Полное внутреннее отражение и его применение. Применение полного внутреннего отражения

  • 7. Ультразвук. Получение и регистрация ультразвука на основе обратного и прямого пьезоэлектрического эффекта.
  • 8. Взаимодействие ультразвука различной частоты и интенсивности с веществом. Применение ультразвука в медицине.
  • Электромагнитные колебания и волны.
  • 4.Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине
  • 5.Биологическое действие электромагнитного излучения на организм. Электротравматизм.
  • 6.Диатермия. Увч-терапия. Индуктотермия. Микроволновая терапия.
  • 7.Глубина проникновения неионизирующих электромагнитных излучений в биологическую среду. Ее зависимость от частоты. Методы защиты от электромагнитных излучений.
  • Медицинская оптика
  • 1. Физическая природа света. Волновые свойства света. Длина световой волны. Физические и психофизические характеристики света.
  • 2. Отражение и преломление света. Полное внутреннее отражение. Волоконная оптика, ее применение в медицине.
  • 5. Разрешающая способность и предел разрешения микроскопа. Пути повышения разрешающей способности.
  • 6. Специальные методы микроскопии. Иммерсионный микроскоп. Микроскоп темного поля. Поляризационный микроскоп.
  • Квантовая физика.
  • 2. Линейчатый спектр излучения атомов. Его объяснение в теории н.Бора.
  • 3. Волновые свойства частиц. Гипотеза де-Бройля, ее экспериментальное обоснование.
  • 4. Электронный микроскоп: принцип действия; разрешающая способность, применение в медицинских исследованиях.
  • 5. Квантово-механическое объяснение структуры атомных и молекулярных спектров.
  • 6. Люминесценция, ее виды. Фотолюминесценция. Закон Стокса. Хемилюминесценция.
  • 7. Применение люминесценции в медико-биологических исследованиях.
  • 8. Фотоэлектрический эффект. Уравнение Эйнштейна для внешнего фотоэффекта. Фотодиод. Фотоэлектронный умножитель.
  • 9. Свойства лазерного излучения. Их связь с квантовой структурой излучения.
  • 10. Когерентное излучение. Принципы получения и восстановления голографических изображений.
  • 11. Принцип работы гелий-неонового лазера. Инверсная населенность энергетических уровней. Возникновение и развитие фотонных лавин.
  • 12. Применение лазеров в медицине.
  • 13. Электронный парамагнитный резонанс. Эпр в медицине.
  • 14. Ядерный магнитный резонанс. Использование ямр в медицине.
  • Ионизирующие излучения
  • 1. Рентгеновское излучение, его спектр. Тормозное и характеристическое излучение, их природа.
  • 3. Применение рентгеновского излучения в диагностике. Рентгеноскопия. Рентгенография. Флюорография. Компьютерная томография.
  • 4. Взаимодействие рентгеновского излучения с веществом: фотопоглощение, когерентное рассеяние, комптоновское рассеяние, образование пар. Вероятности этих процессов.
  • 5. Радиоактивность. Закон радиоактивного распада. Период полураспада. Единицы активности радиоактивных препаратов.
  • 6 Закон ослабления ионизирующих излучений. Коэффициент линейного ослабления. Толщина слоя половинного ослабления. Массовый коэффициент ослабления.
  • 8. Получение и применение радиоактивных препаратов для диагностики и лечения.
  • 9. Методы регистрации ионизирующего излучений: счетчик Гейгера, сцинтилляционный датчик, ионизационная камера.
  • 10. Дозиметрия. Понятие о поглощенной, экспозиционной и эквивалентной дозе и их мощности. Единицы их измерения. Внесистемная единица – рентген.
  • Биомеханика.
  • 1. Второй закон Ньютона. Защита организма от избыточных динамических нагрузок и травматизма.
  • 2. Виды деформации. Закон Гука. Коэффициент жесткости. Модуль упругости. Свойства костных тканей.
  • 3. Мышечные ткани. Строение и функции мышечного волокна. Преобразование энергии при мышечном сокращении. Кпд мышечного сокращения.
  • 4. Изотонический режим работы мышц. Статическая работа мышц.
  • 5. Общая характеристика системы кровообращения. Скорость движения крови в сосудах. Ударный объем крови. Работа и мощность сердца.
  • 6. Уравнение Пуазейля. Понятие о гидравлическом сопротивлении кровеносных сосудов и о способах воздействия на него.
  • 7. Законы движения жидкости. Уравнение неразрывности; его связь с особенностями системы капилляров. Уравнение Бернулли; его связь с кровоснабжением мозга и нижних конечностей.
  • 8. Ламинарное и турбулентное движение жидкости. Число Рейнольдса. Измерение артериального давления по методу Короткова.
  • 9. Уравнение Ньютона. Коэффициент вязкости. Кровь как неньютоновская жидкость. Вязкость крови в норме и при патологиях.
  • Биофизика цитомембран и электрогенеза
  • 1. Явление диффузии. Уравнение Фика.
  • 2. Строение и модели клеточных мембран
  • 3. Физические свойства биологических мембран
  • 4. Концентрационный элемент и уравнение Нернста.
  • 5. Ионный состав цитоплазмы и межклеточной жидкости. Проницаемость клеточной мембраны для различных ионов. Разность потенциалов на мембране клетки.
  • 6. Потенциал покоя клетки. Уравнение Гольдмана-Ходжкина-Катца
  • 7. Возбудимость клеток и тканей. Методы возбуждения. Закон «все или ничего».
  • 8. Потенциал действия: графический вид и характеристики, механизмы возникновения и развития.
  • 9. Потенциал-зависимые ионные каналы: строение, свойства, функционирование
  • 10. Механизм и скорость распространения потенциала действия по безмякотному нервному волокну.
  • 11. Механизм и скорость распространения потенциала действия по миелинизированному нервному волокну.
  • Биофизика рецепции.
  • 1. Классификация рецепторов.
  • 2. Строение рецепторов.
  • 3. Общие механизмы рецепции. Рецепторные потенциалы.
  • 4. Кодирование информации в органах чувств.
  • 5. Особенности светового и звукового восприятия. Закон Вебера-Фехнера.
  • 6. Основные характеристики слухового анализатора. Механизмы слуховой рецепции.
  • 7. Основные характеристики зрительного анализатора. Механизмы зрительной рецепции.
  • Биофизические аспекты экологии.
  • 1. Геомагнитное поле. Природа, биотропные характеристики, роль в жизнедеятельности биосистем.
  • 2. Физические факторы, имеющие экологическую значимость. Уровни естественного фона.
  • Элементы теории вероятности и математической статистики.
  • Свойства выборочного среднего
  • 2. Отражение и преломление света. Полное внутреннее отражение. Волоконная оптика, ее применение в медицине.

