отличное от нуля число;

3) добавление к некоторого уравнения другого уравнения, умноженного на произвольное, отличное от нуля число.

Решение СЛАУ можно найти разными способами.

МЕТОД КРАМЕРА

ТЕОРЕМА КРАМЕРА. Если определитель системы линейных алгебраических уравнений с неизвестными отличен от нуля то эта система имеет единственное решение, которое находится по формулам Крамера:

— определители, образованные с заменой -го столбца, столбцом из свободных членов.

Если , а хотя бы один из отличен от нуля, то СЛАУ решений не имеет. Если же , то СЛАУ имеет множество решений. Рассмотрим примеры с применением метода Крамера.

—————————————————————

Дана система трех линейных уравнений с тремя неизвестными. Решить систему методом Крамера

Найдем определитель матрицы коэффициентов при неизвестных

Так как , то заданная система уравнений совместная и имеет единственное решение. Вычислим определители:

По формулам Крамера находим неизвестные

Итак единственное решение системы.

Дана система четырех линейных алгебраических уравнений. Решить систему методом Крамера.

Найдем определитель матрицы коэффициентов при неизвестных. Для этого разложим его по первой строке.

Найдем составляющие определителя:

Подставим найденные значения в определитель

Детерминант , следовательно система уравнений совместная и имеет единственное решение. Вычислим определители по формулам Крамера:

Разложим каждый из определителей по столбцу в котором есть больше нулей.

По формулам Крамера находим

Решение системы

Данный пример можно решить математическим калькулятором YukhymCALC . Фрагмент программы и результаты вычислений наведены ниже.


——————————

МЕТОД К Р А М Е Р А

|1,1,1,1|

D=|5,-3,2,-8|

|3,5,1,4|

|4,2,3,1|

D=1*(-3*1*1+2*4*2+(-8)*5*3-((-8)*1*2+2*5*1+(-3)*4*3))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))+1*(5*5*1+(-3)*4*4+(-8)*3*2-((-8)*5*4+(-3)*3*1+5*4*2))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))= 1*(-3+16-120+16-10+36)-1*(5+32-72+32-6-60)+1*(25-48-48+160+9-40)-1*(75-12+12-40+27-10)=1*(-65)-1*(-69)+1*58-1*52=-65+69+58-52=10

|0,1,1,1|

Dx1=|1,-3,2,-8|

|0,5,1,4|

|3,2,3,1|

Dx1=-1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))+1*(1*5*1+(-3)*4*3+(-8)*0*2-((-8)*5*3+(-3)*0*1+1*4*2))-1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))= -1*(1+24+0+24+0-12)+1*(5-36+0+120+0-8)-1*(15-9+0-30+0-2)= -1*(37)+1*81-1*(-26)=-37+81+26=70

|1,0,1,1|

Dx2=|5,1,2,-8|

|3,0,1,4|

|4,3,3,1|

Dx2=1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))+1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))= 1*(1+24+0+24+0-12)+1*(0+16-72+0-3-60)-1*(0+4+18+0-9-15)= 1*37+1*(-119)-1*(-2)=37-119+2=-80

|1,1,0,1|

Dx3=|5,-3,1,-8|

|3,5,0,4|

|4,2,3,1|

Dx3=1*(-3*0*1+1*4*2+(-8)*5*3-((-8)*0*2+1*5*1+(-3)*4*3))-1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))-1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))= 1*(0+8-120+0-5+36)-1*(0+16-72+0-3-60)-1*(75+0+6-20+27+0)= 1*(-81)-1*(-119)-1*88=-81+119-88=-50

|1,1,1,0|

Dx4=|5,-3,2,1|

|3,5,1,0|

|4,2,3,3|

Dx4=1*(-3*1*3+2*0*2+1*5*3-(1*1*2+2*5*3+(-3)*0*3))-1*(5*1*3+2*0*4+1*3*3-(1*1*4+2*3*3+5*0*3))+1*(5*5*3+(-3)*0*4+1*3*2-(1*5*4+(-3)*3*3+5*0*2))= 1*(-9+0+15-2-30+0)-1*(15+0+9-4-18+0)+1*(75+0+6-20+27+0)= 1*(-26)-1*(2)+1*88=-26-2+88=60

x1=Dx1/D=70,0000/10,0000=7,0000

x2=Dx2/D=-80,0000/10,0000=-8,0000

x3=Dx3/D=-50,0000/10,0000=-5,0000

x4=Dx4/D=60,0000/10,0000=6,0000

Посмотреть материалы:

{jcomments on}

В общем случае правило вычисления определителей-го порядка является довольно громоздким. Для определителей второго и третьего порядка существуют рациональные способы их вычислений.

