Перенос теплоты при пленочном кипении жидкости обусловлен. Теплообмен при конденсации и кипении

При кипении жидкостей тепло от горячей стенки передается пристенному слою. Пузырьки пара, образование которых проходит в конкретных точках поверхности кипения (центрах парообразования), в процессе роста и отрыва, оттесняют частицы перегретого слоя в ядро кипящей жидкости. За счёт этого тепла и идет нагрев жидкости (если она еще недогрета до температуры кипения) и рост паровых пузырьков, оторвавшихся от поверхности нагрева. Величина перегрева пристенного слоя жидкости зависит от тепловой нагрузки, свойств кипящей жидкости и состояния поверхности нагрева и определяется условиями существования паровых пузырьков.

Для того чтобы паровой пузырек не был раздавлен жидкостью, давление внутри пузырька должно быть выше давления над зеркалом жидкости на величину гидростатического давления на глубинœе погружения пузырька плюс давление, создаваемое силами поверхностного натяжения на границе раздела жидкость-пар.
Размещено на реф.рф
Последняя величина обратно пропорциональна диаметру пузырька. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, отрывной диаметр парового пузырька определяется давлением пара внутри него, ĸᴏᴛᴏᴩᴏᴇ будет равно давлению насыщенных паров окружающих слоев жидкости. С другой стороны, отрывной диаметр парового пузырька определяется размером центра парообразования, который представляет собой царапины, поры или впадины на твердой поверхности. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, чем крупнее центр парообразования, тем меньшие перегревы пристенного слоя требуются для отрыва паровых пузырьков. При увеличении температуры поверхности нагрева начинают действовать центры парообразования с меньшими размерами, увеличивается число действующих центров парообразования, возрастает число отрывающихся пузырьков, растет турбулизация жидкости, увеличивается интенсивность теплообмена.

На рисунке 2.8 приведена зависимость коэффициента теплоотдачи от разности температур стенки и насыщенных паров, которую называют кривой кипения . При температурных напорах до 1¼2 °С тепло передается преимущественно теплопроводностью (зона 1). При увеличении напора до 3¼4 °С существенную роль играет свободная конвекция (зона 2), а при более высоких перегревах до 7¼9 °С начинают действовать отдельные, наиболее крупные центры парообразования. Здесь количество тепла, передаваемое естественной конвекцией, и тепло, передаваемое по механизму теплоотдачи при кипении, соизмеримы. Паровые пузырьки всплывают в жидкости, не касаясь друг друга. Это режим неразвитого пузырчатого кипения (зона 3). Здесь коэффициент теплоотдачи пропорционален Ñt 0,2 ¼ 0,3 . При дальнейшем увеличении температуры стенки возрастает число действующих центров парообразования, жидкость интенсивно перемешивается, наблюдается развитое пузырчатое кипение (зона 4). В начале зоны слияние пузырьков наблюдается только в верхних слоях жидкости. В зоне развитого кипения коэффициент теплоотдачи пропорционален Ñt 1,5 ¼ 2,2 . По мере увеличения температуры, область слияния пузырьков опускается к поверхности нагрева, а в точке К, называемой критической , происходит кризис кипения . Действующих центров парообразования появляется так много, что паровые пузырьки сливаются друг с другом уже в момент отрыва и образуют нестабильную паровую пленку. Наступает пленочный режим кипения (зона 6). Теплопроводность паровой пленки значительно ниже, чем теплопроводность жидкости, в связи с этим коэффициент теплоотдачи при пленочном кипении резко снижается и в дальнейшем практически не меняется. Между режимами развитого пузырчатого и пленочного кипения находится довольно узкая переходная зона (зона 5). При очень больших температурных напорах существенным оказывается влияние лучистого теплообмена и коэффициент теплоотдачи вновь начинает расти (зона 7).