    Из теории электромагнитного поля, разработанной Дж. Максвеллом, следовало: электромагнитные волны распространяются со скоростью света - 300 000 км/с, что эти волны поперечны, так же как и световые волны. Максвелл предположил, что свет - это электромагнитная волна. В дальнейшем это предсказание нашло экспериментальное подтверждение.

    Как и электромагнитные волны, распространение света подчиняется тем же законам.

    Закон отражения. Угол падения равен углу отражения (α=β). Падающий луч АО, отраженный луч ОВ и перпендикуляр ОС, восставленный в точке падения, лежат в одной плоскости.

    Закон преломления. Луч падающий АО и преломленный ОВ лежат в одной плоскости с перпендикуляромCD, проведенным в точке падения луча к плоскости раздела двух сред. Отношение синусов угла падения а и угла преломления у постоянно для данных двух сред и называется показателем преломления второй среды по отношению к первой: .

    Законы отражения света учитываются при построении изображения предмета в зеркалах (плоском, вогнутом и выпуклом) и проявляются в зеркальном отражении в перископах, в прожекторах, автомобильных фарах и во многих других технических устройствах.Законы преломления света учитываются при построении изображения во всевозможных линзах, призмах и их совокупности (микроскоп, телескоп), а также в оптических приборах (бинокли, спектральные аппараты, фотоаппараты и проекционные аппараты). Если световой луч следует из оптически менее плотной среды (например, из воздуха;n возд. = 1) в оптически более плотную среду (например в стекло с показателем преломленияn ст. = 1,5), то на их границе произойдет частичное отражение и частичное преломление света.

    Отсюда следует, что , то есть синус угла преломленияgменьше, чем синус угла падения a, в 1,5 раза. А еслиsing

    Если же световой луч пустить из оптически более плотного стекла в оптически менее плотный воздух, то угол преломления окажется, наоборот, больше угла падения, g > a. Для обсуждаемого обратного хода луча закон преломления:

    следовательно, sing = 1,5sina; g >a

    Эта ситуация иллюстрируется схемой А на рисунке

    Если угол падения a увеличить до некоторого предельного значения a пр, то угол преломления g >aдостигает наибольшего значения g=90 0 . Преломленный луч скользит по границе раздела двух сред. При углах паденияa>a пр явление преломления не происходит, а вместо частичного отражения на границе раздела фаз происходитполное отражение света внутрь оптически более плотной среды, илиполное внутреннее отражение . Это оптическое явление составляет основу целого физико-технического направления, которое называетсяволоконная оптика.

    В медицине волоконная оптика нашла применение в эндоскопах - устройствах для осмотра внутренних полостей (например, желудка). Световод, представляющий собой жгут из большого числа тонких стеклянных волокон, помещенных в общую защитную оболочку, вводится в исследуемую полость. Часть волокон используется для организации освещения полости от источника света, расположенного вне тела пациента. Световод может использоваться и для передачи во внутреннюю полость лазерного излучения в лечебных целях.

    Полное внутреннее отражение происходит и в некоторых структурах сетчатки глаза.

    3. Оптическая система глаза. Недостатки зрения, методы их коррекции .

    Оптическая система глаза обеспечивает получение на сетчатке глаза уменьшенного действительного обратного (перевернутого) изображения. Если светопреломляющую систему глаза рассматривать как одну линзу, то общая оптическая сила этой системы получается как алгебраическая сумма следующих четырёх слагаемых:

    а) Роговица: D = +42,5 дптр

    б) Передняя камера: D от +2 до +4 дптр

    в) Хрусталик: D  const; от +19 до +33 дптр

    г) Стекловидное тело;D от –5 до –6 дптр.

    Благодаря тому, что оптическая сила хрусталика - величина переменная, суммарная оптическая сила глаза лежит в пределах от 49 до 73 дптр.

    Редуцированный глаз, как единая линза, обращён одной стороной - к воздуху, (абсолютный показатель преломления nвозд = 1), а другой - соприкасается с жидкостью, nж=1,336. Так что левый и правый фокусные расстояния не одинаковы; если переднее фокусное расстояние в среднем F1 = 17 мм, то заднее - F2 = 23 мм. Оптический центр системы - в глубине глаза на расстоянии 7,5 мм от наружной поверхности роговицы.

    Основной преломляющий элемент этой системы – роговица - имеет не сферическую, а более сложную форму преломляющих поверхностей, и это - хороший удар по сферической аберрации.

    Хрусталик меняет свою оптическую силу при сокращении или расслаблении цириальных мышц; этим достигается аккомодация глаза - его приспособление к фокусировке изображения на сетчатке как при рассматривании удалённых, так и близких предметов. Необходимое напряжение этих мышц даёт информацию о расстоянии до рассматриваемого предмета, даже если мы рассматриваем его одним глазом. Общее количество света, поступающее в глаз, регулируется радужной оболочкой. Она может быть разной по цвету, и потому люди бывают голубоглазые, кареглазые и т.п. Она управляется парой мышц. Имеется мышца, сужающая зрачки (циркулярная мышца), имеется мышца, его расширяющая (радиальная мышца).

