Радиометрические методы для определения концентрации. Радиометрический анализ

Радиометрические методы анализа основаны на измерении излучений, испускаемых радиоактивными элементами. Для регистрации излучений применяют специальные установки с использованием счетчиков Гейгера-Мюллера (рис. 73). При действии приемник радиоактивных излучений в нем возникает электрический ток в виде кратковременных импульсов, которые специальной радиотехнической аппаратурой усиливаются, выравниваются по величине и поступают на регистрирующее счетное устройство.

Радиометрические методы анализа отличаются рядом преимуществ по сравнению с химическими методами. Прежде всего следует отметить их высокую чувствительность, которая значительно выше чувствительности химических и других физических и физико-химических методов анализа.

Чувствительность этих методов характеризуется, например, следующими данными:

Эти методы анализа применяются для количественного определения микропримесей различных элементов в металлах и неметаллах высокой степени чистоты.

Следует отметить, однако, что точность радиометрических методов невысока и составляет (относительных). Химические методы анализа отличаются более высокой точностью. Но там, где обычные весовой и объемный методы анализа дают большие ошибки, как, например, при определении ничтожно малых примесей, радиометрические методы являются незаменимыми.

Различают следующие радиометрические методы:

1. Метод изотопного разбавления. Метод изотопного разбавления, как указывает само название, основан на разбавлении соединения, меченного радиоактивным изотопом, неактивным компонентом смеси. Для этого к анализируемой смеси добавляют некоторое количество соединения, меченного одним из радиоизотопов и по своему составу совпадающего с определяемым компонентом.

При этом удельная активность соединения, меченного радиоактивным изотопом, уменьшится. Если выделить часть анализируемого вещества, то можно определить конечную удельную активность. Зная начальную и конечную удельные активности, легко вычислить содержание определяемого вещества.

Преимущество этого метода анализа заключается в том, что отпадает необходимость в количественном выделении определяемого вещества при условии полного смешения изотопов. Достаточно выделить лишь часть его в химически чистом виде.

Рис. 73. Установка для регистрации радиоактивных излучений: а - счетчики Гейгера-Мюллера; б - внешний вид счетной установки; в - схема счетной установкм; 1 - газовый счетчик; 2 - высоковольтный выпрямитель; 3 - усилитель; 4 - пересчетное устройство; 5 - электромеханический счетчик.

Если некоторое количество вещества, отвечающее по составу определяемому соединению, имеет массу и радиоактивность А, то его удельная активность 1г равна:

При добавлении точного количества такого вещества к определенной навеске анализируемого неактивного соединения удельная активность смеси будет равна:

Решая систему приведенных выше уравнений, получим:

но так как , то

где - объем радиоактивного раствора с известной концентрацией С - объем исследуемого раствора; - концентрация анализируемого раствора.

В случае если , формула (1) принимает вид:

Метод изотопного разбавления имеет преимущество перед другими радиометрическими методами в тех случаях, когда полное выделение исследуемого вещества из анализируемой смеси затруднительно или невозможно.

2. Радиоактивационный анализ. Принцип этого метода заключается в переводе стабильных изотопов элемента в радиоактивные, измерение радиоактивности которых служит критерием содержания данного элемента в анализируемом объекте. Для этого анализируемые образцы подвергают облучению, например, в атомном реакторе.

Активность измеряют при помощи специальных счетных устройств.

Период полураспада и энергия излучения являются специфичными для индивидуальных радиоизотопов, т. е. применяя радиоактивационный анализ, можно контролировать чистоту получаемых веществ.

Измерив радиоактивность и зная время облучения, интенсивность потока облучающих частиц, соответствующие ядерно-физические данные определяемого элемента, можно вычислить его весовое количество.

Одновременно с исследуемым веществом облучают стандартные образцы, содержащие точно известные количества определяемых элементов. Сравнивая в одинаковых условиях активности определяемого вещества и стандартных образцов, можно вычислить содержание определяемого элемента.

Радиоактивационный метод отличается многими преимуществами по сравнению с другими методами анализа. Метод обладает высокой чувствительностью. Основным недостатком его является то, что не все элементы можно определять этим методом. Образующийся после облучения радиоактивный элемент должен иметь сравнительно большой период полураспада, достаточный для того, чтобы можно было успеть провести химическое разделение и измерение активности выделенного элемента.

Применяя радиоактивационный метод анализа, можно определять микроколичества различных элементов в морской воде; редкоземельных металлов в рудах; золото, платину, палладий и иридий в серебре и никеле; никель, кобальт, медь, мышьяк, теллур в сурьме и т. д.

К числу радиометрических методов анализа также относятся: радиохроматография, нейтронная абсорбциометрия, радиометрическое титрование и др.

Радиометрические методы являются важной частью комплекса поиско­во-разведочных методов на руды радиоактивных элементов, а также полез­ных ископаемых, находящихся в парагенетической связи с радиоактивными элементами (фосфориты, редкие и редкоземельные элементы, осадочные руды ванадия, молибдена и др.).

Радиометрические методы исследования горных пород в усло­виях их естественного залегания можно разделить на две группы:

1. Полевые радиометрические методы (радиометрическая съем­ка), применя­емые для приближенной оценки радиоактивности горных пород;

2. Методы радиометрического опробования, позволяющие более точно опре­делять радиоактивность горных пород в условиях их естественного залега­ния (в скважинах, шурфах, обнажениях и т. п.)

В основе радиометрических методов лежит обнаружение раз­личных поисковых признаков в виде коренных выходов руд и орео­лов рассеяния вокруг рудного тела.

Рассмотрим кратко классификацию ореолов рассеяния, их формирова­ние и важнейшие особенности. Различают открытые ореолы, выходящие на дневную поверхность, и закрытые, разви­вающиеся лишь на некоторой глу­бине от поверхности.

По генети­ческим признакам различают:

1. Первичные (эндогенные) ореолы, образовавшиеся одновременно с форми­ро­ва­нием рудного тела.

2. Вторичные ореолы, образующиеся при пре­образовании руд и первичных ореолов в приповерхностных частях геологического разреза.

Элементный состав первичных ореолов близок к составу самих руд. Их формы подобны формам рудных тел, а размеры значительно превышают раз­меры залежи, распростра­няясь над крутопадающими телами до 100-200 м и более, а в сто­роны от нее до нескольких десятков метров.

Вторичные ореолы могут образовываться в резуль­тате переноса радио­активного вещества и элементов-спутников в твердой, жидкой или газообраз­ной форме. Эти ореолы можно классифицировать по виду вещества, содержа­щего радиоактивные элементы.

Механические ореолы - это область вокруг руд­ного тела, покрытая ру­д­­ными обломками, образовавшимися при физическом выветривании и устойчивыми в поверхностных усло­виях. Образование ме­ханических ореолов урана возможно также за счет устойчивых вторичных скоплений урансодер­жа­щих гидроокислов железа, марганца, глинистых минералов или органи­че­с­ких соединений.

Водные ореолы образуются за счет растворения урана и радия в подзе­мных водах, омывающих рудное тело, и вы­носа их во вмещающие породы.

Солевые ореолы образуются за счет выпадения растворенного в воде урана при взаимодействии вод с вмещающими горными породами или при испарении воды. Солевые ореолы имеют более низкую концентрацию, чем механи­ческие, но гораздо большие размеры (до многих десятков метров, считая от границ залежи). На образование солевых ореолов большое влияние оказывают режим приповерхностных почвенно-грунтовых вод и клима­тичес­кие условия.

Рассеяние газообразных продуктов распада вокруг рудного тела или же вокруг механического и солевого ореолов приводит к образованию газовых (эманационных) ореолов.

Отдельные полевые радиометрические методы поисков на­правлены на обнаружение поисковых признаков, связанных с различными ореолами рас­сеяния радиоактивных элементов.

Радиометрическими методами поисков иногда называют методы, осно­ва­н­ные на изучении радиацион­ных ореолов. Вследствие распространенности закрытых ореолов важной характеристикой полевых (поисковых) методов является их глу­бинность, т. е. максимальная мощность неактивных отложе­ний, перекрывающих рудное тело или ореол рассеяния, при которой возмож­но обнаружение последних. Для повышения надежности поисков радиоме­три­че­ская съемка проводится в комплексе с другими геофизическими, геоло­гическими, гидрохимическими и геохимическими исследованиями. Роль ме­тодов общей геофизики (электро-, магнито-, гравиразведка) осо­бенно велика при поисках месторождений, не имеющих выхода на дневную поверхность. Однако ведущее место при этом остается за радиометрическими методами, среди которых основными являются авиационный, пешеходный и автомо­бильный гамма-методы.

Пешеходный гамма-метод . При поисках месторождений радиоак­тив­ных элементов и со­путствующих им полезных ископаемых применяется пешеходный гамма-метод (гамма-съемка). Широкое применение метода обус­ловлено:

1. Простотой методики, портативной, достаточно чувстви­тельной, простой в обращении аппаратуры;

2. Высокой результа­тивностью и относительно небольшой стоимостью съемки;

3. Воз­можностью применения в любых геоморфологических и климати­чес­ких условиях, включая горные и иные районы, недоступные для авиацион­ных и автомобильных гамма-методов.

В зависимости от задач выделяют рекогносцировочную, маршрутную и пло­щадную съемки.

Глубинность гамма-метода. Для ее оценки рассчитаем поток у-квантов от бесконечного полупростран­ства, перекрытого неактивными наносами мощностью h. Учитывая приближенный характер расчетов, будем исходить из следующей упрощенной модели, в которой необходимо рассчитать поток γ-квантов от бесконечного по простиранию пласта, перекрытого неактивными наносами мощностью h. γ-излучение каждого элемен­тарного объема dV представляется в виде шести пучков, параллельных осям координат и имеющих интенсивность (I 0 /6)*dV, где I 0 – интенсивность γ-излучения элементарного объема. Поток γ-излучения на поверхности земли от тонкого активного слоя толщиной dz, лежащего на глубине z от подошвы наносов, равен:

где μ н и μ п – эффективные коэффициенты поглощения γ-квантов в наносах и в пласте.

Поток излучения от всего полупространства:

где Ф γ0 = I 0 /(6μ п) – поток излучения при нулевой мощности наносов.