Вычисления определителей второго порядка

Чтобы вычислить определитель матрицы второго порядка, надо от произведения элементов главной диагонали отнять произведение элементов побочной диагонали:

Пример

Задание. Вычислить определитель второго порядка

Решение.

Ответ.

Методы вычисления определителей третьего порядка

Для вычисления определителей третьего порядка существует такие правила.

Правило треугольника

Схематически это правило можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком «плюс»; аналогично, для второго определителя — соответствующие произведения берутся со знаком «минус», т.е.

Пример

Задание. Вычислить определитель методом треугольников.

Решение.

Ответ.

Правило Саррюса

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком «плюс»; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком «минус»:

Пример

Задание. Вычислить определитель с помощью правила Саррюса.

Решение.

Ответ.

Разложение определителя по строке или столбцу

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения.

Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

Пример

Задание. Разложив по первой строке, вычислить определитель

Решение.

Ответ.

Этот метод позволяет вычисление определителя свести к вычислению определителя более низкого порядка.

Пример

Задание. Вычислить определитель

Решение. Выполним следующие преобразования над строками определителя: из второй строки отнимем четыре первых, а из третьей первую строку, умноженную на семь, в результате, согласно свойствам определителя, получим определитель, равный данному.

Определитель равен нулю, так как вторая и третья строки являются пропорциональными.

Ответ.

Для вычисления определителей четвертого порядка и выше применяется либо разложение по строке/столбцу, либо приведение к треугольному виду, либо с помощью теоремы Лапласа.

Разложение определителя по элементам строки или столбца

Пример

Задание. Вычислить определитель , разложив его по элементам какой-то строки или какого-то столбца.

Решение. Предварительно выполним элементарные преобразования над строками определителя, сделав как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих, от второй — пять третьих и от четвертой — три третьих строки, получаем:

Полученный определитель разложим по элементам первого столбца:

Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули, например, в первом столбце.

Для этого от первой строки отнимаем две вторые строки, а от третьей — вторую:

Ответ.

Замечание

Последний и предпоследний определители можно было бы и не вычислять, а сразу сделать вывод о том, что они равны нулю, так как содержат пропорциональные строки.

Приведение определителя к треугольному виду

С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его значение, согласно свойствам определителя, равно произведению элементов стоящих на главной диагонали.

Пример

Задание. Вычислить определитель приведением его к треугольному виду.

Решение. Сначала делаем нули в первом столбце под главной диагональю.

4.Свойства определителей. Определитель произведения матриц.

Все преобразования будет выполнять проще, если элемент будет равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя, приведет к тому, что он сменит знак на противоположный:

Далее получаем нули во втором столбце на месте элементов, стоящих под главной диагональю. И снова, если диагональный элемент будет равен , то вычисления будут более простыми. Для этого меняем местами вторую и третью строки (и при этом меняется на противоположный знак определителя):

Ответ.

Теорема Лапласа

Пример

Задание. Используя теорему Лапласа, вычислить определитель

Решение. Выберем в данном определителе пятого порядка две строки — вторую и третью, тогда получаем (слагаемые, которые равны нулю, опускаем):

Ответ.

ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I

§ 31 Случай, когда главный определитель системы уравнений равен нулю, а хотя бы один из вспомогательных определителей отличен от нуля

Теорема. Если главный определитель системы уравнений

(1)

равен нулю, а хотя бы один из вспомогательных определителей отличен от нуля, то система несовместна.