    Рассмотрим далее особенности строения сетчатки. Её назначение - преобразовать оптическое изображение, полученное на её поверхности, в потоки электрических нервных импульсов, поступающих в мозг. Эти преобразования осуществляются клетками-фоторецепторами двух типов, получивших, в связи с особенностями своей формы, название колбочек и палочек.

    Колбочки-фоторецепторы дневного зрения. Обеспечивают цветовое зрение. Палочки - рецепторы сумеречного зрения. Каждый глаз человека содержит примерно 125*106 палочек и 5*106 колбочек, итого 130*106 фоторецепторов. Колбочки и палочки распределены по сетчатке очень неравномерно: на периферии размещены только палочки, чем ближе к области жёлтого пятна, тем больше встречается колбочек; в жёлтом пятне размещены только колбочки и их плотность (количество на единицу площади) очень велика, так что здесь эти клетки даже «изготавливаются» в малогабаритном варианте - они более мелкие, чем в других областях сетчатки.

    Область жёлтого пятна сетчатки - это область наилучшего зрения. Здесь мы фокусируем изображение предмета, если хотим разглядеть этот предмет особо тщательно.

    Плотность «упаковки» колбочек в жёлтом пятне определяет остроту нашего зрения. Плотность эта, в среднем, такова, что на отрезке длиной 5 мкм умещаются три колбочки. Для того, чтобы глаз различал две точки предмета, необходимо, чтобы между двумя засвеченными колбочками непременно находилась одна не засвеченная.

    Рефракция (преломление) света в глазе является нормальной, если изображение предмета, даваемое оптической системой глаза, ложится на наружные сегменты фоторецепторов, и при этом мышцы, управляющие кривизной хрусталика, расслаблены. Такая (нормальная) рефракция называетсяэмметропией.

    Отклонение от эмметропии – аметропия – встречается в двух разновидностях.Миопия (близорукость) – изображение фокусируется не на сетчатке, а перед ней, то есть преломление света в глазе происходит «слишком хорошо». Эта избыточность устранима рассеивающими очковыми линзами (оптическая сила отрицательная).

    Гиперметропия (дальнозоркость) – разновидность аметропии, при которой изображение формируется за сетчаткой. Чтобы вернуть изображение на сетчатку, надо «помочь» глазу собирающей очковой линзой (оптическая сила положительная). Говоря иначе, если оптическая сила глаза недостаточна, её можно увеличить дополнительным слагаемым - оптической силой собирающей очковой линзы.

    Появление контактных линз вместо классических очков поначалу воспринималось чуть ли не как революция.

    При обсуждении возможностей контактной линзы необходимо принять во внимание, что относительный показатель преломления на первой (по ходу луча) поверхности контактной линзы фактически равен абсолютному показателю преломления материала линзы, а на второй поверхности он равен отношению абсолютных показателей преломления роговицы и линзы.

    При внедрении любого изобретения рано или поздно обнаруживаются как достоинства, так и недостатки. Классические очки и контактные линзы, в их нынешнем виде, можно сопоставить следующим образом:

    Классические очки легко одевать и снимать, но не удобно носить;

    Контактные линзы удобно носить, но не удобно надевать и снимать.

    Лазерная коррекция зрения – это микрооперация на наружной поверхности роговицы. Напомним, что роговица - основной светопреломляющий элемент оптической системы глаза. Коррекция зрения достигается изменением кривизны наружной поверхности роговицы. Например, если сделать поверхность более плоской, (т.е. увеличить радиус кривизны R), то согласно формуле (4) оптическая силаDэтой поверхности уменьшится.

    Серьёзные проблемы со зрением возникают при отслоении сетчатки. В этих случаях нашёл применение метод закрепления сетчатки на предусмотренном природой месте с помощью фокусированного лазерного луча. Этот способ закрепления подобен точечной сварке металлов в технике. Сфокусированный луч создаёт малую зону повышенной температуры, в которой происходит «сварка» биологических тканей (в прямом и переносном смысле).

    Ретиналь - одна из двух основных компонент родопсина – это альдегид витамина А. С учётом того, что наружные сегменты фоторецепторов постоянно обновляются, полноценное обеспечение организма витамином А отвечает интересам поддержания зрительной системы в хорошем состоянии.

    4 . Оптический микроскоп. Ход лучей в микроскопе. Полезное увеличение микроскопа.

    Микроско́п - прибор, предназначенный для получения увеличенных изображений, а также измерения объектов или деталей структуры, невидимых или плохо видимых невооружённым глазом. Представляет собой совокупность линз.

    Совокупность технологий изготовления и практического использования микроскопов называют микроскопией., В микроскопе различают механическую и оптическую части. Механическая часть представлена штативом (состоящим из основания и тубусодержателя) и укрепленным на нем тубусом с револьвером для крепления и смены объективов. К механической части относятся также: предметный столик для препарата, приспособления для крепления конденсора и светофильтров, встроенные в штатив механизмы для грубого (макромеханизм, макровинт) и тонкого (микромеханизм, микровинт) перемещения предметного столика или тубусодержателя.

    Оптическая часть представлена объективами, окулярами и осветительной системой, которая в свою очередь состоит из расположенных под предметным столиком конденсора Аббе и встроенного осветителя с низковольтной лампой накаливания и трансформатором. Объективы ввинчиваются в револьвер, а соответствующий окуляр, через который наблюдают изображение, устанавливают с противоположной стороны тубуса.