За глубинность метода принимается мощность наносов hmax, осла­бляющая интенсивность излучения в 20 раз.

В среднем для наносов μ н ≈ 0.07 см -1 , отсюда h max ≈ 45 см.

Дальнейшее увеличение глубины исследования возможно лишь за счет развития ореолов рассеяния над активными объектами.

Методика проведения пешеходной съемки . По данным рекогносци­ро­вки, пред­шествующей проведению поисков, уточняются природные условия ведения работ, мощность и характер рыхлых отложений, условия формирова­ния в них ореолов рассеяния, нормальные значения радиоактивности отде­ль­ных типов горных пород. Выделяются наиболее перспективные по геоло­ги­ческим данным участки, намечаются маршруты, обычно в крест простирания геологических структур, зон тектонических нарушений, контролирующих оруденения.

Густота точек наблюдения намечается, исходя из масштаба поисков и сложности геологического строения. На участках простого строения с небо­ль­шим изменением радиоактивности по маршруту расстояние между точками наблюдения достигает 20 м при масштабе съемки 1:10 000 и 40 - 50 м при более мелком масштабе съемки. В пределах зон тектонических нару­шений, на участках частой смены пород и при больших колебаниях радиоак­тивности это расстояние уменьшается вдвое.

Пешеходную гамма-съемку по маршрутам проводят путем непрерыв­ного прослушивания излучения пород с помощью телефона и отсчета показа­ний по стрелочному прибору радио­метра в отдельных точках. Оператор мед­ленно передвигается (скорость 1-2 км/ч) по маршруту, держа выносной датчик на высоте 5-10 см от поверхности земли. На намеченных для на­блюдения точках датчик прикладывается к обследуемой поверх­ности. Отсчет записывается в мкР/ч или иногда в делениях шкалы. Кроме измерений по маршруту оператор отклоняется от него в полосе шириной до 100 м для обследования имеющихся там горных выработок, обнажений пород, крупных валунов, осыпей и т. п.

При обнаружении на маршруте точки с повышенным γ-излучением про­водится более тщательное обследование окружающей зоны. После нахо­ж­дения точки с максимальным в этой зоне γ-излучением проводится изме­ре­ние γ-излучения в закопушах с целью обнаружения высокоактивного образ­ца. Аномальные точки отмечаются на местности репером. Для определения размера аномалии проводят дополнительные профили, параллельные мар­шру­ту (основному профилю). На поисковом этапе параллельно проводят геологические наблюдения, отбирают образцы пород, пробы воды, растений, донных осадков для после­дующего лабораторного изучения.

Разновидностью пешеходной гамма-съемки является шпуровая гамма-съемка. Она проводится на площадях, где рудные тела или их ореолы пере­крыты рыхлыми неактивными отложениями мощностью 1-3 м и более и недоступны для обычной гамма-съемки, а применение более глубинных методов (эманационного и др.) нецелесообразно (обводненность отложений, выход на поверх­ность непроницаемых для эманации пород и т. д.). Изме­ря­ют γ-излучения в шпуре (мелкой скважине) через каждые 10-20 см с помощью радиометров с телескопическим зондом.

. Этот этап работ включает:

1. Перевод показаний, зарегистрированных в делениях шкалы, в мкР/ч (с помощью эталонировочного графика или переводной таблицы), и вычита­ние натурального (при измерениях на поверх­ности) или остаточного фона (при измерениях в шпурах).

2. Нанесение на радиометрическую карту результатов измерений, включая радиоактивность обнажений, горных выработок и водопунктов.

3. Графическое изображение результатов съемки в виде карты, профилей инте­н­сивности излучения, карты изолиний интенсивности γ-излучения.

4. Геологическая интерпретация результатов: изучение нор­мального рас­пре­деления радиоактивных элементов в различных комплексах пород; выявление участков повышенной активности среди однотипных пород с целью проведения на этих участках детальных исследований; выявление локальных аномалий γ-поля и их перспективная оценка.

За аномалию принимают превышение активности над средним фоном пород более чем на утроенную величину среднеквадратического отклонения нормального фона. Аномалии γ-поля делят на три группы:

1. Рудные аномалии, связанные с рудными ско­плениями радиоактивных элементов или ореолами их рассеяния. Подразделяются на урановые, уран-ториевые и ториевые.

2. Аномалии, связанные с потоками рассеяния.

3. Безрудные аномалии, связанные с изменением нормальной радиоактив­ности горных пород, степени их обнажения и т. п.

По интенсивности g-излучения выделяют малоинтен­сивные (до 3 - 4 мкР/ч), средней интенсивности (4 - 8 мкР/ч) и интенсивные (более 8 мкР/ч) аномалии. По протяженности аномалии разделяют на локальные (до 0,35 км) и нело­кальные.

Оценка аномалий - завершающий этап наземных поисков, имеющий исключительное значение для определения эффектив­ности поисковых работ. Из большого числа аномалий, выявлен­ных при съемке, лишь несколько про­цен­тов оказываются связан­ными с рудопроявлением, а из последних лишь небольшая часть (несколько десятков процентов) оказываются промышлен­ными месторождениями.

Критерии выделения, перспективных на поиски урана, аномалий:

1. Боль­шинству выходов урановых тел и ореолов рассеяния соответствуют относительно небольшие размеры аномалий - от десятков до 500 м. Поэтому небольшая протяженность аномалий является критерием оценки ее перспективности. Однако, локальные ано­малии наблюдаются также над пегматитами, и обнажениями пород с повышенными кларками радиоактивных элементов, например тория.

2. Достаточно высокая интенсивность γ-излучения, соответствующая содер­жанию урана в приповерхностном слое более 0,01%, является признаком перспективности аномалии.

3. Аномалии, с содержанием урана в 2 - 3 раза выше содержания урана во вме­щающих породах, в некоторых случаях могут при­ниматься за перспек­тивные.

Эманационная съемка используется в основ­ном при крупномасштаб­ных поисках на участках, закрытых рыхлыми отложениями мощностью до 5-8, иногда до 10 м. Пре­имуществом съемки является относительно высокая глубинность исследований, а недостатком - резкое падение эффективности в условиях малопроницаемых, сильно увлажненных и мерзлых грунтов.

Физические основы. Часть атомов эманации (Rn, Tn), образующихся при распаде изотопов радия, из минеральных зерен породы попадает в поро­вое пространство, заполненное газом или жидкостью. В результате диффу­зии, а также движения подземных вод, эманации могут уноситься на значи­тельное расстояние, создавая вокруг рудных тел газовые ореолы рассеяния.

Отношение количества эманации, выделяющихся из породы в ее поры, ко всему количеству образующихся эманации назы­вается коэффициентом эманирования К э. По­следний колеблется от долей процента в породах с плот­ной кри­сталлической решеткой до 95 - 98% в сильно разрушенных породах. Большой диапазон изменения коэффициента эманиро­вания затрудняет интер­претацию результатов эманационной съемки.

Удельная активность эманации С э, в порах бесконечной однородной среды определяется по формуле:

С э = (С х К э ρ)/К п

где С х - удельная активность радиоактивного элемента, из ко­торого образу­ется эманация; К п - коэффициент пористости в до­лях от объема породы; ρ - плотность породы, г/см 3 .

Если величину С х выразим в Ки/г, значение С э получим в Ки/см 3 . Эта формула пригодна для оценки концентрации эманации лишь на достаточно большой глубине, на которой отсутствует влияние утечки в атмо­сферу. По мере удаления от рудного тела или другого источника эманации их концен­трация убывает тем быстрее, чем меньше период полураспада и чем ниже коэффициент диффузии в породе.

Рассмотрим количественно распределение эманации в наносах, покры­вающих плоский активный пласт, предполагая, что мигра­ция эманации обу­словлена только диффузией:

где С э0 – концентрация эманаций на границе эманирующего пласта; С э – кон­центрация эманаций в точке с координатами (x, y, z); λ – постоянная распада радона; D – коэффициент диффузии эманаций в наносах.

На рисунке показано изменение концентрации радона в зависимости от расстояния до рудного тела. Мощность наносов h = ∞ (сплошная линия) и h = 2 м (пунктир). Коэффициент диффузии d = 0.01 см 2 /сек, λ = 3.05*10 - 6 с -1 (для радона).

Глубина отбора проб подпочвен­но­го воздуха 0.8 – 1 м, в зависимости от типа покрышки (почвы), глубинность метода составляет, в среднем, от 3 до 7 метров. При наличии механических и солевых ореолов глубинность метода возрастает. Основным фактором, опре­де­ляю­щим глубинность съемки для данного изотопа, является коэффициент диффузии D. Он растет с увеличением пористости и проницаемости пород и почв, а также с уменьшением их влажности. Именно низким значением D обусловлена неэффективность эманационных поисков в условиях заболочен­ности, вечной мерзлоты, моренных отложений, а также частично при обнаже­ниях плотных коренных пород с низкой проницаемостью.

Наиболее благоприятны для проведения эманационной съемки площа­ди развития рыхлых отложений однородного состава с от­носительно посто­ян­ной мощностью (в пределах 1-5 м) и неболь­шими колебаниями нормаль­ного эманационного поля. При мощности малопроницаемых наносов 1,5-2 м обычные эманационные съемки малоэффективны и вместо них используют глубинные поиски.

Методика исследований . Различают эманационные исследова­ния реко­г­носцировочные, площадные и детальные.

Рекогносцировочная (маршрутная) съемка в плохо изученных районах на первом этапе поисковых работ для выявления перс­пективности на уран площадей, закрытых рыхлыми отложениями, и выделения благоприятных рудоконтролирующих структур и пород. Расстояние между профилями до нескольких километров, расстояние между точками наблюдения 10 - 25 м.

Площадная съемка в масштабе 1:25 000 (сеть наблюдений: профили через 200м, точки наблюдения – через 10 м) или чаще 1:10 000 (сеть наблю­де­ний 100м; 10 м) используется для непосредственных поисков новых руд­ных полей и отдельных месторождений.

Детальная съемка в масштабе 1:5000 (сеть наблюдений 50м; 5 м) или 1:2000 (сеть наблюдений 20м; 2,5 м) используется с целью исследования выявленных радиометрических аномалий и оконтуривания рудных тел.