Формально, доказательство этой теоремы нетрудно получить методом от противного. Предположим, что система уравнений (1) имеет решение (x 0 , y 0). Тогда как показано в предыдущем параграфе,

Δ x 0 = Δ x , Δ y 0 = Δ y (2)

Но по условию Δ = 0, а хотя бы один из определителей Δ x и Δ y отличен от нуля. Таким образом, равенства (2) одновременно выполняться не могут. Теорема доказана.

Однако представляется интересным более детально выяснить, почему система уравнений (1) в рассматриваемом случае несовместна.

означает, что коэффициенты при неизвестных в системе уравнений (1) пропорциональны. Пусть, например,

a 1 = ka 2 , b 1 = kb 2 .

означает, что коэффициенты при у и свободные члены уравнений системы (1) не пропорциональны. Поскольку b 1 = kb 2 , то c 1 =/= kc 2 .

Следовательно, система уравнений (1) может быть записана в следующем виде:

В этой системе коэффициенты при неизвестных соответственно пропорциональны, но коэффициенты при у (или при х ) и свободные члены не пропорциональны. Такая система, конечно, несовместна. Действительно, если бы она имела решение (x 0 , y 0), то выполнялись бы числовые равенства

k (a 2 x 0 + b 2 y 0) = c 1

a 2 x 0 + b 2 y 0 = c 2 .

Но одно из этих равенств противоречит другому: ведь c 1 =/= kc 2 .

Мы рассмотрели лишь случай, когда Δ x =/= 0. Аналогично может быть рассмотрен случай, когда Δ y =/= 0."

Доказанную теорему можно сформулировать и таким образом.

Если коэффициенты при неизвестных х и у в системе уравнений (1) пропорциональны, а коэффициенты при какой-нибудь из этих неизвестных и свободные члены не пропорциональны, то эта система уравнений несовместна.

Легко, например, убедиться в том, что каждая из данных систем будет несовместной:

Метод Крамера решения систем линейных уравнений

Формулы Крамера

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных.

Метод Крамера. Применение для систем линейных уравнений

Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

*

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

**
,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

К началу страницы

Пройти тест по теме Системы линейных уравнений

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 4. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

,

.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 7. Решить систему линейных уравнений методом Крамера:

.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

По формулам Крамера находим:

Итак, решение системы — (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Пройти тест по теме Системы линейных уравнений

Другое по теме «Системы уравнений и неравенств»

Калькулятор — решение систем уравнений онлайн

Программная реализация метода Крамера на C++

Решение систем линейных уравнений методом подстановки и методом сложения

Решение систем линейных уравнений методом Гаусса

Условие совместности системы линейных уравнений.

Теорема Кронекера-Капелли

Решение систем линейных уравнений матричным методом (обратной матрицы)

Системы линейных неравенств и выпуклые множества точек

Начало темы «Линейная алгебра»

Определители

В этой статье мы познакомимся с очень важным понятием из раздела линейной алгебры, которое называется определитель.

Сразу хотелось бы отметить важный момент: понятие определитель действительно только для квадратных матриц (число строк = числу столбцов), у других матриц его нет.

Определитель квадратной матрицы (детерминант) — численная характеристика матрицы.

Обозначение определителей: |A|, det A, A.

Определителем «n» порядка называют алгебраическую сумму всех возможных произведений его элементов, удовлетворяющих следующим требованиям:

1) Каждое такое произведение содержит ровно «n» элементов (т.е. определитель 2 порядка — 2 элемента).

2) В каждом произведении присутствует в качестве сомножителя представитель каждой строки и каждого столбца.

3) Любые два сомножителя в каждом произведении не могут принадлежать одной строке или столбцу.

Знак произведения определяется порядком чередования номеров столбцов, если в произведении элементы расставлены в порядке возрастания номеров строк.

Рассмотрим несколько примеров нахождения детерминанта матрицы:

У матрицы первого порядка (т.е.

Линейные уравнения. Решение систем линейных уравнений. Метод Крамера.

имеется всего 1 элемент), детерминант равен этому элементу:

2. Рассмотрим квадратную матрицу второго порядка:

3. Рассмотрим квадратную матрицу третьего порядка (3×3):

4. А теперь рассмотрим примеры с действительными числами:

Правило треугольника.