Для определœения коэффициента теплоотдачи при кипении предложено большое число зависимостей, которые плохо согласуются друг с другом. Авторы учебника рекомендуют формулы:

a=А×j×q 0,7 р 0,171 и a=(Аj) 3,33 Ñt 2,33 р 0,57 , (2.42)

где А – постоянный сомножитель (при кипении в большом объёме А=3,02, при кипении в трубах А=3,15); q – удельная тепловая нагрузка, Вт/м 2 ; Ñt – температурный напор, °С; р – давление, бар; j – относительный коэффициент теплоотдачи:

для воды j=1,

для индивидуальных веществ j=(р кр /221,2) 0,52 ,

для индивидуальных веществ и смесей j=(0,018r/М) 0,47 (m в /m) 0,06 ,

для растворов солей j=18(n в /n) 0,23 (р/р s) 0,06 ,

где р кр – критическое давление веществ, бар; r – плотность вещества, кг/м 3 ; М – молекулярная масса вещества; m в и m – динамическая вязкость воды и вещества, Па×с; n в и m – кинœематическая вязкость воды и вещества, м 2 /с; р s – давление насыщенных водяных паров при температуре кипения раствора.

Для определœения критического удельного теплового потока (Вт/м 2) рекомендуется формула

q к =0,15r(r¢¢) 0,5 0,25 . (2.43)

При кипении пленок, стекающих по поверхности нагрева, возможны два режима течения пленки. При ламинарном течении (при q<4000 Вт/м 2) пленки кипение не происходит, а идет испарение жидкости с её поверхности и коэффициент теплоотдачи определяется толщиной d, скоростью w и физическими свойствами пленки жидкости

При турбулентном потоке пленки в ней наблюдается пузырьковое кипение жидкости и коэффициент теплоотдачи вычисляется по формуле

a=16,35(l/d)(dw/n) 0,26 0,69 при q=4000¼15000 Вт/м 2 ;

и a=2,6(l/d)(dw/n) 0,2 0,32 при q>15000 Вт/м 2 . (2.45)

Теплоотдача при кипении жидкости.

Режимы кипения жидкости.

Кипением называется процесс интенсивного парообразования, происходящего во всем объеме жидкости, перегретой относительно температуры насыщения, с образованием паровых пузырей. Процессы кипения находят применение в теплоэнергетике, химической технологии, атомной энергетики и др.

Различают кипение жидкости на твердой поверхности теплообмена, к которой подводится тепло, и кипение в объеме жидкости.

При кипении на твердой поверхности образование паровой фазы наблюдается в отдельных местах этой поверхности. При объемном кипении паровая фаза возникает самопроизвольно (спонтанно) непосредственно в объеме жидкости. Объемное кипение может происходить лишь при значительном перегреве жидкости относительно температуры насыщения при данном давлении. Значительный перегрев имеет место, например при сбросе давления в системе.

Для возникновения процесса кипения необходимо два фактора: 1) перегрев жидкости, 2) наличие центров парообразования.

Различают два основных режима кипения пузырьковый и пленочный . Кипение, при котором пар образуется в виде отдельных периодически зарождающихся, растущих и отрывающихся паровых пузырей, называется пузырьковым.

С увеличением теплового потока до некоторого значения отдельные паровые пузыри сливаются, образуя у поверхности теплообмена сплошной паровой слой, периодически прорывающий в объем жидкости. Этот режим кипения, который характеризуется наличием на поверхности пленки пара, называется пленочным.

Интенсивность теплообмена при пленочном кипении меньше, чем при пузырьковом.

Элементы физики процесса кипения.

Интенсивность теплообмена при пузырьковом кипении зависит от микрохарактеристик кипения и режимных параметров процесса.

К микрохарактеристикам процесса относятся критический радиус пузырька, скорость его роста, отрывной диаметр и частота отрыва, работа необходимая для образования пузырька, характеристики поверхности и жидкости.

1). Минимальный радиус парового пузырька.

Обычно считают, что жидкость закипает при температуре t ж, равной t н выходящего из нее насыщенного пара, давление которого р н = р ж. Однако это не совсем так. При t ж = t н пузыри пара существовать не могут, и теплоотдача идет по законам естественной конвекции.

Дело в том, что давление насыщенного пара внутри пузырей р п должно уравновешивать не только давление жидкости р ж, но и силы поверхностного натяжения, сжимающие пузырь подобно упругой оболочке. А если р п > р н, то и t п > t н, поскольку более высокому давлению пара в насыщенном состоянии соответствует более высокая температура. Естественно, что и температура жидкости t ж, внутри которой образуются паровые пузыри, должна быть по меньшей мере равна t п. Таким образом, перегрев жидкости ∆t ж = (t ж - t н), необходимый для её закипания, однозначно определяется давлением ∆р, создаваемым силами поверхностного натяжения.