Обработка и интерпретация результатов . Результаты эманационной съе­м­ки изображают в виде графиков концентрации эма­нации по профилям, на которые наносится схематическая геологическая основа. По результатам детальных работ строят карты изоэман.

Задачей интерпретации является выделение среди обнаруженных анома­лий тех из них, которые представляют интерес для дальней­шего исследо­ва­ния, т. е. рудных и ореольных. При оценке аномалий учитывают следующие факторы:

1. Концентрация эманации является надежным признаком руд­ной или ореольной аномалии лишь при ее значениях свыше 1000 эман.

2. Одним из наиболее информативных факторов является изменение концен­трации аномалий с глубиной в шпурах и мелких скважинах. Для рудных аномалий характерен непрерыв­ный рост, причем с глубиной градиент концентраций растет. Для аномалий эманирования концентрация по глу­бине остается постоянной. Для остальных типов аномалий харак­терно выполаживание кривой или нере­гулярные изменения с глубиной.

3. Ореольные аномалии характеризуются широким площадным распростра­нением и изометрической формой.

Комплекс радиометрических исследований на разных ста­диях пои­с­ков и разведки месторождений радиоактивных руд. Выбор ком­п­лекса методов исследования должен учитывать геологические, гидрогео­ло­ги­чес­кие, геоморфологи­ческие особенности района.

1. Из геологи­ческих факторов наиболее сильное влияние на эффективность радиометрической съемки оказывают тектоническое строение, неоднород­ность поверхностных отложений и мощность наносов. От этого зависит постоянство нормального фона, эманирующая способность пород, осла­бление γ-излучения и эманации наносами. Поэтому параллельно с радио­ме­т­ри­чес­кими исследо­ваниями поисково-разведочные работы включают также изучение состава, свойств пород, их тектоники и т. п.

2. Из геоморфологи­ческих особенностей района основное значение имеет степень обна­женности пород, определяющая возможность применения методов той или иной глубинности.

3. Развитие гидросети в исследуемом районе, способствуя раз­витию водных и солевых ореолов, часто способствует применению различных методов радиометрической съемки. Свободный обмен подземных и поверхностных вод способствует нарушению радиоактивного равновесия с недостатком радия, что ограничивает возможность применения гамма-метода. Высокий уровень грунтовых вод снижает эффективность эманационной съемки. Районы с вечной мерзлотой и повышенной влажностью не благоприятны для эманационной съемки.

Выбор комплекса радиометрических методов базируется на райо­ниро­вании территории по условиям ведения поисково-разведочных работ. С учетом степени расчленения рельефа, условий эрозионного вскрытия пород, вмещающих рудные тела, характера четвертич­ного покрова и ряда других факторов выделяют четыре типа районов:

1. Горные области с сильно пересеченным рельефом; породы с урановым оруденением хорошо обнажены.

2. Предгорные и некоторые горные области с рельефом сред­ней сложности. Коренные породы, несущие оруденения, частично обнажены, частично покрыты четвертичным покровом.

3. Районы со слабовсхолмленным рельефом и сплошным перекрытием коре­н­ных пород рыхлыми отложениями небольшой мощности (от нескольких метров до первых десятков метров) разделяют на два подтипа: районы, где механические и солевые ореолы хотя бы спорадически выходят на пове­рх­ность; районы, в основном закрытые аллохтонными осадками.

4. Районы, где формации, несущие оруденения, не вскрыты эрозией, а также районы с большой мощностью четвертичного покрова (более 30-40 м).

На каждом этапе геологоразведочных работ комплекс методов раз­ли­чен.

На этапе региональной геологической съемки поиски урановых место­рождений являются не основ­ной, а попутной задачей (массовые поиски). Основным методом массовых поисков является пешеходная гамма-съемка, проводимая в процессе геологической съемки повсеместно. Для проверки аномалий или рудопроявлений применяют в небольшом объеме гамма-спек­трометрию и уранометрическую съемка по донным осадкам. Кроме того, обя­зательно проводится обследование на радио­активность коллекций образцов руд, всех карьеров, горных вы­работок, старых и действующих рудников.

При проведении специализированных поис­ков урановых место­рож­де­ний для перечисленных типов районов применяются следующие комплексы методов.

В районах I типа (горные районы) основным методом является пеше­ход­ная гамма-съемка. На участках, покрытых делювиаль­ными отложениями небольшой мощности, применяют шпуровую гамма-съемку, реже эманацион­ную. При детализации аномалий применяют гамма-профилирование, иссле­дование обнажений, рас­чисток и канав, для количественной оценки радиоак­тив­ности - гамма-опробование, для определения типа радиоактивности – гам­ма-спектральные измерения.

В районах II типа применяют главным образом пешеходную гамма-съе­мку, а на слабо обнаженных участках - эманационную.

В районах III типа на первом этапе работ проводится авиагамма-съемка относительно мелкого масштаба (1:25 000). Для проверки и оценки выделен­ных аномалий используют пешеходную и шпуровую гамма- и эманационную съемки, а для детального изучения аномалий - радиометрическое опробова­ние горных выработок.

В районах IV типа основным является гамма-метод исследова­ния сква­жин в комплексе с изучением керна и вод.

В районах III и IV типов большое значение имеют общие геофизиче­с­кие методы: электроразведка, магниторазведка и сейсмо­разведка. Эти методы позволяют выделять глубинные разломы, границы раздела пород различного типа, а также определять мощ­ность наносов. Ценную информацию может дать также геохими­ческая съемка по элементам - спутникам урана.

Применение радиометрических методов для изучения геологического строения района, поисков и разведки нерадиоактивных полезных ископае­мых. Данные о содержании радиоактивных элементов в горных породах не­сут информацию о типе горных пород, условиях их об­разования и последую­щего изменения. Для многих полезных ископаемых наблюдаются генетичес­кие или парагенетические связи с радиоактивными элементами. Это позво­ляет решать такие геоло­гические задачи, как литологическое расчленение горных пород, геологическое картирование (в частности, прослеживание текто­нических нарушений), поиски и разведка полезных ископаемых.

Литологическое расчленение горных пород методами радиометрии основано на различии их радиоактивности. Особенно важен гамма-метод исследования скважин в комплексе с другими геофизическими методами в случае, когда бурение скважин осуществляется без отбора керна или процент выноса керна невелик.

Повышенная радиоактивность зон текто­нических нарушений обуслов­лена как гидротермальными изме­нениями и подъемом радиоактивных флюи­дов по трещинам, так и повышенной эманирующей способностью пород в этой зоне.

Примером использования радиометрии для геологиче­ского картиро­ва­ния является оконтуривание структур в осадоч­ной толще при поисках нефтя­ных и газовых месторождений. Над многими известными месторождениями нефти и газа наблюдается пониже­ние γ-излучения (в основном ее радиевой составляющей). Это явле­ние объясняется тем, что в районах с молодой текто­никой породы над сводами структур более грубозернистые, чем на крыльях этих структур, поскольку в момент отложения осадков глубина бассейна на своде была меньше.

Радиометрические методы широко применяются на всех этапах поис­ков и разведки нерадиоактивных полезных ископаемых, гене­тически и пара­генетически связанных с ураном и торием. По­скольку радиоактивные элеме­н­ты в виде минералов или изоморф­ных примесей присутствуют во всех пег­матитах, то, например, для поисков пегматитовых редкоземельных место­ро­ж­дений с ус­пехом используются гамма- и эманационные методы. Радиомет­ри­­ческие методы полезны при поисках осадочных месторождений ванадия, молибдена, фосфоритов, углей и ряда других полезных ископаемых, также нередко отмечаемых повышением радиоак­тивности. Эти методы успешно применяются для поисков титано­вых россыпных месторождений, в которых всегда присутствуют циркон и монацит, содержащие примеси урана и тория. Наконец, радиометрические методы широко применяются при разведке месторождений калийных солей.


Радиометрический анализ, метод анализа химического состава веществ, основанный на использовании радиоактивных изотопов и ядерных излучений. В Р. а . для качественного и количественного определения состава веществ используют радиометрические приборы. Различают несколько способов Р. а . Прямое радиометрическое определение основано на осаждении определяемого иона в виде нерастворимого осадка избытком реагента известной концентрации, содержащего радиоактивный изотоп с известной удельной активностью. После осаждения устанавливают радиоактивность осадка или избытка реагента.

Радиометрическое титрование основано на том, что определяемый в растворе ион образует с реагентом малорастворимое или легкоэкстрагируемое соединение. Индикатором при титровании служит изменение, по мере введения реагента, радиоактивности раствора (в 1-м случае) и раствора или экстракта (во 2-м случае). Точка эквивалентности определяется по излому кривой титрования, выражающей зависимость между объёмом введённого реагента и радиоактивностью титруемого раствора (или осадка). Радиоактивный изотоп может быть введён в реагент или определяемое вещество, а также в реагент и определяемое вещество.

Метод изотопного разбавления основан на тождественности химических реакций изотопов данного элемента. Для его осуществления к анализируемой смеси добавляют некоторое количество определяемого вещества m0, содержащего в своём составе радиоактивный изотоп с известной радиоактивностью I0. Затем выделяют любым доступным способом (например, осаждением, экстракцией, электролизом) часть определяемого вещества в чистом состоянии и измеряют массу m1 и I1 радиоактивность выделенной порции вещества. Общее содержание искомого элемента в анализируемом объекте находят из равенства отношений радиоактивности выделенной пробы к радиоактивности введённого вещества и массы выделенного вещества к сумме масс введённого вещества и находящегося в анализируемой смеси: , откуда.

При активационном анализе исследуемое вещество облучают (активируют) ядерными частицами или жёсткими g-лучами, а затем определяют активность образующихся радиоактивных изотопов, которая пропорциональна числу атомов определяемого элемента, содержанию активируемого изотопа, интенсивности потока ядерных частиц или фотонов и сечению ядерной реакции образования радиоактивного изотопа.

Фотонейтронный метод основан на испускании нейтронов при действии фотонов высокой энергии (g-квантов) на ядра атомов химических элементов. Количество нейтронов, определяемое нейтронными детекторами, пропорционально содержанию анализируемого элемента. Эта энергия фотонов должна превышать энергию связи нуклонов в ядре, которая для большинства элементов составляет ~ 8 Мэв (лишь для бериллия и дейтерия она равна соответственно 1,666 Мэв и 2,226 Мэв; при использовании в качестве источника g-квантов изотопа 124Sb, с Eg = 1,7 и 2,1 Мэв, можно определять бериллий на фоне всех др. элементов).