Правило треугольника — это способ вычисления определителя матрицы, который предполагает его нахождение по следующей схеме:

Как вы уже поняли, метод был назван правилом треугольника в следствии того, что перемножаемые элементы матрицы образуют своеобразные треугольники.

Для того, чтобы понять это лучше, разберём такой пример:

А теперь рассмотрим вычисление определителя матрицы с действительными числами правилом треугольника:

Для закрепления пройденного материала, решим ещё один практический пример:

Свойства определителей:

1. Если элементы строки или столбца равны нулю, то и определитель равен нулю.

2. Определитель изменит знак, если поменять местами какие-либо 2 строки или столбца. Рассмотрим это на небольшом примере:

3. Определитель транспонированной матрицы равен определителю исходной матрицы.

4. Определитель равен нулю, если элементы одной строки равны соответствующим элементам другой строки (для столбцов также). Самый простой пример этого свойства определителей:

5. Определитель равен нулю, если его 2 строки пропорциональны (также и для столбцов). Пример (1 и 2 строка пропорциональны):

6. Общий сомножитель строки (столбца) может быть вынесен за знак определителя.

7) Определитель не изменится, если к элементам какой-либо строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одну и ту же величину. Рассмотрим это на примере:

  • Минор и алгебраическое дополнение
  • Сложение и вычитание матриц на примерах
  • Действия с матрицами
  • Понятие «матрицы»
  • Просмотры: 57258

    Определитель(он же determinant(детерминант)) находится только у квадратных матриц. Определитель есть ничто иное, как значение сочетающее в себе все элементы матрицы, сохранающееся при транспонировании строк или столбцов. Обозначаться он может как det(A), |А|, Δ(A), Δ, где А может быть как матрицей, так и буквой обозначающей ее. Найти его можно разными методами:

    Все выше предложенные методы будут разобраны на матрицах размера от трех и выше. Определитель двумерной матрицы находится с помощью трех элементарных математических операций, поэтому ни в один из методов нахождение определителя двумерной матрицы не попадет. Ну кроме как дополнение, но об этом потом.

    Найдем определитель матрицы размером 2х2:

    Для того, чтобы найти определитель нашей матрицы, требуется вычесть произведение чисел одной диагонали из другой, а именно , то есть

    Примеры нахождения определителя матриц второго порядка

    Разложение по строке/столбцу

    Выбирается любая строка или столбец в матрице. Каждое число в выбранной линии умножается на (-1) i+j где(i,j — номер строки,столбца того числа) и перемножается с определителем второго порядка, составленного из оставшихся элементов после вычеркивания i — строки и j — столбца. Разберем на матрице

      1. Выберем строку/столбец

    Например возьмем вторую строку.

    Примечание: Если явно не указано, с помощью какой линии найти определитель, выбирайте ту линию у которой есть ноль. Меньше будет вычислений.

      1. Составим выражение

    Не трудно определить, что знак у числа меняется через раз. Поэтому вместо единиц можно руководствоваться такой таблицей:

      1. Поменяем знак у наших чисел
      1. Найдем определители у наших матриц
      1. Считаем все это

    Решение можно написать так:

    Примеры нахождения определителя разложением по строке/столбцу:

    Метод приведения к треугольному виду(с помощью элементарных преобразований)

    Определитель находится с помощью приведения матрицы к треугольному(ступенчатому) виду и перемножению элементов на главной диагонали

    Треугольной матрицей называется матрица, элементы которой по одну сторону диагонали равны нулю.

    При построении матрицы следует помнить три простых правила:

    1. Каждый раз при перестановке строк между собой определитель меняет знак на противоположный.
    2. При умножении/делении одной строки на не нулевое число, её следует разделить(если умножали)/умножить(если разделяли) на него же или же произвести это действие с полученным определителем.
    3. При прибавлении одной строки умноженной на число к другой строке, определитель не изменяется(умножаемая строка принимает своё исходное значение).

    Попытаемся получить нули в первом столбце, потом во втором.