Для определения ∆р мысленно разрежем сферический пузырь по диаметру, заменим действие отброшенной нижней части на верхнюю силой поверхностного натяжения (она действует по периметру) и приравняем её вертикальной проекции сил давления (они действуют по полусфере) – см. рисунок.

отсюда получим:

Согласно этой формуле ∆р растет с уменьшением радиуса пузыря R. Поэтому при любом перегреве жидкости ∆t ж всегда найдется такой критический радиус пузыря R кр, при котором суммарное давление р ж + ∆р будет равно давлению насыщения р н при температуре t ж = t н + ∆t ж. Пузыри с радиусом R>R кр будут расти, поскольку р п > р ж + ∆р, а пузыри с радиусом R

Было получено УКК:

Если на границе раздела фаз кроме сил давления действуют и другие силы (например, силы поверхностного натяжения), то можно записать уравнение КК в обобщенном виде:

Для случая паровой пузырь
= 0,

В такой форме R к характеризует радиус кривизны пузырьков пара. Одновременно R к определяет порядок размеров неровностей поверхности, которые при данных условиях могут служить центрами парообразования.

С повышением ∆T значение R к уменьшается.

С повышением Р знач. R к уменьшается тоже, так как увеличивается ρ".

Увеличение ∆T и Р → ↓ R к → усиление кипения, так как увеличивается число центров парообразования.

В действительности зародышами паровых пузырей являются пузырьки газа. Газ в пузырьках, как упругое тело, только сжимается под действием поверхностного натяжения, не исчезая (так как он не может конденсироваться), поэтому критического радиуса для газовых пузырей не существует. Пар из перегретой жидкости образуется на поверхности газовых пузырей, радиус которых больше критического. Сильнее всего жидкость перегрета, естественно, около обогреваемой поверхности, поэтому там величина критического радиуса минимальна. Пузырьки газа или воздуха в микротрещинах и шероховатостях обогреваемой поверхности, радиус которых превышает R кр, и является местами зарождения паровых пузырей – так называемыми центрами парообразования.

После зарождения паровые пузыри быстро растут, отрываются от поверхности и всплывают, но небольшие части остаются на поверхности и служат зародышами следующих пузырей.

Различают теплоотдачу при кипении жидкости в условиях свободной конвекции и теплоотдачу при кипении в условиях вынужденного движения жидкости в трубах. При кипении большого объема жидкости на горизон-тальной поверхности в условиях свободной конвекции большая часть жидкости по высоте имеет температуру, которая только на 0,4¸0,8 о С превышает температуру насыщения (кипения) Т S . Жидкость перегревается относительно температуры насыщения в тонком слое вблизи стенки. Перегрев возможен потому, что здесь нет постоянной поверхности раздела жидкости и пара. Процесс парообразования может происходить только после возникновения паровых пузырьков. Такие пузырьки возникают в центрах парообразования. Центрами парообразования могут служить шероховатости поверхности нагрева, а также пузырьки воздуха или газа, выделяющегося из жидкости или твердой стенки при нагреве. Вероятность возникновения паровых пузырьков увеличивается с ростом степени перегрева жидкости. Поэтому паровые пузырь-ки должны возникать, прежде всего, на поверхности нагрева или вблизи от нее. При значительном перегреве паровые пузырьки могут возникать и внутри жидкости. Пар имеет меньшую теплопроводность, чем жидкость, поэтому вблизи пузырька перегрев жидкости, на поверхности нагрева, увеличивается. Размеры пузырька быстро растут, и под действием подъемной силы он отрывается от стенки и поднимается к свободной поверхности жидкости.

Диаметр парового пузырька в момент отрыва от твердой поверхности зависит от разности плотностей жидкости и насыщенного пара при температуре кипения , от коэффициента поверхностного натяжения жидкости s и от краевого угла q, характеризующего смачиваемость поверхности жидкостью. Этот диаметр определяют по формуле

(6.1)

где g – ускорение свободного падения.

Паровые пузырьки, проходя через жидкость, перемешивают ее, что интенсифицирует теплообмен. Поэтому частота отрыва пузырьков и число действующих центров парообразования определяют интенсивность теплообмена при кипении. Исследование процесса кипения воды показывает, что около 95 % пара образуется во время движения пузырей и только 5 % – во время пребывания их на поверхности нагрева.