В Р. а . применяются также методы, основанные на поглощении нейтронов, g-лучей, b-частиц и квантов характеристического рентгеновского излучения радиоактивных изотопов. В методе анализа, основанном на отражении электронов или позитронов, измеряется интенсивность отражённого потока. Энергия частиц, отражённых от лёгких элементов, во много раз меньше энергии частиц, отражённых от тяжёлых элементов, что позволяет определять содержание тяжёлых элементов в их сплавах с лёгкими элементами и в рудах.

25. ОСОБЕННОСТИ РАДИОХИМИЧЕСКОГО АНАЛИЗА .

Радиохимический анализ - раздел аналитической химии, совокупность методов определения качественного состава и количественного содержания радиоактивных изотопов в продуктах ядерных превращений. Радиоактивные изотопы могут при этом возникать за счёт ядерных реакций как в природных объектах, так и в специально облученных материалах. В отличие от радиометрического анализа, имеющего целью определение содержания радиоактивных элементов только с помощью физических приборов, целью Р. а. является нахождение содержания радиоактивных изотопов в исследуемых объектах с применением химических методов отделения и очистки.

Идентификация радиоактивных изотопов и количественное их определение осуществляются путём измерения γ- или α-активности облученных мишеней или веществ природного происхождения на γ- и α-спектрометрах. Радиометрическая аппаратура позволяет анализировать сложные по составу смеси радиоактивных изотопов без разрушения исходного вещества. При анализе объектов, содержащих большое число радиоактивных изотопов, или объектов, в которых относительные концентрации различных радиоактивных изотопов варьируют в широком диапазоне, а также в тех случаях, когда распад исследуемого радиоактивного изотопа сопровождается испусканием только β-частиц или рентгеновским излучением, исходное вещество растворяют в воде или кислоте. К раствору добавляют изотопные или неизотопные носители и проводят различные химические операции разделения смеси на исследуемые элементы и последующей их очистки (с этой целью наиболее часто используют методы осаждения, экстракции, хроматографии, электролиза, дистилляции и др.). Затем с помощью радиометрических счётчиков и спектрометров ядерных частиц идентифицируют и определяют абсолютные активности радиоактивных изотопов, выделенных в радиохимически и химически чистом состояниях. Поражающее действие радиоактивных излучений требует соблюдения особой техники безопасности.

Современный Р. а. получил широкое практическое применение при решении многих аналитических вопросов, возникающих при производстве ядерного топлива, при открытии и изучении свойств новых радиоактивных элементов и изотопов в активационном анализе, в исследовании продуктов различных ядерных реакций. Р. а. используется для обнаружения на поверхности Земли радиоактивных продуктов ядерных взрывов, для изучения индуцированной космическим излучением радиоактивности метеоритов и поверхностных слоев Луны и в ряде др. случаев.

26. СПЕКТРОФОТОМЕТРИЯ, метод исследования и анализа в-в, основанный на измерении спектров поглощения в оптической области электромагнитного излучения. Спектрофотометрический метод анализа основан на спектрально-избирательном поглощении монохроматического потока световой энергии при прохождении его через исследуемый раствор. Метод позволяет определять концентрации отдельных компонентов смесей окрашенных веществ, имеющих максимум поглощения при различных длинах волн, он более чувствителен и точен, чем фотоэлектроколориметрический метод. Известно, что фотоколориметрический метод анализа применим только для анализа окрашенных растворов, бесцветные растворы в видимой области спектра обладают незначительным коэффициентом поглощения. Однако многие бесцветные и слабо окрашенные соединения (особенно органические) обладают Характерными полосами поглощения в ультрафиолетовой и инфракрасной областях спектра, что используют для их количественного определения. Спектрофотометрический метод анализа применим для измерения светопоглощения в различных областях видимого спектра, в ультрафиолетовой и инфракрасной областях спектра, что значительно расширяет аналитические возможности метода.

27. ФОТОМЕТРИЧЕСКОЕ ТИТРОВАНИЕ - группа методов объемного анализа, в которых конечная точка титрования определяется по изменению оптической плотности раствора в ходе хим. р-ии м/д титрантом и титруемым в-вом. Спектрофотометрическое титрование позволяет быстро, точно и просто выполнять анализ. Относит. ошиб. опред. -<0,1 %. Можно титровать с достаточной точностью разбавленные растворы (10−5 моль). При фотометрии используют все многообразие аналитических реакций: кислотно-основные, осаждения, комплексообразования и пр.

Различают 2 варианта фотометрического титрования: титрование без индикатора и с одноцветным индикатором, титрование с 2-хцветным индикатором. Если хотя бы один из компонентов реакции окрашен, то титрование в видимой части спектра можно проводить без индикатора. В этом случае кривые титрования прямолинейны и за конечную точку принимается точка излома. Если ни один компонент реакции не окрашен, то применяют цветной индикатор, изменяющий окраску вблизи точки эквивалентности. При этом кривые титрования нелинейны, и за конечную точку принимают точку перегиба. Фототурбидиметрическое титрование. Этот метод применяют тогда, когда определяемое вещество образует взвесь с титрантом.

Прибавление каждой новой порции титранта (осадителя) ведет к образованию некоторого количества осадка. При этом мутность раствора увеличивается, что ведет к увеличению поглощения света раствором до достижения точки эквивалентности. При дальнейшем прибавлении титранта образование взвеси прекращается, мутность уменьшается вследствие разбавления, и поглощение света раствором соответственно уменьшается. Максимальная мутность и максимальное поглощение световых лучей соответствуют точке эквивалентности.

28. ФЛУОРИМЕТРИЧЕСКИЙ МЕТОД анализа основан на возбуждении электронных спектров испускания молекул определяемого вещества при внешнем УФ-облучении и измерении интенсивности их фотолюминесценции. Для возникновения явления люминесценции молекулы вещества необходимо перевести из основного состояния в возбужденное с длительностью его существования, достаточной для осуществления излучательного электронного перехода из возбужденного состояния в основное. Это возможно для молекул с относительно устойчивым возбужденным состоянием. Флуориметрический метод определения микропримесей состоит из подготовки анализируемого вещества к анализу и оценки интенсивности его излучения. Высокая чувствительность метода требует применения реактивов с квалификацией особой чистоты или химически чистый. Во многих случаях реактивы подвергаются дополнительной очистке методами перекристаллизации, перегонки, экстракции, хроматографии. Чувствительность отдельных флуориметрических методов (например с морином) соизмерима с чувствительностью спектральных методов и значительно выше спектрофотометрических. Флуориметрические методы в большинстве случаев характеризуются более высокой избирательностью, чем спектрофотометриче-ские. Применяется для очистки вод, нефти и тд.

29. ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ (ИКС) - раздел спектроскопии, охватывающий длинноволновую область спектра (>730 нм за красной границей видимого света). Инфракрасные спектры возникают в результате колебательного (отчасти вращательного) движения молекул, а именно - в результате переходов между колебательными уровнями основного электронного состояния молекул. ИК излучение поглощают многие газы, за исключением таких как О2, N2, H2, Cl2 и одноатомных газов. Поглощение происходит на длине волны, характерной для каждого определенного газа, для СО, например, таковой является длина волны 4,7 мкм.