    Взглянем на нашу матрицу:

    Та-а-ак. Чтобы вычисления были поприятнее, хотелось бы иметь самое близкое число сверху. Можно и оставить, но не надо. Окей, у нас во второй строке двойка, а на первой четыре.

    Поменяем же эти две строки местами.

    Поменяли строки местами, теперь мы должны либо поменять у одной строки знак, либо в конце поменять знак у определителя.

    Определители. Вычисление определителей (стр. 2)

    Сделаем это потом.

    Теперь, чтобы получить ноль в первой строке — умножим первую строку на 2.

    Отнимем 1-ю строку из второй.

    Согласно нашему 3-му правилу возващаем исходную строку в начальное положение.

    Теперь сделаем ноль в 3-ей строке. Можем домножить 1-ую строку на 1.5 и отнять от третьей, но работа с дробями приносит мало удовольствия. Поэтому найдем число, к которому можно привести обе строки — это 6.

    Умножим 3-ю строку на 2.

    Теперь умножим 1-ю строку на 3 и отнимем из 3-ей.

    Возвратим нашу 1-ю строку.

    Не забываем, что умножали 3-ю строку на 2, так что потом разделим определитель на 2.

    Один столбец есть. Теперь для того чтобы получить нули во втором — забудем про 1-ю строку — работаем со 2-й строкой. Домножим вторую строку на -3и прибавим к третьей.

    Не забываем вернуть вторую строку.

    Вот мы и построили треугольнаую матрицу. Что нам осталось? А осталось перемножить числа на главной диагонали, чем и займемся.

    Ну и осталось вспомнить, что мы должны разделить наш определитель на 2 и поменять знак.

    Правило Саррюса(Правило треугольников)

    Правило Саррюса применимо только к квадратным матрицам третьего порядка.

    Определитель вычисляется путем добавления первых двух столбцов справа от матрицы, перемножением элементов диагоналей матрицы и их сложением, и вычитанием суммы противоположных диагоналей. Из оранжевых диагоналей вычитаем фиолетовые.

    У правила треугольников то же, только картинка другая.

    Теорема Лапласа см. Разложение по строке/столбцу

    Cтраница 1


    Главный определитель составляется так, чтобы в первом столбце находились коэффициенты при том параметре, который откладывается по горизонтальной оси. В данном случае принято, что klK откладывается по вертикальной оси, a & 2it - по горизонтальной.  

    Главный определитель равен нулю, а хотя бы один вспомогательный определитель не равен нулю.  

    Главный определитель - Гурвица составляется следующим образом.  

    Граф / С4 - х и его остовы.  

    Главный определитель матрицы Р (или Q) имеет порядок т, а выражение соответствующие главные определители означает, что столбцы матрицы Р, входящие в рассматриваемый определитель, имеют такие же номера и такой же порядок, как строки матрицы Q, входящие в другой определитель.  

    Главный определитель D (p), называемый характеристическим, не зависит ни от искомой переменной, ни от места приложения возмущающей силы.  

    Составляем главный определитель А.  

    Составляем главный определитель системы и приравниваем его нулю. Об устойчивости судим по характеру корней. Степень характеристического уравнения определяется числом энергоемких элементов, независимо накапливающих энергию, с учетом полюсов у каждого из имеющихся в схеме частотно-зависимых управляемых источников. В некоторых случаях необходимо при исследовании устойчивости учитывать не только первый доминантный полюс ОУ или транзистора, но и остальные полюса.  

    Поскольку главный определитель системы (3.50) равен нулю, собственные векторы определяются не однозначно, а с точностью до постоянного множителя.  

    Выразим главный определитель D [ ф-ла (8.35) ] через параметры схемы.  

    Если главный определитель системы п линейных уравнений с п неизвестными не равен нулю, то система имеет единственное решение, если же этот определитель равен нулю, то система является либо неопределенной, либо несовместной.  

    Если главный определитель однородной системы (9) не равен нулю, то согласно предыдущей теореме система имеет единственное решение. Это решение является тривиальным. Если же главный определитель равен нулю, то система в соответствии с теоремой 2 может быть или несовместной, или неопределенной. Однако система уравнений (9) несовместной быть не может, так как существует тривиальное решение.  