    К механической части относится штатив, состоящий из основания и тубусодержателя. Основание служит опорой микроскопа и несет всю конструкцию штатива. В основании микроскопа находится также гнездо для зеркала или встроенный осветитель.

    предметный столик, служащий для размещения препаратов и горизонтальногоих перемещения;

    узел для крепления и вертикального светофильтров.

    Полезное увеличение – это видимое увеличение, при котором глаз наблюдателя будет полностью использовать разрешающую способность микроскопа, то есть разрешающая способность микроскопа будет такая же, как и разрешающая способность глаза Максимальное полезное увеличение микроскопа, т. е. увеличение, с которым выявляются детали рассматриваемого предмета, определяется по формуле

    где d1 – максимальная разрешающая способность человеческого глаза, равная 0,3 мм; d – максимальная разрешающая способность оптической системы.

    "

    Типичными световыми эффектами, с которыми каждый человек сталкивается часто в быту, являются отражение и преломление. В данной статье рассмотрим случай, когда оба эффекта проявляют себя в рамках одного процесса, речь пойдет о явлении внутреннего полного отражения.

    Отражение света

    Перед тем как рассматривать явление следует познакомиться с эффектами обычного отражения и преломления. Начнем с первого из них. Для простоты будем рассматривать только свет, хотя эти явления характерны для волны любой природы.

    Под отражением понимают изменение одной прямолинейной траектории, вдоль которой движется луч света, на другую прямолинейную траекторию, когда он встречает на своем пути препятствие. Этот эффект можно наблюдать, если направить лазерную указку на зеркало. Появление изображений неба и деревьев при взгляде на водную поверхность - это тоже результат отражения солнечного света.

    Для отражения справедлив следующий закон: углы падения и отражения лежат в одной плоскости вместе с перпендикуляром к отражающей поверхности и являются равными друг другу.

    Преломление света

    Эффект преломления подобен отражению, только возникает он, если препятствие на пути светового луча представляет собой другую прозрачную среду. В этом случае часть первоначального луча отражается от поверхности, а часть проходит во вторую среду. Эта последняя часть называется преломленным лучом, а угол, который он образует с перпендикуляром к поверхности раздела сред, носит название угла преломления. Преломленный луч лежит в той же плоскости, что отраженный и падающий.

    Яркими примерами преломления можно назвать излом карандаша в стакане с водой или обманчивая глубина озера, когда человек смотрит сверху на его дно.

    Математически это явление описывают с помощью закона Снелла. Соответствующая формула выглядит так:

    Здесь и преломления обозначены как θ 1 и θ 2 соответственно. Величины n 1 , n 2 отражают скорость движения света в каждой среде. Они называются показателями преломления сред. Чем больше n, тем медленнее движется свет в данном материале. К примеру, в воде скорость света на 25% меньше, чем в воздухе, поэтому для нее показатель преломления равен 1,33 (для воздуха он равен 1).

    Явление полного внутреннего отражения

    Приводит к одному интересному результату, когда луч распространяется из среды с большим n. Рассмотрим подробнее, что при этом будет происходить с лучом. Выпишем формулу Снелла:

    n 1 * sin (θ 1) = n 2 * sin (θ 2).

    Будем считать, что n 1 >n 2 . В таком случае, чтобы равенство оставалось верным, θ 1 должен быть меньше, чем θ 2 . Этот вывод справедлив всегда, поскольку рассматриваются только углы от 0 o до 90 o , в пределах которых функция синуса постоянно возрастает. Таким образом, при выходе из более плотной оптической среды в менее плотную (n 1 >n 2) луч сильнее отклоняется от нормали.

    Теперь будем увеличивать угол θ 1 . В итоге наступит момент, когда θ 2 будет равен 90 o . Возникает удивительное явление: испущенный из более плотной среды луч в ней и останется, то есть для него граница раздела двух прозрачных материалов станет непрозрачной.

    Критический угол

    Угол θ 1 , для которого θ 2 = 90 o , принято называть критическим для рассматриваемой пары сред. Любой луч, падающий на поверхность раздела под углом, большим чем критический, отражается полностью в первую среду. Для критического угла θ c можно записать выражение, которое непосредственно следует из формулы Снелла:

    sin (θ c) = n 2 / n 1 .

    Если второй средой является воздух, то это равенство упрощается до вида:

    sin (θ c) = 1 / n 1 .

    Например, критический угол для воды составляет:

    θ c = arcsin (1 / 1,33) = 48,75 o .

    Если нырнуть на дно бассейна и посмотреть вверх, то можно увидеть небо и бегущие по нему облака только над собственной головой, на всей остальной поверхности воды будут видны лишь стенки бассейна.

    Из приведенных рассуждений ясно, что, в отличие от преломления, полное отражение не является обратимым явлением, оно происходит только при переходе из более плотной в менее плотную среду, но не наоборот.

    Полное отражение в природе и технике

    Пожалуй, самым распространенным в природе эффектом, который невозможен без полного отражения, является радуга. Цвета радуги - это результат дисперсии белого света в дождевых каплях. Однако когда лучи проходят внутри этих капель, то они испытывают либо однократное, либо двукратное внутреннее отражение. Именно поэтому радуга всегда появляется двойной.

    Явление внутреннего полного отражения применяют в оптоволоконной технике. Благодаря оптическим волокнам удается передавать без потерь электромагнитные волны на большие расстояния.

    Распространение электромагнитных волн в различных средах подчиняется законам отражения и преломления. Из этих законов при определенных условиях следует один интересный эффект, который в физике получил название полного внутреннего отражения света. Подробнее рассмотрим, что этот эффект собой представляет.

    Отражение и преломление

    Перед тем как переходить непосредственно к рассмотрению внутреннего полного отражения света, необходимо дать пояснение процессам отражения и преломления.

    Под отражением понимают изменение направления движения светового луча в той же среде, когда он встречает какую-либо поверхность раздела. Например, если направить от лазерной указки на зеркало, то можно наблюдать описанный эффект.