По инфракрасным спектрам поглощения можно установить строение молекул различных органических (и неорганических) веществ с относительно короткими молекулами: антибиотиков, ферментов, алкалоидов, полимеров, комплексных соединений и др. Колебательные спектры молекул различных органических (и неорганических) веществ с относительно длинными молекулами (белки, жиры, углеводы, ДНК, РНК и др.) находятся в терагерцовом диапазоне, поэтому строение этих молекул можно установить с помощью радиочастотных спектрометров терагерцового диапазона. По числу и положению пиков в ИК спектрах поглощения можно судить о природе вещества (качественный анализ), а по интенсивности полос поглощения - о количестве вещества (количественный анализ). Основные приборы - различного типа инфракрасные спектрометры. С помощью ИК спектроскопии быстро и надёжно идентифицируются разнообразные функциональные группы: карбонильная, гидроксильная, карбоксильная, амидная, амино, циано и др.; а также различные непредельные фрагменты: двойные и тройные углерод-углеродные связи, ароматические или гетероароматические системы. Методами ИК-спектроскопии изучают внутри- и межмолекулярные взаимодействия, например, образование водородных связей. В химии древесины и химии природных соединений с помощью ИК-спектроскопии исследуют структуры углеводов, лигнинов, аминокислот, терпенов, стероидов и многих других веществ. ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ (ИК спектроскопия), раздел мол. оптич. спектроскопии, изучающий спектры поглощения и отражения электромагн. излучения в ИК области, т.е. в диапазоне длин волн от 10-6 до 10-3 м. В координатах интенсивность поглощенного излучения - длина волны (или волновое число) ИК спектр представляет собой сложную кривую с большим числом максимумов и минимумов. Полосы поглощения появляются в результате переходов между колебат. уровнями осн. электронного состояния изучаемой системы (см. Колебательные спектры). Спектральные характеристики (положения максимумов полос, их полуширина, интенсивность) индивидуальной молекулы зависят от масс составляющих ее атомов, геом. строения, особенностей межатомных сил, распределения заряда и др. Поэтому ИК спектры отличаются большой индивидуальностью, что и определяет их ценность при идентификации и изучении строения соединений. Для регистрации спектров используют классич. спектрофотометры и фурье-спектрометры. Осн. части классич. спектрофотометра - источник непрерывного теплового излучения, монохроматор, неселективный приемник излучения. Кювета с в-вом (в любом агрегатном состоянии) помещается перед входной (иногда за выходной) щелью. В качестве диспергирующего устройства монохроматора применяют призмы из разл. материалов (LiF, NaCl, KCl, CsF и др.) и дифракц. решетки. Последовательное выведение излучения разл. длин волн на выходную щель и приемник излучения (сканирование) осуществляется поворотом призмы или решетки. Источники излучения - накаливаемые электрич. током стержни из разл. материалов. Приемники: чувствительные термопары, металлич. и полупроводниковые термосопротивления (болометры) и газовые термопреобразователи, нагрев стенки сосуда к-рых приводит к нагреву газа и изменению его давления, к-рое фиксируется. Выходной сигнал имеет вид обычной спектральной кривой. Достоинства приборов классич. схемы: простота конструкции, относит. дешевизна. Недостатки: невозможность регистрации слабых сигналов из-за малого отношения сигнал: шум, что сильно затрудняет работу в далекой ИК области; сравнительно невысокая разрешающая способность (до 0,1 см-1), длительная (в течение минут) регистрация спектров. В фурье-спектрометрах отсутствуют входная и выходная щели, а осн. элемент - интерферометр. Поток излучения от источника делится на два луча, к-рые проходят через образец и интерферируют. Разность хода лучей варьируется подвижным зеркалом, отражающим один из пучков. Первоначальный сигнал зависит от энергии источника излучения и от поглощения образца и имеет вид суммы большого числа гармонич. составляющих. Для получения спектра в обычной форме производится соответствующее фурье-преобразование с помощью встроенной ЭВМ. Достоинства фурье-спектрометра: высокое отношение сигнал: шум, возможность работы в широком диапазоне длин волн без смены диспергирующего элемента, быстрая (за секунды и доли секунд) регистрация спектра, высокая разрешающая способность (до 0,001 см-1). Недостатки: сложность изготовления и высокая стоимость. Все спектрофотометры снабжаются ЭВМ, к-рые производят первичную обработку спектров: накопление сигналов, отделение их от шумов, вычитание фона и спектра сравнения (спектра р-рителя), изменение масштаба записи, вычисление эксперим. спектральных параметров, сравнение спектров с заданными, дифференцирование спектров и др. Кюветы для ИК спектрофотометров изготовляют из прозрачных в ИК области материалов. В качестве р-рителей используют обычно ССl4, СНСl3, тетрахлорэтилен, вазелиновое масло. Твердые образцы часто измельчают, смешивают с порошком КВr и прессуют таблетки. Для работы с агрессивными жидкостями и газами применяют спец. защитные напыления (Ge, Si) на окна кювет. Мешающее влияние воздуха устраняют вакуумированием прибора или продувкой его азотом. В случае слабо поглощающих в-в (разреженные газы и др.) применяют многоходовые кюветы, в к-рых длина оптич. пути достигает сотен метров благодаря многократным отражениям от системы параллельных зеркал. Большое распространение получил метод матричной изоляции, при к-ром исследуемый газ смешивают с аргоном, а затем смесь замораживают. В результате полуширина полос поглощения резко уменьшается и спектр получается более контрастным. Применение спец. микроскопич. техники позволяет работать с объектами очень малых размеров (доли мм). Для регистрации спектров пов-сти твердых тел применяют метод нарушенного полного внутр. отражения. Он основан на поглощении поверхностным слоем в-ва энергии электромагн. излучения, выходящего из призмы полного внутр. отражения, к-рая находится в оптич. контакте с изучаемой пов-стью. Инфракрасную спектроскопию широко применяют для анализа смесей и идентификация чистых в-в. Количеств. анализ основан на законе Бугера-Ламберта-Бера (см. Абсорбционная спектроскопия), т. е. на зависимости интенсивности полос поглощения от концентрации в-ва в пробе. При этом о кол-ве в-ва судят не по отд. полосам поглощения, а по спектральным кривым в целом в широком диапазоне длин волн. Если число компонентов невелико (4-5), то удается математически выделить их спектры даже при значит. перекрывании последних. Погрешность количеств. анализа, как правило, составляет доли процента. Идентификация чистых в-в производится обычно с помощью информационно-поисковых систем путем автоматич. сравнения анализируемого спектра со спектрами, хранящимися в памяти ЭВМ. Характерные области поглощения ИК излучения наиб. часто встречающихся функц. групп хим. соед. приведены в табл. на форзаце в конце тома. Для идентификации новых в-в (молекулы к-рых могут содержать до 100 атомов) применяют системы искусств. интеллекта. В этих системах на основе спектроструктурных корреляций генерируются мол. структуры, затем строятся их теоретич. спектры, к-рые сравниваются с эксперим. данными. Исследование строения молекул и др. объектов методами инфракрасной спектроскопии подразумевает получение сведений о параметрах мол. моделей и математически сводится к решению т. наз. обратных спектральных задач. Решение таких задач осуществляется последовательным приближением искомых параметров, рассчитанных с помощью спец. теории спектральных кривых к экспериментальным. Параметрами мол. моделей служат массы составляющих систему атомов, длины связей, валентные и торсионные углы, характеристики потенциальной пов-сти (силовые постоянные и др.), дипольные моменты связей и их производные по длинам связей и др. Инфракрасная спектроскопия позволяет идентифицировать пространственные и конформационные изомеры, изучать внутри- и межмолекулярные взаимод., характер хим. связей, распределение зарядов в молекулах, фазовые превращения, кинетику хим. р-ций, регистрировать короткоживущие (время жизни до 10-6 с) частицы, уточнять отдельные геом. параметры, получать данные для вычисления термодинамич. ф-ций и др. Необходимый этап таких исследований - интерпретация спектров, т.е. установление формы нормальных колебаний, распределения колебат. энергии по степеням свободы, выделение значимых параметров, определяющих положение полос в спектрах и их интенсивности. Расчеты спектров молекул, содержащих до 100 атомов, в т.ч. полимеров, выполняются с помощью ЭВМ. При этом необходимо знать характеристики мол. моделей (силовые постоянные, электрооптич. параметры и др.), к-рые находят решением соответствующих обратных спектральных задач или квантовохим. расчетами. И в том, и в другом случае обычно удается получать данные для молекул, содержащих атомы лишь первых четырех периодов периодич. системы. Поэтому инфракрасная спектроскопия как метод изучения строения молекул получил наиб. распространение в орг. и элементоорг. химии. В отд. случаях для газов в ИК области удается наблюдать вращат. структуру колебат. полос. Это позволяет рассчитывать дипольные моменты и геом. параметры молекул, уточнять силовые постоянные и т.д.

Методы основаны на измерении радиационного спектра излучения исследуемого образца как по характеру излучения, так и по его интенсивности. Метод позволяет определять характер излучения, энергию и интенсивность излучения.

Выделяют 2 метода в радиометрии: прямой и активационный.

Прямой метод . Если природный образец содержит в своем составе примесь радиоактивного вещества, то концентрацию этой примеси определяют, непосредственно измеряя интенсивность радиоактивного излучения. Среди обычных природных веществ такие объекты крайне редки, потому что большинство элементов периодической системы представляют собой смеси стабильных изотопов.

Чтобы исследовать систему, представляющую собой в естественных условиях смесь стабильных изотопов, прибегают к ее радиохимической активации, т.е. вызывают в ней реакции радиоактивного распада. Активационный метод заключается в облучении вещества, при обычных условиях не имеющего радиоактивного излучения, путем воздействия на образец мощным источником радиоактивного излучения. Для этого исследуемый образец помещают в реактор, представляющий собой свинцовый контейнер с ампулой, заполненной радиоактивным веществом, Например Sr 90 (источник γ-излучения). В некоторых случаях в качестве источника с небольшой энергией β-излучения используют изотоп Гидрогена – тритий. Вызванная в результате облучения в исследуемом образце, радиохимическая реакция исследуется, т.е. измеряется характер излучения и его интенсивность.

Виды излучения: α-частицы – это дважды ионизированные ионы Гелия Не 2+ ; β - – поток электронов; β + – поток позитронов; γ – электромагнитные колебания с длиной волны меньше рентгеновского; p – поток протонов, ионизированные атомы Гидрогена; n – поток нейтронов, частиц с массой = 1 и зарядом 0 (количество нейтронов определяют: n = A-z); мезоны …

Излучение можно характеризовать по величине энергии в электрон-вольтах (эВ).

эВ – это такая энергия, которой обладает частица, имеющая элементарный заряд в поле напряженностью 1В/см 2 . Чем больше энергия частицы, тем больше ее проникающая способность в материал.

Период полураспада характеризует длительность жизни радиоактивного изотопа.

Это время, за которое распадается половина радиоактивных изотопов.

Изотопы – нуклиды, имеющие одинаковый заряд, но различную массу, например, и
.

Изобары – нуклиды с одинаковым массовым числом.

Изотоны – это нуклиды с одинаковым числом нейтронов.

Интенсивность излучения – это число радиоактивных распадов в единицу времени. За единицу интенсивности принято 1 кюри – это составляет 3,7·10 10 распадов в секунду. Такую радиоактивность имеет 1 г Радия. В аналитической практике пользуются объектами, излучение которых не превышает сотни микрокюри.

В качестве приборов для измерения радиоактивности применяют счетчики Гейгера-Мюллера

(β - счетчики) .R

Счетчик представляет собой трубку из алюминиевой фольги, заполненную молекулами газообразного органичес­кого вещества. Корпус подключен к отрицательному полюсу источника электрического тока. В центре трубки находится металлическая нить, подключенная к положительному полюсу источника электрического тока высокого напряжения.

Процессы в счетчике. Электроны, пронизывая стенку счетчика, попадают в положительное цилиндрическое поле, создаваемое нитью. Напряженность этого поля увеличивается по мере приближения электронов к центру. Таким образом, электрон ускоряется и в близи нити приобретает такую энергию, которая способна ионизировать молекулы газообразного вещества. В результате, к нити подходят не электроны, а ионизированная ими лавина ионов. При ее разряде во внешней цепи возникает импульс электрического тока. В современных радиометрах вместо гальванометра, регистрирующего этот импульс, используются счетчики импульса – механические или электрические.

Таким образом, схема радиометра для измерения β-импульсов включает β-счетчик (детектор), усилитель и пересчетное устройство, которое считает число импульсов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки России

Федеральное государственное бюджетное образовательное

Учреждение высшего профессионального образования

«Казанский национальный исследовательский технологический университет»

Реферат на тему «Радиометрические методы анализа»

Выполнил: студент группы 1111-82

Асфандиярова Лира

Проверил: доцент кафедры ТИПиКМ

Г.С.Батурова, Л.А.Кипрова

Казань 2013

Введение

2.1 Активационный анализ

3.1 Сцинтилляционный счетчик

3.2 Черенковский счетчик

3.4 Газоразрядный счетчик

3.5 Камера Вильсона

3.6 Диффузионная камера

3.7 Пузырьковая камера

Заключение

Список литературы

радиоактивный излучение изотоп распад

Введение

Методы анализа, основанные на радиоактивности, возникли в эпоху развития ядерной физики, радиохимии, атомной техники и с успехом применяются в настоящее время при проведении разнообразных анализов, в том числе в промышленности и геологической службе.

