Умножение дробей возведение дроби в степень калькулятор. Возведение в степень комплексного числа

При решении арифметических и алгебраических задач иногда требуется возвести дробь в квадрат . Проще всего это сделать, когда дробь десятичная – достаточно обычного калькулятора. Однако если дробь обыкновенная или смешанная, то при возведении такого числа в квадрат могут возникнуть некоторые затруднения.

Вам понадобится

  • калькулятор, компьютер, приложение Excel.

Инструкция

Чтобы возвести десятичную дробь в квадрат , возьмите инженерный , наберите на нем возводимую в квадрат дробь и нажмите на клавишу возведения во вторую степень. На большинстве калькуляторов эта кнопка обозначена как «х²». На стандартном калькуляторе Windows функция возведения в квадрат выглядит как «x^2». Например, квадрат десятичной дроби 3,14 будет равен: 3,14² = 9,8596.

Чтобы возвести в квадрат десятичную дробь на обычном (бухгалтерском) калькуляторе, умножьте это число само на себя. Кстати, в некоторых моделях калькуляторов предусмотрена возможность возведения числа в квадрат даже при отсутствии специальной кнопки. Поэтому предварительно ознакомьтесь с инструкцией к конкретному калькулятору. Иногда «хитрого» возведения в степень приведены на задней крышке или на калькулятора. Например, на многих калькуляторах для возведения числа в квадрат достаточно нажать кнопки «х» и «=».

Для возведения в квадрат обыкновенной дроби (состоящей из числителя и знаменателя), возведите в квадрат по отдельности числитель и знаменатель этой дроби. То есть воспользуйтесь следующим правилом:(ч / з)² = ч² / з², где ч – числитель дроби, з – знаменатель дроби.Пример: (3/4)² = 3²/4² = 9/16.

Если возводимая в квадрат дробь – смешанная (состоит из целой части и обыкновенной дроби), то предварительно приведите ее к обыкновенному виду. То есть примените следующую формулу:(ц ч/з)² = ((ц*з+ч) / з)² = (ц*з+ч)² / з², где ц – целая часть смешанной дроби.Пример: (3 2/5)² = ((3*5+2) / 5)² = (3*5+2)² / 5² = 17² / 5² = 289/25 = 11 14/25.

Если в квадрат (не ) дроби приходится постоянно, то воспользуйтесь программой MS Excel. Для этого введите в одну из таблицы следующую формулу: =СТЕПЕНЬ(A2;2) где А2 – адрес ячейки, в которую будет вводиться возводимая в квадрат дробь .Чтобы сообщить программе, что с вводимым числом необходимо обращаться как дробь ю (т.е. не преобразовывать ее в десятичный вид), наберите перед дробь ю цифру «0» и знак «пробел». То есть для ввода, например, дроби 2/3 нужно ввести: «0 2/3» (и нажать Enter). При этом в строке ввода отобразится десятичное представление введенной дроби. Значение и представление дроби непосредственно в сохранится в исходном виде. Кроме того, при использовании математических функций, аргументами которых обыкновенные дроби, результат также будет представлен в виде обыкновенной дроби. Следовательно квадрат дроби 2/3 будет представлен как 4/9.


Пришло время ознакомиться с возведением алгебраической дроби в степень . Это действие с алгебраическими дробями по смыслу степени сводится к умножению одинаковых дробей. В этой статье мы дадим соответствующее правило, и рассмотрим примеры возведения алгебраических дробей в натуральную степень.

Навигация по странице.

Правило возведение алгебраической дроби в степень, его доказательство

Прежде чем говорить о возведении в степень алгебраической дроби, не помешает вспомнить, что представляет собой произведение одинаковых множителей, стоящих в основании степени, а их количество определяется показателем. Например, 2 3 =2·2·2=8 .

А теперь вспомним правило возведения в степень обыкновенной дроби – для этого нужно отдельно возвести в указанную степень числитель, и отдельно – знаменатель. К примеру, . Указанное правило распространяется на возведение алгебраической дроби в натуральную степень.

Возведение алгебраической дроби в натуральную степень дает новую дробь, в числителе которой указанная степень числителя исходной дроби, а в знаменателе – степень знаменателя. В буквенном виде этому правилу соответствует равенство , где a и b – произвольные многочлены (в частных случаях одночлены или числа), причем b – ненулевой многочлен, а n – .

Доказательство озвученного правила возведения алгебраической дроби в степень основано на определении степени с натуральным показателем и на том, как мы определили умножение алгебраических дробей : .