Величина температурного напора DТ=Т С -Т Ж @ Т C -T S определяет механизм парообразования и интенсивность теплообмена. Впервые зависимость плотности теплового потока от температурного напора при кипении воды опытным путем получил японский ученый Нукияма. Эта зависимость (кривая Нукиямы), а также зависимость коэффициента теплоотдачи от того же напора изображены на рис. 6.1.

Как видно на рис. 6.1, в зоне А при небольших температурных напорах количество отделяющихся от поверхности нагрева пузырьков невелико, и они не способны еще существенно перемешать жид-кость. В этих условиях теплоот-дача определяется только свобод-ной конвекцией жидкости, и коэффициент теплоотдачи слабо увеличивается с ростом DТ, такой режим называют конвективным. Для воды при давлении 1 бар (760 мм рт. ст.) конвективный режим наблюдается до DТ@5 0 С, а плотность теплового потока достигает около 6000 вт/м 2 . В зоне В при увеличении температурного напора растет число действующих центров парообразования несколько увеличивается частота отрыва пузырьков. Они интенсивно перемешивают жидкость и наступает режим развитого пузырькового кипения, при котором коэффициент теплоотдачи и плотность теплового потока резко возрастают. Режим, отвечающий максимальной плотности теплового потока, называют первым критическим. Этому режиму, например, для воды, кипящей при атмосферном давлении, отвечает критический температурный напор равен DТ КР1 =25 0 С, критический коэффициент теплоотдачи a КР1 =5,8×10 4 вт/м 2 ×град и критическая плотность теплового потока q КР1 =1,45 ×10 6 вт/м 2 , т. е. при этих условиях плотность теплового потока больше, чем в начале развитого пузырькового кипения в 250 раз. Зона С может быть реализована в опытах только при граничных условиях первого рода, когда на поверхности задается температура или температурный напор DТ. Например, при нагреве поверхности газовой горелкой с регулируемой температурой пламени. В этом случае число центров парообразования становится большим, паровые пузырьки объединяются в пленку, которая покрывает отдельные участки поверхности теплообмена, отделяя на этих участках поверхность от жидкости слоем пара, что приводит к уменьшению плотности теплового потока. Пленки пара непрерывно разрушаются и уходят от поверхности нагрева в виде больших пузырей.. При увеличении температурного напора DТ поверхность этих пленок увеличивается, коэффициент теплоотдачи и плотность теплового потока уменьшаются вследствие тепловой изоляции поверхности нагрева от жидкости пленкой малотеплопроводного пара. Такое кипение называют переходным. Наконец, при некотором температурном напоре DТ КР2 отдельные пленки пара объединяются, покрывая всю поверхность теплообмена пленкой пара. При этом плотность теплового потока достигает своего минимального значения, которое называют второй критической нагрузкой q КР2 . При этом коэффициент теплоотдачи в 20–30 раз меньше его максимального значения. Когда пленка пара покрывает всю поверхность нагрева (зона D), условия теплообмена стабилизируются и при увеличении температурного напора DТ коэффициент теплоотдачи остается почти неизменным. Плотность теплового потока при этом увеличивается пропорционально DТ. Такое кипение называют пленочным.

При задании на поверхности теплообмена плотности теплового потока (т.е. граничных условий второго рода), например, электрообогрев поверхности, тепловыделяющие элементы кипящих ядерных реакторов зону С переходного кипения реализовать не удается. Увеличение плотности потока тепла больше, чем первая критическая плотность теплового потока q КР1 , приводит к скачкообразному переходу кипения в область пленочного режима. При этом резко возрастает DТ и, следовательно, температура стенки, что, возможно, ее разрушение. Поэтому в эксплуатации подобных установок желательно реализовать температурные напоры несколько меньше критических, но близкие к ним, для получения высокой интенсивности теплообмена. Для увеличения зоны температурных напоров вблизи критической тепловой нагрузки и, следовательно, уменьшения опасности «срыва» в пленочный режим кипения, что особенно опасно в случае ядерных кипящих реакторов, предложено поверхность теплообмена оребрять . Это увеличивает плотность теплового потока в основании ребра в 7– 8раз, по сравнению с q кр1 , и увеличивает зону температурных напоров DТ кр ~ в 10 раз.