Основными достоинствами аналитических методов, основанных на измерении радиоактивного излучения, являются низкий порог обнаружения анализируемого элемента и широкая универсальность. Радиоактивационный анализ имеет абсолютно низший порог обнаружения среди всех других аналитических методов (10-15 г). Достоинством некоторых радиометрических методик является анализ без разрушения образца, а методов, основанных на измерении естественной радиоактивности, - быстрота анализа. Ценная особенность радиометрического метода изотопного разведения заключена в возможности анализа смеси близких по химико-аналитическим свойствам элементов, таких, как цирконий - гафний, ниобий - тантал и др.

Дополнительные осложнения в работе с радиоактивными препаратами обусловлены токсичными свойствами радиоактивного излучения, которые не вызывают немедленной реакции организма и тем самым осложняют своевременное применение необходимых мер. Это усиливает необходимость строгого соблюдения техники безопасности при работе с радиоактивными препаратами. В необходимых случаях работа с радиоактивными веществами происходит с помощью, так называемых манипуляторов в специ-альных камерах, а сам аналитик остается в другом помещении, надежно защищенном от действия радиоактивного излучения.

Радиоактивные изотопы применяются в следующих методах анализа:

метод изотопного разбавления;

радиометрическое титрование;

активационный анализ;

определения, основанные на измерении радиоактивности изотопов, встречающихся в природе.

В лабораторной практике радиометрическое титрование применяют сравнительно редко. Применение активационного анализа связано с использованием мощных источников тепловых нейтронов, и поэтому этот метод имеет пока ограниченное распространение.

1. Теоретические основы радиометрических методов

1.1 Типы радиоактивного распада и радиоактивного излучения

Открытие радиоактивности относится к 1896 г., когда А. Беккерель обнаружил, что уран самопроизвольно испускает излучение, названное им радиоактивным (от лат. radio - излучаю и activas - действенный).

Радиоактивное излучение возникает при самопроизвольном распаде атомного ядра. Известно несколько типов радиоактивного распада и радиоактивного излучения.

б- Распад. Распад ядра с выделением б-частиц, которые являются ядрами Не2+. Например: U

B соответствии с законом радиоактивного смещения, при б-распаде получается атом, порядковый номер которого на две единицы, а атомная масса на четыре единицы меньше, чем у исходного атома.

в- Распад. Различают несколько видов в-распада: электронный в-распад; позитронный в-распад; К-захват. При электронном в-распаде, например, нейтрон внутри ядра превращается в протон. При испускании отрицательно заряженной в-частицы порядковый номер элемента возрастает на единицу, а атомная масса практически не меняется. При позитронном в-распаде из атомного ядра выделяется позитрон (в+-частица), а протон внутри ядра превращается в нейтрон. Например:

Продолжительность жизни позитрона невелика, так как при столкновении его с электроном происходит аннигиляция, сопровождающаяся испусканием г-квантов.

При К-захвате ядро атома захватывает электрон из близлежащей электронной оболочки (из К-оболочки) и один из протонов ядра превращается в нейтрон. Например:

На свободное место в К-оболочке переходит один из электронов внешней оболочки, что сопровождается испусканием жесткого рентгеновского излучения.

Поток б- и в-частиц называют соответственно б- и в-излучением. Кроме того, известно г-излучение. Это электромагнитные колебания с очень короткой длиной волны. В принципе, г-излучение близко к жесткому рентгеновскому и отличается от него своим внутриядерным происхождением. Рентгеновское излучение возникает при переходах в электронной оболочке атома, а г-излучение испускает возбужденные атомы, получившиеся в результате радиоактивного распада (б или в).

1.2 Закон радиоактивного распада

Скорость радиоактивного распада пропорциональна числу имеющихся ядерN : где л - постоянная распада.

При интегрировании получаем:

если t = 0 , to N = N 0 и, следовательно, const = - lg N 0 . Окончательно

где А - активность в момент времени t ; A 0 - активность при t = 0 .

Уравнения (1) и (2) характеризуют закон радиоактивного распада. В кинетике они известны как уравнения реакции первого порядка.

В качестве характеристики скорости радиоактивного распада обычно указывают период полураспада Т 1\2 , который так же, как и л, является фундаментальной характеристикой процесса, не зависящей от количества вещества.

Периодом полураспада называют промежуток времени, в течение которого данное количество радиоактивного вещества уменьшается наполовину.

Таким образом, в момент времени Т 1\2 отношение

С учетом этого соотношения уравнение (2) можно переписать:

Период полураспада различных изотопов существенно различен. Он находится в пределах примерно от 10 10 лет до ничтожных долей секунды. Конечно, вещества, имеющие период полураспада 10-15 мин и меньше, использовать в лаборатории трудно. Изотопы с очень большим периодом полураспада также нежелательны в лаборатории, так как при случайном загрязнении этими веществами окружающих предметов потребуется специальная работа по дезактивации помещения и приборов.

1.3 Взаимодействие радиоактивного излучения с веществом и счетчики излучения

В результате взаимодействия радиоактивного излучения с веществом происходит ионизация и возбуждение атомов и молекул вещества, через которое оно проходит. Излучение производит также световое, фотографическое, химическое и биологическое действие. Например, первичным результатом действия ра-диоактивного излучения на воздух является появление ионов:

Обладают сильным физиологическим действием - при больших дозах они являются одной из причин лучевой болезни, малокровия и т. д., так как энергично взаимодействуют с ферментами и составными частями крови. Опасность радиоактивного воздействия возрастает вследствие того, что организм не обладает болевыми реакциями на действие радиоактивного излучения. Быстрое превращение этих частиц в безопасные для человеческого организма является одним из эффективных приёмов борьбы с лучевой болезнью.

Радиоактивное излучение вызывает большое число химических реакций в газах, растворах, твердых веществах. Их обычно объединяют в группу радиационно-химических реакций. Сюда относятся, например, разложение (радиолиз) воды с образованием водорода, пероксида водорода и различных радикалов, вступающих в окислительно-восстановительные реакции с растворенными веществами. Радиоактивное излучение вызывает разнообразные радиохимические превращения различных органических coединений - аминокислот, кислот, спиртов, эфиров и т.д. Интенсивное радиоактивное излучение вызывает свечение стеклянных трубок и ряд других эффектов в твердых телах.

1.4 Классификация источников радиоактивного излучения и радиоактивных изотопов

Источники радиоактивного излучения делят на закрытые и открытые. Закрытые - должны быть герметичны. Открытые - любые негерметичные источники излучения, которые могут создавать радиоактивное загрязнение воздуха, аппаратуры, поверхностей столов, стен и т. п.

При работе с закрытыми источниками необходимые меры предосторожности сводятся к предохранению от внешнего облучения.

Закрытые источники излучения активностью выше 0,2 г-экв радия должны быть помещены в защитные устройства с дистанционным управлением и устанавливаться в специально оборудованных помещениях.

При работе с закрытыми источниками меньшей активности следует применять экраны, соответствующие по толщине и материалу роду и энергии излучения радиоактивного источника, а также дистанционные инструменты, применение которых должно снижать дозу до предельно допустимой. Лаборатории при работе с закрытыми источниками могут быть обычными.

При работе с открытыми источниками необходимо учитывать: относительную радиотоксичность изотопа, которая зависит от его периода полураспада, вида и энергии излучения; активность на рабочем месте; физическое состояние вещества; особенность работы.

Для каждого радиоактивного изотопа установлена предельно допустимая концентрация (ПДК) в воздухе рабочих помещений.

По убывающей степени радиотоксичности радиоактивные изотопы делятся на четыре группы предельно допустимых концентраций:

Группа А - изотопы особо высокой радиотоксичности (ПДК не более 110-13 кюри/л): 90Sr, 226Ra, 239Pu и др.

Группа Б - изотопы высокой радиотоксичности (ПДК от 1 10-13 до 1 10-11 кюри/л): 22Na, 45Са, 60Co, 89Sr, 110Ag, 131I, 137Cs, l41Ce, 210Pb, U (ест.) и др.

Группа В - изотопы средней радиотоксичности (ПДК от 1 10-11 до 110-9 кюри/л): 24Na, 32P, 35S, 36C1, 42К, 56Mn, 55, 59Fe, 69Zn, 76As, 82Br, 124, 125Sb, 140Ba и др.

Группа Г - изотопы наименьшей радиотоксичности (ПДК от 110-9 кюри/л): 3Н, 14С и др.

2. Методики анализа, основанные на измерении радиоактивности

2.1 Активационный анализ

Активацией называется процесс получения радиоактивного вещества в результате ядерных реакций при облучении стабильных ядер нейтронами, гамма-квантами, протонами или другими частицами.

На активации основан мощный метод определения состава вещества активационный анализ . Он был впервые предложен Г. Хевеши (G. Hevesy) и Х. Леви (H. Levi) (1936).

В этом методе идентификация химических элементов, содержащихся в образце и их количественный анализ производятся путем измерения активности, энергии излучений и периода полураспада образовавшихся в результате ядерной реакции радионуклидов. Пусть в естественной смеси элемента доля изотопа A, который в результате реакции A(a,b)B превращается в радиоактивный изотоп B равна k. Идентифицировав в облученном образце по периоду полураспада и энергии излучения наличие изотопа B, по его активности можно определить массу соответствующего элемента m по формуле

где М? атомная масса определяемого элемента, i определяется по активности I изотопа B.

Наряду с абсолютным методом, основанным на соотношении часто применяется относительный метод, при котором активность образца сравнивается с активностью эталона, содержащего известное количество определяемого элемента и облученного в идентичных условиях с образцом.

В активационном анализе чаще всего используются нейтроны (нейтронно-активационный анализ ) и гамма-кванты (гамма-активационный анализ ). В качестве источника нейтронов используются:

1. Радиоизотопные (ампульные) источники.