    Если главный определитель однородной системы (9) не равен нулю, то согласно предыдущей теореме система имеет единственное решение. Это решение является тривиальным. Если же главный определитель равен нулю, то система. Однако система уравнений (9) несовместной быть не может, так как существует тривиальное решение.  

    Если главный определитель однородной системы (9) не равен нулю, то согласно предыдущей теореме система имеет единственное решение. Это решение является тривиальным. Если же главный определитель равен нулю, то система, в соответствии с теоремой 2 может быть или несовместной, или неопределенной. Однако система уравнений (9) несовместной быть не может, так как существует тривиальное решение.  

    Системы линейных уравнений

    Система уравнений следующего вида:

    где а ij , b i – числовые коэффициенты, x i – переменные, называется системой линейных уравнений.

    Решить систему линейных уравнений – значит указать все решения системы, то есть такие наборы значений переменных, которые обращают уравнения системы в тождества.

    Система линейных уравнений называется:

      совместной, если она имеет хотя бы одно решение;

      несовместной, если она не имеет решений;

      определенной, если она имеет единственное решение;

      однородной, если все b i = 0;

      неоднородной, если все b i ≠ 0.

    Правило Крамера

    (Габриель Крамер (1704-1752) швейцарский математик)

    Данный метод применим только в случае систем линейных уравнений, где число переменных совпадает с числом уравнений. Кроме того, необходимо ввести ограничения на коэффициенты системы. Необходимо, чтобы все уравнения были линейно независимы, т.е. ни одно уравнение не являлось бы линейной комбинацией остальных.

    Для этого необходимо, чтобы определитель матрицы системы не равнялся 0.

     = det A  0;

    Теорема. (Правило Крамера):

    Система из n уравнений с n неизвестными

    В случае, если определитель матрицы системы не равен нулю, то система имеет единственное решение и это решение находится по формулам:

    х i = ;

    где - главный определитель , составленный из числовых коэффициентов при неизвестных, а  i – вспомогательный определитель , получаемый из главного заменой i -го столбца столбцом свободных членов b i .

     i =

    Пример. Решить систему, используя правило Крамера.

    ;

     1 =
    ;  2 =
    ;  3 =
    ;

    x 1 = ; x 2 = ; x 3 = ;

    Пример. Найти решение системы уравнений:

     =
    = 5(4 – 9) + (2 – 12) – (3 – 8) = -25 – 10 + 5 = -30;

     1 =
    = (28 – 48) – (42 – 32) = -20 – 10 = -30.

     2 =
    = 5(28 – 48) – (16 – 56) = -100 + 40 = -60.

     3 =
    = 5(32 – 42) + (16 – 56) = -50 – 40 = -90.

    Если система однородна, т.е. b i = 0, то при 0 система имеет единственное нулевое решение x 1 = x 2 = … = x n = 0.

    Матричный метод

    Матричный метод применим к решению систем уравнений, где число уравнений равно числу неизвестных.

    Этот метод удобен для решения систем невысокого порядка. Он основан на применении свойств умножения матриц.

    Пусть дана система уравнений:

    Введем обозначения:

    A =
    - матрица коэффициентов системы;

    B = матрица – столбец свободных членов;

    X = - матрица – столбец неизвестных.

    Систему уравнений можно записать в матричной форме:

    Сделаем следующее преобразование: A -1 AX = A -1 B,

    т.к. А -1 А = Е, то ЕХ = А -1 В, получим

    Х = А -1 В - решение матричного уравнения

    Пример. Решить систему матричным методом

    Решение.Обозначим:

    ,
    ,
    .

    Получаем матричное уравнение
    .

    Его решение
    , т.е.

    (Нахождение обратной матрицы было рассмотрено ранее).

    Метод Гаусса

    (Карл Фридрих Гаусс (1777-1855) немецкий математик)

    В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.

    Рассмотрим систему линейных уравнений:

    Определение: Матрица, составленная из коэффициентов при неизвестных системы, называется матрицей системы.