Для расчета коэффициента теплоотдачи при пузырьковом кипении жидкостей на не оребренных поверхностях используют уравнение подобия С.С. Кутателадзе и В.М. Боришанского

(6.2)

Ими же получена формула для первой критической тепловой нагрузки

(6.3)

где q – плотность теплового потока;

p – давление;

r – теплота парообразования.

За определяющую температуру в этих уравнениях принята температура кипения жидкости.

Для конкретных жидкостей расчетные формулы существенно упрощаются. Например, для воды при абсолютном давлении p=1,01¸27,5 бар

(6.4)

Для этилового спирта при абсолютном давлении p=1,01¸7,85 бар

(6.5)

В этих формулах плотность теплового потока измеряется q – вт/м 2 , а давление p – бар. Эти формулы справедливы только для жидкостей, смачивающих твердые поверхности. При больших давлениях интенсивность теплообмена повышается, так как увеличивается число центров парообразования и частота отрыва пузырьков. Форма и размеры поверхности практически не влияют на коэффициент теплоотдачи при кипении. Высота слоя жидкости также не влияет на интенсивность теплоотдачи, если она больше 20¸30 мм. Материал и состояние поверхности теплообмена влияют на теплоотдачу только в начальный период ее работы. По истечении некоторого времени работы поверхность приобретает «собственную» шероховатость, которая зависит от природы жидкости.

Первая критическая плотность теплового потока зависит от шероховатости и ориентации поверхности нагрева. Шероховатость повышает плотность теплового потока, а для вертикальной стенки критическая нагрузка больше, чем для горизонтальной.

Теплоотдача при кипении в условиях вынужденного движения жидкости в трубах имеет ряд особенностей, обусловленных изменением температуры стенки и жидкости вдоль трубы. Температура кипения жидкости по длине трубы уменьшается благодаря уменьшению давления из-за гидравлического сопротивления.

По условиям теплообмена трубу по длине условно можно подразделить на три участка. Во входном участке температура стенки трубы меньше температуры насыщения. Протекая через этот участок, жидкость подогревается, и теплообмен не сопровождается кипением. Это обычная теплоотдача при вынужденной конвекции жидкости. На втором участке трубы температура стенки превышает температуру насыщения. Но ядро потока жидкости не достигло еще этой температуры. Пузырьки пара, отделяющиеся от поверхности теплообмена, частично или полностью конденсируются в центральной части потока. Это участок кипения недогретой жидкости. К началу третьего участка центральная часть потока достигает температуры насыщения. На этом участке имеет место развитое пузырьковое кипение. Паросодержание на этом участке может достигать большой величины. По трубе здесь движется двухфазный поток. Увеличение паросодержания сопровождается ростом скорости потока и градиента давления вдоль трубы. При кипении воды влияние паросодержания на коэффициент теплоотдачи можно учесть по формуле

(6.6)

где Di – разность энтальпий на входе и выходе из трубы.

Зависимость коэффициента теплоотдачи при кипении от скорости потока жидкости определяется величиной тепловой нагрузки. Коэффициент теплоотдачи при небольшой тепловой нагрузке целиком определяется условиями движения жидкости и практически не зависит от величины плотности теплового потока. При очень больших плотностях теплового потока влиянием условий движения жидкости на теплоотдачу можно пренебречь, так как коэффициент теплоотдачи целиком определяется процессом кипения. Однако существует область режимов, где влияния движения жидкости и процесса кипения на теплообмен сопоставимы, и коэффициент теплоотдачи зависит от обоих факторов. Опытные данные по теплоотдаче кипящих жидкостей, движущихся по трубам, при паросодержании, не превышающим 70 %, Д. А. Лабунцов обработал в виде зависимости

(6.7)

где a – коэффициент теплоотдачи кипящей жидкости с учетом ее вынужденного движения;

a w – коэффициент теплоотдачи однофазной не кипящей жидкости при ее скорости w;

a q – коэффициент теплоотдачи при развитом пузырьковом кипении.