    Преломление - это, так же как и отражение, изменение направления движения света, но уже не в первой, а во второй среде. Результатом этого явления будет искажение очертаний предметов и их пространственного расположения. Бытовым примером преломления является излом карандаша или ручки, если он/она помещается в стакан с водой.

    Преломление и отражение связаны друг с другом. Они практически всегда присутствуют вместе: часть энергии луча отражается, а другая часть преломляется.

    Оба явления - это результат применение принципа Ферма. Он утверждает, что свет движется по такой траектории между двумя точками, которая займет у него наименьшее время.

    Поскольку отражение - это эффект, происходящий в одной среде, а преломление - в двух средах, то для последнего важно, чтобы обе среды были прозрачными для электромагнитных волн.

    Понятие о показателе преломления

    Показатель преломления является важной величиной для математического описания рассматриваемых явлений. Показатель преломления конкретной среды определяется так:

    Где c и v - скорости света в вакууме и веществе соответственно. Величина v всегда меньше, чем c, поэтому показатель n будет больше единицы. Безразмерный коэффициент n показывает, как сильно свет в веществе (среде) будет отставать от света в вакууме. Различие этих скоростей ведет к возникновению явления преломления.

    Скорость света в веществе коррелирует с плотностью последнего. Чем плотнее среда, тем тяжелее свету в ней двигаться. Например, для воздуха n = 1,00029, то есть почти как для вакуума, для воды же n = 1,333.

    Отражения, преломление и их законы

    Ярким примером результата полного отражения являются блестящие поверхности алмаза. Показатель преломления для алмаза равен 2,43, поэтому многие лучи света, попав в драгоценный камень, испытывают многократное полное отражение, прежде чем выйти из него.

    Задача на определение критического угла θc для алмаза

    Рассмотрим простую задачу, где покажем, как использовать приведенные формулы. Необходимо рассчитать, на сколько изменится критический угол полного отражения, если алмаз из воздуха поместить в воду.

    Посмотрев в таблице значения для показателей преломления указанных сред, выпишем их:

    • для воздуха: n 1 = 1,00029;
    • для воды: n 2 = 1,333;
    • для алмаза: n 3 = 2,43.

    Критический угол для пары алмаз-воздух составляет:

    θ c1 = arcsin(n 1 /n 3) = arcsin(1,00029/2,43) ≈ 24,31 o .

    Как видно, критический угол для этой пары сред достаточно маленький, то есть только те лучи могут выйти из алмаза в воздух, которые будут находиться к нормали ближе, чем 24,31 o .

    Для случая алмаза в воде получаем:

    θ c2 = arcsin(n 2 /n 3) = arcsin(1,333/2,43) ≈ 33,27 o .

    Увеличение критического угла составило:

    Δθ c = θ c2 - θ c1 ≈ 33,27 o - 24,31 o = 8,96 o .

    Это незначительное увеличение критического угла для полного отражения света в алмазе приводит к тому, что он в воде блестит практически так же, как на воздухе.

    Для начала немного пофантазируем. Представьте жаркий летний день до нашей эры, первобытный человек при помощи остроги охотится на рыбу. Замечает ее положение, целится и наносит удар почему-то вовсе не туда, где была видна рыба. Промахнулся? Нет, в руках у рыбака добыча! Все дело в том, что наш предок интуитивно разбирался в теме, которую мы будем изучать сейчас. В повседневной жизни мы видим, что ложка, опущенная в стакан с водой, кажется кривой, когда мы смотрим через стеклянную банку - предметы кажутся искривленными. Все эти вопросы мы рассмотрим на уроке, тема которого: «Преломление света. Закон преломления света. Полное внутренне отражение».

    На предыдущих уроках мы говорили о судьбе луча в двух случаях: что будет, если луч света распространяется в прозрачно однородной среде? Правильный ответ - он будет распространяться прямолинейно. А что будет, когда луч света падает на границу раздела двух сред? На прошлом уроке мы говорили об отраженном луче, сегодня мы рассмотрим ту часть светового пучка, которая поглощается средой.

    Какова же будет судьба луча, который проник из первой оптически прозрачной среды, во вторую оптически прозрачную среду?

    Рис. 1. Преломление света

    Если луч падает на границу раздела двух прозрачных сред, то часть световой энергии возвращается в первую среду, создавая отраженный пучок, а другая часть проходит внутрь во вторую среду и при этом, как правило, изменяет свое направление.

    Изменение направления распространения света в случае его прохождения через границу раздела двух сред называют преломлением света (рис. 1).

    Рис. 2. Углы падения, преломления и отражения

    На рисунке 2 мы видим падающий луч, угол падания обозначим α. Луч, который будет задавать направление преломленного пучка света, будем называть преломленным лучом. Угол между перпендикуляром к границе раздела сред, восстановленным из точки падения, и преломленным лучом называют углом преломления, на рисунке это угол γ. Для полноты картины дадим еще изображение отображенного луча и, соответственно, угла отражения β. Какова же связь между углом падения и углом преломления, можно ли предсказать, зная угол падения и то, с какой среды в какую перешел луч, каким будет угол преломления? Оказывается можно!

    Получим закон, количественно описывающий зависимость между углом падения и углом преломления. Воспользуемся принципом Гюйгенса, который регламентирует распространение волны в среде. Закон состоит из двух частей.

    Падающий луч, преломленный луч и перпендикуляр, восстановленный в точку падения, лежат в одной плоскости .

    Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и равна отношению скоростей света в этих средах.

    Этот закон называют законом Снеллиуса, в честь голландского ученого, впервые его сформулировавшего. Причина преломления - в разнице скоростей света в разных средах. Убедиться в справедливости закона преломления можно, экспериментально направляя луч света под разными углами на границу раздела двух сред и измеряя углы падения и преломления. Если менять эти углы, измерять синусы и находить отношения синусов этих углов, мы убедимся в том, что закон преломления действительно справедлив.