2. Ядерные реакторы.

3. Нейтронные генераторы.

Около 70% элементов имеют свойства, позволяющие использование нейтронно-активационный анализ для их идентификации и количественного анализа.

Для гамма-активационного анализа используется тормозное излучение высокой интенсивности (10 14 -10 15 квант/с), получаемое на электронных ускорителях. Фотоядерные реакции позволяют активировать практически все элементы периодической системы элементов с пределом обнаружения ~10 -4 -10 -7 %. Существуют ситуации, когда использование гамма-активационного анализа предпочтительно. Гамма-активационный анализ в частности позволяет эффективно анализировать такие элементы, как Ca, Ni, Ti, Tl и Pb. Преимуществом гамма-активационного анализа перед нейтронно-активационным анализом является также то, что гамма-кванты могут глубже проникать в образец, следовательно, анализу могут подвергаться образцы больших размеров.

Активационный анализ на заряженных частицах, в связи с их малыми пробегами в веществе, используется главным образом для анализа тонких слоев и поверхностей.

2.2 Метод изотопного разбавления

В основе метода изотопного разбавления лежит допущение, что разные нуклиды одного и того же элемента химически эквивалентны. Метод целесообразно использовать для определения близких по свойствам компонентов трудно разделяемых смесей. Метод изотопного разбавления сочетает в себе преимущества методов внутреннего стандарта и добавок.

Его идею лучше всего рассмотреть на конкретном примере. При определении свинца методом изотопного разбавления в анализируемый раствор, содержащий х (г) свинца, вводят небольшое известное количество радиоактивного изотопа Рb * , в результате чего раствор приобретает активность А 0 . Какое-то количество полученного раствора осаждают раствором сульфата и получают m (г) осадка PbSO4 с активностью А . Если радиоактивный изотоп вводился в анализируемый раствор без носителя, то из пропорции

где F - фактор пересчета PbSO4 на Pb.

Если изотоп вводился с носителем, то

где m " - масса радиоактивного препарата с носителем.

При m " = 0 (изотоп без носителя) соотношение (б) переходит в (а). Как видно, пропорциональность активности изотопа количеству определяемого компонента позволяет получить точный результат и без достижения полноты осаждения, что является существенным достоинством метода изотопного разбавления.

Определение активности осадка часто нежелательно из-за адсорбции, самопоглощения и других явлений, искажающих истинную величину активности, поэтому обычно определяют активность раствора после отделения осадка. Если А1 и V1 - удельная активность и объем раствора до осаждения, A2 и V2 - после него, то, очевидно, активность осадка А будет равна А = А1V1 - А2V2.

Применение метода изотопного разбавления предполагает, что закон постоянства изотопного состава элементов соблюдается, химические свойства радиоактивного и неактивного изотопов неразличимы и реакции изотопного обмена радиоизотопа с «третьими» компонентами смеси не происходят.

Для выделения анализируемого компонента в методе изотопного разбавления наряду с осаждением используется также экстракция, хроматография и другие методы разделения, а для определения количества выделенного компонента применяют спектральные, электрохимические и другие методики.

2.3 Радиометрическое титрование

При радиометрическом титровании индикаторами являются радиоактивные изотопы элементов. Например, при титровании фосфата магнием в анализируемый раствор вводят небольшое количество фосфата, содержащего радиоактивный Р*.

При титровании протекает реакция

Изменение активности в ходе этого титрования можно видеть на рис.1 а. Здесь же показано графическое определение точки эквивалентности (т.э.). До т.э. раствора будет резко убывать, так как радиоактивный HP*O 4 2- из раствора будет переходить в осадок. После т.э. активность раствора будет оставаться практически постоянной и очень небольшой.

Как видно из рис.1. б. добавление гидрофосфата к раствору Mg2+ до т.э. практически не будет вызывать увеличения активности раствора, так как радиоактивный изотоп Р* будет переходить в осадок MgHP*O4. После т.э. активность раствора начинает возрастать пропорционально концентрации гидрофосфата.

Реакции радиометрического титрования должны удовлетворять требованиям, обычно предъявляемым к реакциям титриметрического анализа (скорость и полнота протекания реакции, постоянство состава продукта реакции и т. д.). Очевидным условием применимости реакции в данном методе является также переход продукта реакции из анализируемого раствора в другую фазу, с тем, чтобы устранить помехи при определении активности раствора. Этой второй фазой часто является образующийся осадок. Известны методики, где продукт реакции экстрагируется органическим растворителем. Например, при титровании многих катионов дитизоном в качестве экстрагента применяют хлороформ или тетрахлорид углерода. Применение экстракции позволяет более точно установить точку эквивалентности, так как в этом случае для ее определения можно измерять активность обеих фаз.

2.4 Методы определения содержания химических элементов по излучению их естественных радиоактивных изотопов

Многие химические элементы являются радиоактивными, т. е. все их изотопы радиоактивны. К ним относятся технеций, прометий и все естественные и искусственные элементы, стоящие в периодической системе элементов после висмута. Кроме того, ряд нерадиоактивных химических элементов в естественной смеси изотопов содержит радиоактивные изотопы.

Следует сказать, что на практике из нерадиоактивных элементов только калий определяется этим способом.

Для определения содержания радиоактивных элементов или нерадиоактивных, содержащих в естественной смеси радиоактивные изотопы, можно использовать два способа.

В первом способе определяется активность анализируемого образца (распад/сек), и рассчитывается количество искомого элемента.

Этот способ сложен, так как определение активности (распад/сек) в большинстве случаев представляет собой трудную задачу.

Практически более доступно относительное измерение, т. е. измерение активности анализируемого образца и эталона или серии эталонов с известным содержанием определяемого элемента. Необходимо, чтобы была достигнута полная идентичность условий измерения образца и эталонов: положение их относительно детектора излучения, толщина слоя и плотность. В этом случае содержание элемента в анализируемом образце может быть найдено по калибровочному графику в координатах активность - содержание элемента или по формуле:

где рх и рэ - содержание искомого элемента в образце и эталоне;

А и Аэ - активность анализируемого образца и эталона.

Второй способ основан на определении количества дочернего радиоактивного изотопа, накапливающегося за определенный промежуток времени из материнского:

где N Д и NM - количества атомов дочернего и материнского радиоактивных изотопов;

л Д и л м - константы распада дочернего и материнского изотопов;

t - время накопления дочернего изотопа из чистого материнского.

Этот способ применяется для определения содержания тех изотопов, которые распадаются с образованием других радиоактивных изотопов, например радия по дочернему радону, урана по UX1 и т. п.

3. Приборы, применяемые для регистрации радиоактивных излучений и частиц

На изучении взаимодействия радиоактивного излучения с веществом основаны различные способы обнаружения и измерения радиоактивности.

Приборы, применяемые для регистрации радиоактивных излучений и частиц, де-лятся на две группы:

1) приборы, позволяющие регистрировать прохождение частицы через определенный участок пространства и в некоторых случаях определять ее характеристики, например энергию (сцинтилляционный счетчик, черенковский счетчик, импульсная ионизационная камера, газоразрядный счетчик, полупроводниковый счетчик);

2) приборы, позволяющие наблюдать, например фотографировать, следы (треки) частиц в веществе (камера Вильсона, диффузионная камера, пузырьковая камера, ядерные фотоэмульсии).

3.1 Сцинтилляционный счетчик

Наблюдениесцинтилляций -- вспышек света при по-падании быстрых частиц на флуоресцирующий экран -- первый метод, позволивший У. Круксу* и Э. Резерфорду на заре ядерной физики (1903) визуально регистрировать a -частицы. Сцинтилляционный счетчик -- детектор ядерных частиц, основными элементами которого являются сцинтиллятор (кристаллофосфор и фотоэлектронный умножитель), позволяющий преобразовывать слабые световые вспышки в электрические импульсы, регистрируемые электронной аппаратурой. Обычно в качестве сцинтилляторов используют кристаллы некоторых неорганических (ZnS для a -частиц; NaI-Tl, CsI-Tl -- для b -частиц и g -квантов) или органических (антрацен, пластмассы -- для g -квантов) веществ.

* У. Крукс (1832--1919) -- английский физик и химик.

Принцип действия сцинтилляционного счётчика состоит в следующем: заряженная частица, проходя через сцинтиллятор, наряду с ионизацией атомов и молекул возбуждает их. Возвращаясь в невозбуждённое (основное) состояние, атомы испускают фотоны.

Излученный свет собирается - в спектральном диапазоне сцинтиллятора - на фотоприёмник. В качестве последнего часто служит фотоэлектронный умножитель (ФЭУ) и фотодиоды.

Схема сцинтилляционого счетчика: 1- источник излучения; 2- фосфор; 3- фотокатод; 4- диоды; 5- анод

3.2 Черенковский счетчик

Назначение черенковских счетчиков -- это измерение энергии частиц, движущихся в веществе со скоростью, превышающей фазовую скорость света в данной среде, и разделение этих частиц по массам. Зная угол испускания излучения, можно определить скорость частицы, что при известной массе частицы равносильно определению ее энергии. С другой стороны, если масса частицы не известна, то она может быть определена по независимому измерению энергии частицы. Кроме того, при наличии двух пучков частиц с разными скоростями будут различными и углы испускания излучений, по которым можно искомые частицы определить. Для черенковских счетчиков разрешение по скоростям (иными словами, по энергиям) составляет 10- 3 --10- 5 . Это позволяет отделять элементарные частицы друг от друга при энергиях порядка 1 ГэВ(гигаэлектронвольт), когда углы испускания излучения различаются очень мало. Время разрешения счетчиков достигает 10- 9 с. Счетчики Черенкова устанавливаются на космических кораблях для исследования космического излучения.