Оказалось, что при a q / a w < 0,5 процесс кипения не влияет на теплообмен, и поэтому можно принять a = a w . При a q / a w > 2 интенсивность теплообмена определяется только кипением, и поэтому в расчетах полагают a = a q . Для области, где коэффициент теплоотдачи зависит от скорости потока жидкости и тепловой нагрузки (a q /a w = 0,5¸2) рекомендуется следующая интерполяционная формула

(6.8)

При кипении коэффициент теплоотдачи зависит от содержания растворенных в жидкости газов. Пузырьки газа служат центрами парообразования и поэтому интенсифицируют теплообмен. Рассмотренные выше уравнения относятся к дегазированной жидкости. При содержании газа 0,06¸0,3 см 3 / л коэффициент теплоотдачи увеличивается на 20¸60 % по сравнению с кипением дегазированной жидкости. Критическая плотность теплового потока q КР1 также зависит от скорости потока жидкости, причем эта зависимость имеет место даже в случаях, при которых коэффициент теплоотдачи от скорости не зависит. Вынужденное движение жидкости вдоль поверхности нагрева затрудняет образование паровой пленки. Поэтому с увеличением скорости течения жидкости критическая тепловая нагрузка возрастает. При кипении недогретой жидкости критическая плотность теплового потока больше, чем при кипении жидкости, имеющей температуру насыщения. В этом случае поступление недогретой жидкости из ядра потока в пристеночный слой способствует разрушению паровой пленки. Влияние недогрева жидкости до температуры насыщения на критическую плотность теплового потока q КР1 можно оценить по эмпирической формуле

(6.9)

где – критическая плотность теплового потока при кипении недогретой жидкости;

J = T S – Т Ж;

Т Ж – средняя температура жидкости;

с – теплоемкость жидкости.

На величину критической плотность теплового потока q КР1 влияет пульсация скорости потока жидкости. За счет этих пульсаций скорости, как показывают опыты, критическая плотность теплового потока может уменьшиться в два раза.


Похожая информация.


Кипение - процесс парообразования, сопровождающийся бурным выделением пузырьков пара; это один из наиболее сложных процессов, обеспечивающих наибольшую интенсивность теплообмена. Особенности процесса рассмотрим сначала на примере кипения в большом объеме, хотя такое кипение не очень часто встречается в технике.

Если рассматривать отдельный пузырек пара внутри кипящей жидкости, можно отметить, что со стороны жидкости на пар действует не только сила давления р н, но и дополнительная сила, создаваемая поверхностным натяжением жидкости

где R - радиус пузырька; с - коэффициент поверхностного натяжения жидкости. Таким образом, существование и рост пузырька возможны только тогда, когда жидкость имеет температуру, несколько большую, чем температура насыщения, т.е. перегрета настолько, чтобы уравновесить величину Ар =а/2 R. В таком случае при испарении объем пузырька будет расти, а давление в нем - постепенно приближаться к р н.

Экспериментальные исследования полностью подтверждают эти рассуждения. На рис. 2.61 показаны образование, отрыв и всплытие пузырьков пара и изменение температуры внутри кипящей жидкости. Из рисунка видно, что заметный перегрев имеет место только в пристенном слое жидкости, где сильно проявляется влияние ее теплопроводности и где находится зона возникновения пузырьков. В основном же объеме жидкости в результате активного перемешивания температура жидкости практически одинакова и степень перегрева незначительна.

Наибольший перегрев возникает в зоне непосредственного контакта жидкости с горячей стенкой: At - t c - / н; здесь At - q/a, и величина этого перегрева зависит от передаваемого теплового потока q.

При небольших q или в начале кипения, когда перегрев жидкости еще небольшой, возникающие пузырьки пара очень малы и силы поверхностного натяжения не позволяют им расти, поскольку перегрев жидкости недостаточен. В результате возникает так называемое пристенное кипение, когда образующиеся пузырьки пара здесь же конденсируются и до поверхности практически не доходят.

В тех местах поверхности, где имеются микротрещины, микронеровности, царапины или пузырьки выделившегося растворенно-

Р и с. 2.61. Кипение в большом объеме и зависимость t =J{h)

го воздуха, перегрев жидкости будет большим и возникнут регулярные центры парообразования. С увеличением тепловой нагрузки q число таких центров и перегрев жидкости растут и начинается обычное кипение. Форма пузырька зависит от того, смачивает или не смачивает (это бывает реже) жидкость поверхность теплоотдачи (рис. 2.62). С течением времени объем пузырька растет, и когда подъемные силы станут больше сил сцепления, произойдут отрыв и всплытие пузырька. На его месте образуется, растет и вновь отрывается новый пузырек.