    Определение: Матрица называется расширенной матрицей системы, если к матрице А присоединить столбец свободных членов системы.

    Расширенная матрица – это закодированная запись системы. Строки матрицы соответствуют уравнениям системы. Умножение уравнения на число и сложение этого произведения с другим уравнением эквивалентно умножению строки матрицы на это число и почленному сложению произведения с другой строкой матрицы. Таким образом, работу с уравнениями можно заменить работой со строками матрицы.

    Определение: Матрицу А называют ступенчатой, если:

    А) любая ее строка имеет хотя бы один отличный от нуля элемент,

    Б) первый отличный от нуля элемент каждой ее строки, начиная со второй, расположен правее неравного нулю элемента предыдущей строки.

    Метод Гаусса является эффективным методом решения и исследования систем линейных уравнений. Он состоит в том, что данная система линейных уравнений преобразуется в равносильную ей систему ступенчатого вида, которая легко решается и исследуется. Применение метода Гаусса не зависит ни от числа уравнений, ни от числа неизвестных в системе.

    Разберем идею метода Гаусса на конкретных примерах.

    Пример. Решить систему линейных уравнений методом Гаусса.

    Составим расширенную матрицу системы и с помощью элементарных преобразований приведем к виду:

    , откуда получаем: x 3 = 2; x 2 = 5; x 1 = 1.

    Пример. Решить систему методом Гаусса.

    Составим расширенную матрицу системы.

    Таким образом, исходная система может быть представлена в виде:

  • Курсовой проект пояснительная записка

    Курсовой проект

    И третий столбец матрицы, находим вспомогательные определители : Находим коэффициенты полинома: Таким образом... произведение: Найдем произведение: Найдем главный определитель : Находим вспомогательные определители и, подставляя матрицу поочередно в...

  • Методические рекомендации по выполнению внеурочной самостоятельной работы студента Дисциплина «Математика» для специальности

    Методические рекомендации

    Пример: вычислить определитель второго порядка 1) 2) 2. Вычислить определитель третьего порядка Определителем третьего порядка называется... из коэффициентов при неизвестных Составим вспомогательные определители системы следующим образом: … Тогда...

  • Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по лингвистическим специальностям Москва «Высшая школа» 2002

    Учебник

    Восполнителями, вспомогательные глаголы, аспектные и фазисные глаголы, наречия-интенсификаторы, указательные определители ; гетерогенными... путем сочетания «вещественного» слова с «вспомогательно -грамматическим» словом. Соответственно этому и...

  • Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

    Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

    Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

    Определители

    получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

    ;

    .

    Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

    Пример 1. Решить систему линейных уравнений:

    Согласно теореме Крамера имеем:

    Итак, решение системы (2):

    онлайн-калькулятором , решающим методом Крамера.

    Три случая при решении систем линейных уравнений

    Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

    Первый случай: система линейных уравнений имеет единственное решение

    (система совместна и определённа)

    Второй случай: система линейных уравнений имеет бесчисленное множество решений

    (система совместна и неопределённа)

    ** ,

    т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

    Третий случай: система линейных уравнений решений не имеет

    (система несовместна)

    Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

    Примеры решения систем линейных уравнений методом Крамера

    Пусть дана система

    .

    На основании теоремы Крамера

    ………….
    ,

    где
    -

    определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

    Пример 2.

    .

    Следовательно, система является определённой. Для нахождения её решения вычисляем определители

    По формулам Крамера находим:



    Итак, (1; 0; -1) – единственное решение системы.

    Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

    Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

    Пример 3. Решить систему линейных уравнений методом Крамера:

    .

    Решение. Находим определитель системы:

    Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

    По формулам Крамера находим:

    Итак, решение системы - (2; -1; 1).

    Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

    К началу страницы

    Продолжаем решать системы методом Крамера вместе

    Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

    Пример 6. Решить систему линейных уравнений методом Крамера:

    Решение. Находим определитель системы:

    Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

    Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

    Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

    В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных - буквы. За примерами далеко ходить не надо.

    Следующий пример - на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

    Пример 8. Решить систему линейных уравнений методом Крамера:

    Решение. Находим определитель системы:

    Находим определители при неизвестных