    Доказательства закона преломления при помощи принципа Гюйгенса - еще одно подтверждение волновой природы света.

    Относительный показатель преломления n 21 показывает, во сколько раз скорость света V 1 в первой среде отличается от скорости света V 2 во второй среде.

    Относительный показатель преломления - это наглядная демонстрация того факта, что причина изменения направления света при переходе из одной среды в другую - это разная скорость света в двух средах. Часто для характеристики оптических свойств среды пользуются понятием «оптическая плотность среды» (рис. 3).

    Рис. 3. Оптическая плотность среды (α > γ)

    Если луч переходит из среды с большей скоростью света в среду с меньшей скоростью света, то, как видно из рисунка 3 и закона преломления света, он будет прижиматься к перпендикуляру, то есть угол преломления меньше, чем угол падения. В этом случае говорят, что луч перешел из менее плотной оптической среды в более оптически плотную среду. Пример: из воздуха в воду; из воды в стекло.

    Возможна и обратная ситуация: скорость света в первой среде меньше скорости света во второй среде (рис. 4).

    Рис. 4. Оптическая плотность среды (α < γ)

    Тогда угол преломления будет больше угла падения, а про такой переход скажут, что он совершен из оптически более плотной в менее оптически плотную среду (из стекла в воду).

    Оптическая плотность двух сред может отличаться достаточно существенно, таким образом, становится возможна ситуация, приведенная на фотографии (рис. 5):

    Рис. 5. Отличие оптической плотности сред

    Обратите внимание, насколько смещена голова относительно туловища, находящегося в жидкости, в среде с большей оптической плотностью.

    Однако относительный показатель преломления - не всегда удобная для работы характеристика, потому что он зависит от скоростей света в первой и во второй средах, а вот таких сочетаний и комбинаций двух сред может быть очень много (вода - воздух, стекло - алмаз, глицерин - спирт, стекло - вода и так далее). Таблицы были бы очень громоздкими, работать было бы неудобно, и тогда ввели одну абсолютную среду, по сравнению с которой сравнивают скорость света в других средах. В качестве абсолюта был выбран вакуум и скорости света сравниваются со скоростью света в вакууме.

    Абсолютный показатель преломления среды n - это величина, которая характеризует оптическую плотность среды и равна отношению скорости света С в вакууме к скорости света в данной среде.

    Абсолютный показатель преломления удобнее для работы, ведь мы скорость света в вакууме знаем всегда, она равна 3·10 8 м/с и является универсальной физической постоянной.

    Абсолютный показатель преломления зависит от внешних параметров: температуры, плотности, а также от длины волны света, поэтому в таблицах обычно указывают средний показатель преломления для данного диапазона длин волн. Если сравнить показатели преломления воздуха, воды и стекла (Рис. 6), то видим, что у воздуха показатель преломления близок к единице, поэтому мы и будем его брать при решении задач за единицу.

    Рис. 6. Таблица абсолютных показателей преломления для разных сред

    Несложно получить связь абсолютного и относительного показателя преломления сред.

    Относительный показатель преломления , то есть для луча, переходящего из среды один в среду два, равен отношению абсолютного показателя преломления во второй среде к абсолютному показателю преломления в первой среде.

    Например: = ≈ 1,16

    Если абсолютные показатели преломления двух сред практически одинаковы, это значит, что относительный показатель преломления при переходе из одной среды в другую будет равен единице, то есть луч света фактически не будет преломляться. Например, при переходе из анисового масла в драгоценный камень берилл свет практически не отклонится, то есть будет вести себя так, как при прохождении анисового масла, так как показатель преломления у них 1,56 и 1,57 соответственно, таким образом, драгоценный камень можно как бы спрятать в жидкости, его просто не будет видно.

    Если налить воду в прозрачный стакан и посмотреть через стенку стакана на свет, то мы увидим серебристый блеск поверхности вследствие явления полного внутреннего отражения, о котором сейчас пойдет речь. При переходе луча света из более плотной оптической среды в менее плотную оптическую среду может наблюдаться интересный эффект. Для определенности будем считать, что свет идет из воды в воздух. Предположим, что в глубине водоема находится точечный источник света S, испускающий лучи во все стороны. Например, водолаз светит фонариком.

    Луч SО 1 падает на поверхность воды под наименьшим углом, этот луч частично преломляется - луч О 1 А 1 и частично отражается назад в воду - луч О 1 В 1 . Таким образом, часть энергии падающего луча передается преломленному лучу, а оставшаяся часть энергии - отраженному лучу.

    Рис. 7. Полное внутреннее отражение

    Луч SО 2 , чей угол падения больше, также разделяется на два луча: преломленный и отраженный, но энергия исходного луча распределяется между ними уже по-другому: преломленный луч О 2 А 2 будет тусклее, чем луч О 1 А 1 , то есть получит меньшую долю энергии, а отраженный луч О 2 В 2 , соответственно, будет ярче, чем луч О 1 В 1 , то есть получит большую долю энергии. По мере увеличения угла падения прослеживается все та же закономерность - все большая доля энергии падающего луча достается отраженному лучу и все меньшая - преломленному лучу. Преломленный луч становится все тусклее и в какой-то момент исчезает совсем, это исчезновение происходит при достижении угла падения, которому отвечает угол преломления 90 0 . В данной ситуации преломленный луч ОА должен был бы пойти параллельно поверхности воды, но идти уже нечему - вся энергия падающего луча SО целиком досталась отраженному лучу ОВ. Естественно, что при дальнейшем увеличении угла падения преломленный луч будет отсутствовать. Описанное явление и есть полное внутреннее отражение, то есть более плотная оптическая среда при рассмотренных углах не выпускает из себя лучи, все они отражаются внутрь нее. Угол, при котором наступает это явление, называется предельным углом полного внутреннего отражения.