Образование, рост и отрыв пузырьков приводят к значительной турбулизации слоя жидкости, непосредственно соприкасающегося со стенкой. Именно этим объясняется очень высокая интенсивность теплоотдачи при кипении. Ведь во всех остальных случаях возле стенки всегда находится неподвижный слой жидких комков, а здесь и этот слой находится в движении.

С увеличением q увеличиваются перегрев жидкости и число центров парообразования, возрастают интенсивность кипения и величина а. При некоторой критической нагрузке q Kp число центров парообразования возрастает настолько, что пузырьки пара как бы отгораживают жидкость от стенки. Образуется нестабильная пленка пара, через которую теплота передается в основном теплопроводностью. При этом величина а резко уменьшается, так как пар имеет малую теплопроводность. Такое кипение называют пленочным, а переход к нему - кризисом кипения. На рис. 2.63 приведена так называемая кривая кипения, показывающая, как изменяется величина ос при изменении q. Из рисунка видно, что переход к пленочному кипению, происходящий при нагрузке q KpX , сопровождается резким уменьшением а. Обратный же переход от пленочного кипения к пузырьковому происходит при другой, гораздо меньшей нагрузке q Kp2 .

Кризис кипения - явление нежелательное и очень опасное, так как приводит к перегреву материала стенки и уменьшению ее механической прочности. Действительно, записав известную формулу

Рис. 2.62.

видим, что при практически неизменной величине q резкое уменьшение а возможно лишь при таком же увеличении разницы t c - t H , т. е. при увеличении t c . С увеличением t c прочность стенки уменьшается, и она может не выдержать действующих на нее механических напряжений. Кризис кипения явился причиной многих трагических аварий в теплоэнергетике, включая и Чернобыльскую катастрофу. Поэтому при проектировании парогенерирующего оборудования назначают рабочую тепловую нагрузку q так, чтобы она не превышала величины q Kp2 . Это возможно, если перегрев жидкости невелик и температура ее не превышает температуры предельного перегрева / пп, поскольку полный контакт жидкости со стенкой возможен только при t c / пп. Величина / пп для разных жидкостей определена экспериментально и приведена в справочниках . Известны и критериальные уравнения, позволяющие рассчитать величину q Kp2 .

Рис. 2.63.

Величину коэффициента теплоотдачи при пузырьковом кипении воды обычно рассчитывают по эмпирической формуле

где р н - давление насыщения, МПа; q - плотность теплового потока при кипении, Вт/м 2 .

Для расчета кипения других жидкостей предложены следующие критериальные уравнения:

Здесь - коэффициент поверхностного натяжения конденсата; р" и р" - плотности жидкости соответственно на линии насыщения и сухого насыщенного пара. Все остальные физические константы определяют для жидкости по температуре / н.

Теплообмен при кипении жидкостей

Общие представления о процессе кипения. Кипением называют процесс образования пара внутри объема жидкости. Условия протекания этого процесса своеобразны и сложны.

Для возникновения кипения всегда необходим некоторый перегрев жидкости, т. е. превышение температуры жидкости - t ж относительно температуры насыщения - t s при заданном давлении - p.

Этот перегрев, как показывают опыты, зависит от физических свойств жидкости, ее чистоты, давления, а также свойств граничных твердых поверхностей. Чем чище жидкость, тем более высоким оказывается начальный перегрев, необходимый для возникновения кипения. Известны опыты, в которых тщательно очищенные жидкости, лишенные растворенных газов, удавалось перегревать без вскипания на десятки градусов при нормальном давлении. Однако, в конце концов такая перегретая жидкость все же вскипает, причем кипение происходит крайне бурно, напоминая взрыв. Теплота перегрева жидкости расходуется на парообразование, жидкость быстро охлаждается до температуры насыщения. Высокий начальный перегрев, необходимый для вскипания чистой жидкости, объясняется затрудненностью самопроизвольного образования внутри жидкости начальных маленьких пузырьков пара (зародышей) из-за значительной энергии взаимного притяжения молекул в жидкости.

Иначе обстоит дело, когда жидкость содержит растворенный газ (например, воздух), а также мельчайшие взвешенные частицы. При ее нагревании процесс кипения начинается почти сразу после достижения жидкостью температуры насыщения. При этом кипение носит спокойный характер. В данном случае образующиеся при нагревании газовые пузырьки, а также находящиеся в жидкости твердые частицы, служат готовыми начальными зародышами паровой фазы.