3.3 Импульсная ионизационная камера

Это детектор частиц, действие которого основано на способности заряженных частиц вызывать ионизацию газа. Ионизационная камера представляет собой заполненный газом электрический конденсатор, к электродам которого подается постоянное напряжение. Регистрируемая частица, попадая в пространство между электродами, ионизует газ. Напряжение подбирается так, чтобы все образовавшиеся ионы, с одной стороны, доходили до электродов, не успев рекомбинировать, а с другой -- не разгонялись настолько сильно, чтобы производить вто-ричную ионизацию. Следовательно, в ионизационной камере на ее электродах непосредственно собираются ноны, возникшие под действием заряженных частиц. Иониза-ционные камеры бывают двух типов:интегрирующие (в них измеряется суммарный ионизационный ток)иимпульсные, являющиеся, по существу, счетчиками (в них регистрируется прохождение одиночной частицы и измеряется ее энергия, правда, с довольно низкой точностью, обусловленной малостью выходного импульса).

3.4 Газоразрядный счетчик

Газоразрядный счетчик обычно выполняется в виде наполненного газом металлического цилиндра (катод) с тонкой проволокой (анод), натянутой по его оси. Хотя газоразрядные счетчики по конструкции похожи на ионизационную камеру, однако в них основную роль играет вторичная ионизация, обусловленная столкновениями первичных ионов с атомами и молекулами газа и стенок. Можно говорить о двух типах газоразрядных счетчиков: пропорциональных (в них газовый разряд несамостоятельный, т. е. гаснет при прекращении действия внешнего ионизатора) и счетчиках Гейгера -- Мюллера* (в них разряд самостоятельный т. е. поддерживается после прекращения действия внешнего ионизатора).

В пропорциональных счетчиках обычно катодом служит цилиндр, а анодом -- тонкая (10--100 мкм ) металлическая нить, натянутая по оси цилиндра. Газовое усиление осуществляется вблизи анода на расстоянии, сравнимом с диаметром нити, а весь остальной путь электроны дрейфуют под действием поля без "размножения". П. с. заполняют инертными газами (рабочий газ не должен поглощать дрейфующие электроны) с добавлением небольшого количества многоатомных газов, которые поглощают фотоны, образующиеся в лавинах.

Счетчик Гейгера -- Мюллера по конструкции и принципу действия существенно не отличается от пропорционального счетчика, но работает в области вольт-амперной характеристики, соответствующей самостоятельному разряду, когда выходной импульс не зависит от первичной ионизации. Счетчики Гейгера -- Мюллера регистрируют частицу без измерения ее энергии. Коэффициент усиления этих счетчиков составляет 10 8 . Для регистрации раздельных импульсов возникший разряд следует гасить.

Рис. Схема пропорционального счетчика

Рис. Установка для регистрации радиоактивных излучений: а - счетчики Гейгера--Мюллера; б -- внешний вид счетной установки; в -- схема счетной установкм; 1 -- газовый счетчик; 2 -- высоковольтный выпрямитель; 3 -- усилитель; 4 -- пересчетное устройство; 5 -- электромеханический счетчик

3.5 Камера Вильсона

(1912) -- это старейший и на протяжении многих десятилетий (вплоть до 50--60-х годов) единственный тип трекового детектора. Выполняется обычно в виде стеклянного цилиндра с плотно прилегающим поршнем. Цилиндр наполняется нейтральным газом (обычно гелием или аргоном), насыщенным парами воды или спирта. При резком, т. е. адиабатическом, расширении газа пар становится пересыщенным и на траекториях частиц, пролетевших через камеру, образуются треки из тумана. Образовавшиеся треки для воспроизводства их пространственного расположения фотографируются стереоскопически, т. е. под разными углами. По характеру и геометрии треков можно судить о типе прошедших через камеру частиц (например, a -частица оставляет сплошной жирный след, b -частица -- тонкий), об энергии частиц (по величине пробега), о плотности ионизации (по количеству капель на единицу длины трека), о количестве участвующих в реакции частиц.

* Ч. Вильсон (1869--1959) -- английский физик.

Российский ученый Д. В. Скобельцын (1892--1990) значительно расширил возмож-ности камеры Вильсона, поместив ее в сильное магнитное поле (1927). По искривлению траектории заряженных частиц в магнитном поле, т.е. по кривизне трека, можно судить о знаке заряда, а если известен тип частицы (ее заряд и масса), то по радиусу кривизны трека можно определить энергию и массу частицы даже в том случае, если весь трек в камере не умещается (для реакций при высоких энергиях вплоть до сотен мегаэлектрон-вольт). Недостаток камеры Вильсона -- ее малое рабочее время, составляющее примерно 1% от времени, затрачиваемого для подготовки камеры к последу-ющему расширению (выравнивание температуры и давления, рассасывание остатков треков, насыщение паров), а также трудоемкость обработки результатов.

Рис. Схема Камеры Вильсона

3.6 Диффузионная камера

(1936) -- это разновидность камеры Вильсона. В ней рабочим веществом также является пересыщенный пар, но состояние пересыщения создастся диффузией паров спирта от нагретой (до 10°С) крышки ко дну, охлаждаемому (до --60°С) твердой углекислотой. Вблизи дна возникает слой пересыщенного пара толщиной примерно 5 см, в котором проходящие заряженные частицы создают треки. В отличие от вильсоновской диффузионная камера работает непрерывно. Кроме того, из-за отсутствия поршня в ней могут создаваться давления до 4 МПа, что значительно увеличивает ее эффективный объем.

Рис.Диффузионная камера: 1 - фотоаппарат; 2 - стеклянная крышка; 3 - лоток, наполненный спиртом; 4 - стеклянный цилиндр; 5 - металлическая пластина; 6 - сухой лед

3.7 Пузырьковая камера

(1952; американский физик Д. Глезер (р. 1926)). В пузырьковой камере рабочим веществом является перегретая (находящаяся под давлением) прозрачная жидкость (жидкие водород, пропан, ксенон). Запускается камера, так же как и камера Вильсона, резким сбросом давления, переводящим жидкость в неустойчивое перегретое состояние. Пролетающая в это время через камеру заряженная частица вызывает резкое вскипание жидкости, и траектория частицы оказывается обозначенной цепочкой пузырьков пара -- образуется трек, который, как и в камере Вильсона, фотографируется. Пузырьковая камера работает циклами. Размеры пузырьковых камер примерно такие же, как камеры Вильсона (от десятков сантиметров до 2 м), но их эффективный объем на 2--3 порядка больше, так как жидкости гораздо плотнее газов. Это позволяет использовать пузырьковые камеры для исследования длинных цепей рождений и распадов частиц высоких энергий.

Заключение

Все описанные выше радиометрические методы анализа не лишены ряда недостатков, но они являются вполне перспективными и могут широко применяться в случае необходимости. Количественный анализ с применением радиоактивных индикаторов часто оказывается более простым и более чувствительным, чем другие методы химического анализа.

Применение радиоактивности в аналитической химии весьма многообразно. Измерение радиоактивности широко применяют также в научно-исследовательских целях: для исследования механизмов химических реакций, определения растворимости малорастворимых соединений, исследования процессов разделения и для решения многих других задач, включая определение важнейших физико-химических констант (констант устойчивости координационных соединений, констант ионообменных процессов и т. д.).

Список литературы

1. Векслер В. Ионизационные методы исследования излучений/ В. Векслер, Л. Грошев, Б. Исаев. М. -Л.: Гостехиздат, 1949. 424 с.

2. Калашникова В. И. Детекторы элементарных частиц (Экспериментальные методы ядерной физики, [ч. 1])/ В.И. Калашникова, М.С. Козодаев. М.: Наука, 1966. 408 с.

3. Крешков А.П.Основы аналитической химии. Физико-химические (инструментальные) методы анализа/ А.П. Крешков. М.: Химия, 1970. 472 с.

4. Васильев В.П. Аналитическая химия (Физико-химические методы анализа, [ч.2])/ В.П.Васильев. М.: Дрофа, 2009. 382 с.

Размещено на Allbest.ru

Подобные документы

    Закон радиоактивного распада. Определение ионов химических элементов. Метод радиометрического титрования, изотопного разбавления, активационного анализа, определения содержания химических элементов по излучению их естественных радиоактивных изотопов.

    презентация , добавлен 07.05.2016

    Радиоактивный анализ. Типы радиоактивного распада и радиоактивного излучения. Методики анализа, основанные на измерении радиоактивного излучения. Активационный анализ. Метод изотропного разбавления. Радиометрическое титрование.

    реферат , добавлен 05.06.2008

    Типы радиоактивного распада и радиоактивного излучения. Закон радиоактивного распада. Методики анализа, основанные на измерении радиоактивности. Использование естественной радиоактивности в анализе. Активационный анализ. Радиометрическое титрование.

    реферат , добавлен 01.06.2008

    Ионизационный и сцинтилляционный методы радиоактивного излучения. Определение ионов химических элементов в растворе с помощью радиоактивных реагентов. Оптимальное время регистрации излучений. Метод радиометрического титрования и активационного анализа.

    курсовая работа , добавлен 07.05.2016

    История, предмет и задачи радиохимии. Протонно-нейтронный состав ядер. Законы радиоактивного распада. Взаимодействие ядерного излучения с веществом. Основные виды радиационно-химических превращений. Механизм ядерных реакций и получение радионуклидов.

    учебное пособие , добавлен 06.06.2010

    Природная радиоактивность обусловлена радиоактивными изотопами естественного происхождения, присутствующими во всех оболочках земли. Родоначальниками радиоактивных изотопов, входящие в состав радиоактивных семейств являются радий и торий.

    курсовая работа , добавлен 25.11.2008

    Современные аналитические методики. Взаимодействие гамма-излучения с веществом. Типы радиоактивности урана. Методика измерения обогащения с использование натрий-йодного детектора. Обработка спектра окиси урана. Измерение обогащения блочков урана.

    дипломная работа , добавлен 16.07.2015

    Изучение состава, строения органических и неорганических веществ. Применение спектральных методов анализа, основанных на анализе взаимодействия с веществом электромагнитного излучения энергии. Классические спектрофотометры. Использование минералогии.

    презентация , добавлен 23.12.2013

    История развития микроволновой химии. Разработка специализированных микроволновых печей, предназначенных для осуществления химических реакций. Взаимодействие микроволнового излучения с веществами, его использование для проведения химических анализов.

    курсовая работа , добавлен 13.11.2011

    Понятие и основные разновидности излучений, их признаки и свойства. Взаимодействие бета-излучения с веществом: ионизационные, радиационные, поляризационные потери, упругое рассеяние. Отличительные особенности и отличительные свойства бета-детектирования.