    Величину предельного угла легко найти из закона преломления:

    = => = arcsin, для воды ≈ 49 0

    Самым интересным и востребованным применением явления полного внутреннего отражения являются так называемые волноводы, или волоконная оптика. Это как раз тот способ подачи сигналов, который используется современными телекоммуникационными компаниями в сетях Интернет.

    Мы получили закон преломления света, ввели новое понятие - относительный и абсолютный показатели преломления, а также разобрались с явлением полного внутреннего отражения и его применением, таким как волоконная оптика. Закрепить знания можно, разобрав соответствующие тесты и тренажеры в разделе урока.

    Получим доказательство закона преломления света при помощи принципа Гюйгенса. Важно понимать, что причина преломления - это разность скоростей света в двух различных средах. Обозначим скорость света в первой среде V 1 , а во второй среде - V 2 (рис. 8).

    Рис. 8. Доказательство закона преломления света

    Пусть на плоскую границу раздела двух сред, например из воздуха в воду, падает плоская световая волна. Волновая поверхность АС перпендикулярна лучам и , поверхности раздела сред МN сначала достигает луч , а луч достигнет этой же поверхности спустя промежуток времени ∆t, который будет равен пути СВ, деленному на скорость света в первой среде .

    Поэтому в момент времени, когда вторичная волна в точке В только начнет возбуждаться, волна от точки А уже имеет вид полусферы радиусом АD, который равен скорости света во второй среде на ∆t: АD = ·∆t, то есть принцип Гюйгенса в наглядном действии. Волновую поверхность преломленной волны можно получить, проведя поверхность, касательную ко всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред, в данном случае это плоскость ВD, она является огибающей вторичных волн. Угол падения α луча равен углу САВ в треугольнике АВС, стороны одного из этих углов перпендикулярны сторонам другого. Следовательно, СВ будет равно скорости света в первой среде на ∆t

    СВ = ·∆t = АВ·sin α

    В свою очередь, угол преломления будет равен углу АВD в треугольнике АВD, поэтому:

    АD = ·∆t = АВ·sin γ

    Разделив почленно выражения друг на друга, получим:

    n - постоянная величина, которая не зависит от угла падения.

    Мы получили закон преломления света, синус угла падения к синусу угла преломления есть величина постоянная для данных двух сред и равная отношению скоростей света в двух данных средах.

    Кубический сосуд с непрозрачными стенками расположен так, что глаз наблюдателя не видит его дна, но полностью видит стенку сосуда СD. Какое количество воды нужно налить в сосуд, чтобы наблюдатель смог увидеть предмет F, находящийся на расстоянии b = 10 см от угла D? Ребро сосуда α = 40 см (рис. 9).

    Что очень важно при решении этой задачи? Догадаться, что так как глаз не видит дна сосуда, но видит крайнюю точку боковой стенки, а сосуд представляет из себя куб, то угол падения луча на поверхность воды, когда мы ее нальем, будет равен 45 0 .

    Рис. 9. Задача ЕГЭ

    Луч падает в точку F, это значит, что мы видим четко предмет, а черным пунктиром изображен ход луча, если бы не было воды, то есть до точки D. Из треугольника NFК тангенс угла β, тангенс угла преломления, - это отношение противолежащего катета к прилежащему или, исходя из рисунка, h минус b, деленное на h.

    tg β = = , h - это высота жидкости, которую мы налили;

    Наиболее интенсивное явление полного внутреннего отражения используется в волоконных оптических системах.

    Рис. 10. Волоконная оптика

    Если в торец сплошной стеклянной трубки направить пучок света, то после многократного полного внутреннего отражения пучок выйдет с противоположной стороны трубки. Получается, что стеклянная трубка - проводник световой волны или волновод. Это произойдет независимо от того, прямая это трубка или изогнутая (Рис. 10). Первые световоды, это второе название волноводов, использовались для подсвечивания труднодоступных мест (при проведении медицинских исследований, когда свет подается на один конец световода, а второй конец освещает нужное место). Основное применение - это медицина, дефектоскопия моторов, однако наибольшее применение такие волноводы получили в системах передачи информации. Несущая частота при передаче сигнала световой волной в миллион раз превышает частоту радиосигнала, это значит, что количество информации, которое мы можем передать при помощи световой волны, в миллионы раз больше количества информации, передающейся радиоволнами. Это прекрасная возможность передачи огромной информации простым и недорогим способом. Как правило, информация по волоконному кабелю передается при помощи лазерного излучения. Волоконная оптика незаменима для быстрой и качественной передачи компьютерного сигнала, содержащего большой объем передаваемой информации. А в основе всего этого лежит такое простое и обычное явление, как преломление света.

    Список литературы

    1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
    2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
    3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
    1. Edu.glavsprav.ru ().
    2. Nvtc.ee ().
    3. Raal100.narod.ru ().
    4. Optika.ucoz.ru ().

    Домашнее задание

    1. Дать определение преломления света.
    2. Назовите причину преломления света.
    3. Назовите самые востребованные применения полного внутреннего отражения.

    При некотором угле падения света ${\alpha }_{pad}={\alpha }_{pred}$, который называют предельным углом , угол преломления равен $\frac{\pi }{2},\ $при этом преломленный луч скользит по поверхности раздела сред, следовательно, преломленный луч отсутствует. Тогда из закона преломления можно записать, что:

    Рисунок 1.

    В случае полного отражения уравнение:

    не имеет решения в области действительных значений угла преломления (${\alpha }_{pr}$). В таком случае $cos{(\alpha }_{pr})$ чисто мнимая величина. Если обратиться к Формулам Френеля, то их удобно представить в виде:

    где угол падения обозначен $\alpha $ (для краткости написания), $n$ -- показатель преломления среды, где свет распространяется.