Начальный перегрев снижается и в том случае, когда стенки сосуда, в котором происходит нагревание жидкости, имеют адсорбированный на поверхности газ, микрошероховатость, а также различные неоднородности и включения, понижающие молекулярное сцепление жидкости с поверхностью. При подводе теплоты через такую поверхность образование пузырьков наблюдается в отдельных точках поверхности, так называемых центрах парообразования. Таким образом, процесс кипения в этом случае начинается в слоях жидкости, контактирующих с поверхностью и имеющих одинаковую с ней температуру. Для практики этот вид кипения представляет наибольший интерес. Рассмотрим его основные характеристики.

По мере увеличения температуры поверхности нагрева t Q и соответственно температурного напора At = t c -t s число действующих центров парообразования растет, процесс кипения становится все более интенсивным.

Паровые пузырьки периодически отрываются от поверхности и, всплывая к свободной поверхности, продолжают расти в объеме. Последнее объясняется тем, что температура в объеме кипящей жидкости, как показывают опытные данные, не равна температуре насыщения, а несколько превышает ее. Например, для воды при атмосферном давлении перегрев в объеме составляет 0,2-0,4°С (рис. 5.1).

Рисунок 5.1 Распределение температур в объеме кипящей жидкости

На рис. 5.2, а схематически показана картина пузырькового режима кипения жидкости. При повышении температурного напора At значительно возрастает поток теплоты, который отводится от поверхности нагрева к кипящей жидкости. Вся эта теплота в конечном счете расходуется на образование пара. Поэтому уравнение теплового баланса при кипении имеет вид:

где Q - тепловой поток, Вт; г - теплота фазового перехода жидкости, Дж/кг; G" - количество пара, образующегося в единицу времени в результате кипения жидкости и отводимого от ее свободной поверхности, кг/с.

Тепловой поток Q при увеличении температурного напора растет не беспредельно. При некотором значении он достигает максимального значения, а при дальнейшем повышении At начинает уменьшаться. До момента достижения максимального теплового потока режим кипения называют пузырьковым. Максимальную тепловую нагрузку при пузырьковом кипении называют первой критической плотностью теплового потока и обозначают


Рисунок 5.2 Процесс кипения жидкости

Для воды при атмосферном давлении первая критическая плотность теплового потока составляет ; соответствующее критическое значение температурного напора . Эти величины относятся к условиям кипения воды при свободном движении в большом объеме. Для других условий
и других жидкостей величины будут иными).

При больших значениях наступает второй, переходный режим кипения (рис. 5.2, б). Он характеризуется тем, что, как и на самой поверхности нагрева, так и вблизи нее пузырьки непрерывно сливаются между собой, образуются большие паровые полости.

Из-за этого доступ жидкости к самой поверхности постепенно все более затрудняется. В отдельных местах поверхности возникают «сухие» пятна; их число и размеры непрерывно растут по мере увеличения температуры поверхности. Такие участки как бы выключаются из теплообмена, так как отвод теплоты непосредственно к пару происходит существенно менее интенсивно. Это и определяет резкое снижение теплового потока и коэффициента теплоотдачи в области переходного режима кипения.

Наконец, при некотором температурном напоре вся поверхность нагрева обволакивается сплошной пленкой пара, оттесняющей жидкость от поверхности. Так наступает третий, пленочный режим кипения (рис. 5.2, в). Перенос теплоты в режиме пленочного кипения от поверхности нагрева к жидкости осуществляется путем конвективного теплообмена и излучения через паровую пленку. По мере увеличения температурного напора все большая часть теплоты передается за счет излучения. Интенсивность теплообмена в режиме пленочного кипения достаточно низкая. Паровая пленка испытывает пульсации; пар, периодически накапливающийся в ней, отрывается в виде больших пузырей. В момент наступления пленочного кипения тепловая нагрузка, отводимая от поверхности, и соответственно количество образующегося пара имеют минимальные значения. Минимальное значение тепловой нагрузки при пленочном кипении называется второй критической плотностью теплового потока . При атмосферном давлении для воды, кипящей на технических металлических поверхностях, момент начала пленочного кипения характеризуется температурным напором , т. е. температура поверхности составляет примерно 250°С.