Примеры, решения

Полученное в предыдущем пункте правило сводит возведение алгебраической дроби в степень к возведению в эту степень числителя и знаменателя исходной дроби. А так как числителем и знаменателем исходной алгебраической дроби являются многочлены (в частном случае одночлены или числа), то исходное задание сводится к возведению в степень многочленов . После выполнения этого действия будет получена новая алгебраическая дробь, тождественно равная указанной степени исходной алгебраической дроби.

Рассмотрим решения нескольких примеров.

Пример.

Возведите алгебраическую дробь в квадрат.

Решение.

Запишем степень . Теперь обращаемся к правилу возведения алгебраической дроби в степень, оно нам дает равенство . Осталось преобразовать полученную дробь к виду алгебраической дроби, выполнив возведение одночленов в степень . Так .

Обычно при возведении алгебраической дроби в степень ход решения не поясняют, а решение записывают кратко. Нашему примеру отвечает запись .

Ответ:

.

Когда в числителе и/или в знаменателе алгебраической дроби находятся многочлены, особенно двучлены, то при ее возведении в степень целесообразно использовать соответствующие формулы сокращенного умножения .

Пример.

Возведите алгебраическую дробь во вторую степень.

Решение.

По правилу возведения дроби в степень имеем .

Для преобразования полученного выражения в числителе воспользуемся формулой квадрата разности , а в знаменателе – формулой квадрата суммы трех слагаемых :

Ответ:

В заключение отметим, что если мы возводим в натуральную степень несократимую алгебраическую дробь, то в результате тоже получится несократимая дробь. Если же исходная дробь сократима, то перед возведением ее в степень целесообразно выполнить сокращение алгебраической дроби , чтобы не выполнять сокращение после возведения в степень.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

Дробь представляет собой отношение числителя к знаменателю, причём знаменатель не должен равняться нулю, а числитель может быть любой.

При возведении любой дроби в произвольную степень нужно возводить отдельно числитель и знаменатель дроби в эту степень, после чего мы должны эти степени сосчитать и таким образом получим дробь, возведённую в степень.

Например:

(2/7)^2 = 2^2/7^2 = 4/49

(2 / 3)^3 = (2 / 3) · (2 / 3) · (2 / 3) = 2^3 / 3^3

Отрицательная степень

Если мы имеем дело с отрицательной степенью, то мы должны сначала “Перевернуть дробь”, а уж потом возводить её в степень по правилу написанному выше.

(2/7)^(-2) = (7/2)^2 = 7^2/2^2

Буквенная степень

При работе с буквенными значениями такими как “x” и “у” возведение в степень происходит по тому же правилу что и раньше.

Также мы можем проверить себя возведя дробь ½ в 3 степень в результате чего мы получим ½ * ½ * ½ = 1/8 что в сущности тоже самое что и

Буквенное возведение в степень x^y

Умножение и деление дробей со степенями

Если мы умножаем степени с одинаковыми основаниями, то само основание остается прежним, а показатели степеней мы складываем. Если же мы делим степени с одинаковым основаниями, тогда основание степени также остаётся прежним, а показатели степеней вычитаются.

Это очень легко можно показать на примере:

(3^23)*(3^8)=3^(23+8) = 3^31

(2^4)/(2^3) = 2^(4-3) = 2^1 = 2

Тоже самое мы могли бы получить если бы просто возвели в степень 3 и 4 отдельно знаменатель и числитель соответственно.

Возведение дроби со степенью в еще одну степень

При возведении дроби, которая уже находится в степени, ещё раз в степень мы должны сначало сделать внутреннее возведение в степень после чего переходить в во внешнюю часть возведения в степень. Другими словами мы можем просто напросто перемножить эти степени и возвести дробь в полученную степень.

Например:

(2^4)^2 = 2^ 4·2 = 2^8

Возведение в единицу, квадратный корень

Также нельзя забывать что возведение абсолютно любой дроби в нулевую степень даст нам 1, так же как и любое другое число при возведении в степень равную нулю мы получим 1.

Обычный квадратный корень также можно представить в виде степени дроби

Квадратный корень 3 = 3^(1/2)

Если же мы имеем дело с квадратным корнем под которым находится дробь, то мы можем представить эту дробь в числителе которой будет находится квадратный корень 2 – степени (т.к. квадратный корень)

А в знаменателе также будет находится квадратный корень, т.е. другими словами мы будем видеть отношение двух корней, это может пригодится для решения некоторых задач и примеров.

Если мы возведём дробь, которая находится под квадратным корнем во вторую степень то мы получим ту же самую дробь.

Произведение двух дробей под одной степенью будет равнятся произведению этих двух дробей, каждая в отдельности из которых будет под своей степенью.