    Из формул Френеля видно, что модули $\left|E_{otr\bot }\right|=\left|E_{otr\bot }\right|$, $\left|E_{otr//}\right|=\left|E_{otr//}\right|$, что означает, что отражение является «полным».

    Замечание 1

    Надо отметить, что неоднородная волна во второй среде не исчезает. Так, если $\alpha ={\alpha }_0={arcsin \left(n\right),\ то\ }$ $E_{pr\bot }=2E_{pr\bot }.$ Нарушения закона сохранения энергии в данном случае нет. Так как формулы Френеля справедливы для монохроматического поля, то есть к установившемуся процессу. В таком случае закон сохранения энергии требует, чтобы среднее за период изменение энергии во второй среде было равно нулю. Волна и соответствующая доля энергии проникает через грани цу раздела во вторую среду на небольшую глубину порядка длины волны и движется в ней параллельно границе раздела с фазовой скоростью, которая меньше фазовой скорости волны во второй среде. Он возвращается в первую среду в точке, которая смещена относительно точки входа.

    Проникновение волны во вторую среду можно наблюдать в эксперименте. Интенсивность световой волны во второй среде заметна только на расстояниях меньших длины волны. Около поверхности раздела, на которую падает волна света, которая испытывает полное отражение, на стороне второй среды можно видеть свечение тонкого слоя, если во второй среде есть флуоресцирующее вещество.

    Полное отражение вызывает возникновение миражей, когда поверхность земли имеет высокую температуру. Так, полное отражение света, которое идет от облаков приводит к появлению впечатления, что на поверхности нагретого асфальта находятся лужи.

    При обычном отражении отношения $\frac{E_{otr\bot }}{E_{pad\bot }}$ и $\frac{E_{otr//}}{E_{pad//}}$ всегда вещественны. При полном отражении они комплексны. Это значит, что в таком случае фаза волны терпит скачок, при этом он отличен от нуля или $\pi $. Если волна поляризована перпендикулярно плоскости падения, то можно записать:

    где ${\delta }_{\bot }$ - искомый скачок фазы. Приравняем вещественные и мнимые части, имеем:

    Из выражений (5) получаем:

    Соответственно, для волны, которая поляризована в плоскости падения можно получить:

    Скачки фаз ${\delta }_{//}$ и ${\delta }_{\bot }$ не одинаковы. Отраженная волна будет поляризована эллиптически.

    Применение полного отражения

    Допустим, что две одинаковые среды разделены тонким воздушным промежутком. На него падает световая волна под углом, который больше, чем предельный. Может сложиться так, что она проникнет в воздушный промежуток как неоднородная волна. Если толщина зазора мала, то данная волна достигнет второй границы вещества и при этом будет не очень ослабленной. Перейдя из воздушного промежутка в вещество, волна превратится снова в однородную. Такой опыт был проведен еще Ньютоном. Ученый прижимал к гипотенузной грани прямоугольной призмы другую призму, которая со шлифована сферически. При этом свет проходил во вторую призму не только там, где они соприкасаются, но и в небольшом кольце вокруг контакта, в месте, где толщина зазора сравнима с длинной волны. Если наблюдения проводились в белом свете, то край кольца имел красноватую окраску. Так и должно быть, так как глубина проникновения пропорциональна длине волны (для красных лучей она больше, чем для синих). Изменяя толщину промежутка, можно изменять интенсивность проходящего света. Это явление легло в основу светового телефона, который был запатентован фирмой Цейсс. В этом устройстве в качестве одной из сред выступает прозрачная мембрана, которая совершает колебания под действием звука, падающего на нее. Свет, который проходит сквозь воздушный промежуток, изменяет интенсивность в такт с изменениями силы звука. Попадая на фотоэлемент, он порождает переменный ток, который меняется в соответствии с изменениями силы звука. Полученный ток усиливается и используется далее.

    Явления проникновения волн сквозь тонкие промежутки не специфичны для оптики. Это возможно для волны любой природы, если фазовая скорость в промежутке выше, чем фазовая скорость в окружающей среде. Важное значение данное явление имеет в ядерной и атомной физике.

    Явление полного внутреннего отражения используют для изменения направления распространения света. С этой целью используют призмы.

    Пример 1

    Задание: Приведите пример явления полного отражения, которое часто встречается.

    Решение:

    Можно привести такой пример. Если шоссейная дорога сильно нагрета, то температура воздуха максимальна около поверхности асфальта и убывает при увеличении расстояния от дороги. Значит, показатель преломления воздуха минимален у поверхности и растет при увеличении расстояния. Как результат этого, лучи, имеющие небольшой угол относительно поверхности шоссе терпят полное отражение. Если сконцентрировать свое внимание, при движении в автомобиле, на подходящем участке поверхности шоссе, то можно увидеть довольно далеко едущую впереди машину в перевернутом виде.

    Пример 2

    Задание: Каков угол Брюстера для пучка света, который падает на поверхность кристалла, если предельный угол полного отражения для данного пучка на границе раздела воздух -- кристалл равен 400?

    Решение:

    \[{tg(\alpha }_b)=\frac{n}{n_v}=n\left(2.2\right).\]

    Из выражения (2.1) имеем:

    Подставим правую часть выражения (2.3) в формулу (2.2), выразим искомый угол:

    \[{\alpha }_b=arctg\left(\frac{1}{{sin \left({\alpha }_{pred}\right)\ }}\right).\]

    Проведем вычисления:

    \[{\alpha }_b=arctg\left(\frac{1}{{sin \left(40{}^\circ \right)\ }}\right)\approx 57{}^\circ .\]

    Ответ: ${\alpha }_b=57{}^\circ .$