Помните: на ноль делить нельзя!

Также не стоит забывать об очень важном замечании для дроби такой как знаменатель не должен равняться нулю. В дальнейшем во многих уравнениях мы будем использовать это ограничение, называемое ОДЗ – область допустимых значений

При сравнении двух дробей с одним и тем же основанием но разными степенями, большее будет являться та дробь у которой степень будет больше, а меньшей та у которой степень меньше, при равенстве не только оснований, но и степеней, дробь считается одинаковой.

Тема сводится к тому, что нам необходимо производить умножение одинаковых дробей. Данная статья расскажет, какое необходимо использовать правило, чтобы верно возводить алгебраические дроби в натуральную степень.

Yandex.RTB R-A-339285-1

Правило возведения алгебраической дроби в степень, его доказательство

Перед тем, как начать возводить в степень, необходимо углубить знания при помощи статьи про степень с натуральным показателем, где имеется произведение одинаковых множителей, которые находятся в основании степени, причем их количество определено показателем. К примеру, число 2 3 = 2 · 2 · 2 = 8 .

При возведении в степень чаще всего используем правило. Для этого в отдельности возводят в степень числитель и отдельно знаменатель. Рассмотрим на примере 2 3 2 = 2 2 3 2 = 4 9 . Правило применимо для возведения дроби в натуральную степень.

При возведении алгебраической дроби в натуральную степень получаем новую, где числитель имеет степень исходной дроби, а знаменатель – степень знаменателя. Это все имеет вид a b n = a n b n , где а и b являются произвольными многочленами, b является ненулевым, а n натуральным числом.

Доказательство данного правила записывается в виде дроби, которую необходимо возвести в степень, основываясь на самом определении с натуральным показателем. Тогда получаем умножение дробей вида a b n = a b · a b · . . . · a b = a · a · . . . · a b · b · . . . · b = a n b n

Примеры, решения

Правило возведения алгебраической дроби в степень производится последовательно: сначала числитель, потом знаменатель. Когда в числителе и знаменателе имеется многочлен, тогда само задание сведется к возведению заданного многочлена в степень. После чего будет указана новая дробь, которая равна исходной.

Пример 1

Произвести возведение дроби x 2 3 · y · z 3 в квадрат.

Решение

Необходимо зафиксировать степень x 2 3 · y · z 3 2 . По правилу возведения алгебраической дроби в степень получаем равенство вида x 2 3 · y · z 3 2 = x 2 2 3 · y · z 3 2 . Теперь необходимо произвести преобразование полученной дроби к виду алгебраической, выполняя возведение в степень. Тогда получим выражение вида

x 2 2 3 · y · z 3 2 = x 2 · 2 3 2 · y 2 · z 3 2 = x 4 9 · y 2 · z 6

Все случаи возведения в степень не предполагают подробного разъяснения, поэтому сам решение имеет краткую запись. То есть, получаем, что

x 2 3 · y · z 3 2 = x 2 2 3 · y · z 3 2 = x 4 9 · y 2 · z 6

Ответ: x 2 3 · y · z 3 2 = x 4 9 · y 2 · z 6 .

Если числитель и знаменатель имеют многочлены, тогда необходимо возводить всю дробь в степень, после чего применять формулы сокращенного умножения для его упрощения.

Пример 2

Возвести дробь 2 · x - 1 x 2 + 3 · x · y - y в квадрат.

Решение

Из правила имеем, что

2 · x - 1 x 2 + 3 · x · y - y 2 = 2 · x - 1 2 x 2 + 3 · x · y - y 2

Чтобы преобразовать выражение, необходимо воспользоваться формулой квадрата суммы трех слагаемых в знаменателе, а в числителе – квадратом разности, что позволит упростить выражение. Получим:

2 · x - 1 2 x 2 + 3 · x · y - y 2 = = 2 · x 2 - 2 · 2 · x · 1 + 1 2 x 2 2 + 3 · x · y 2 + - y 2 + 2 · x 2 · 3 · x · y + 2 · x 2 · (- y) + 2 · 3 · x · y · - y = = 4 · x 2 - 4 · x + 1 x 4 + 9 · x 2 · y 2 + y 2 + 6 · x 3 · y - 2 · x 2 · y - 6 · x · y 2

Ответ: 2 · x - 1 2 x 2 + 3 · x · y - y 2 = 4 · x 2 - 4 · x + 1 x 4 + 9 · x 2 · y 2 + y 2 + 6 · x 3 · y - 2 · x 2 · y - 6 · x · y 2

Заметим, что при возведении в натуральную степень дробь, которую не можем сократить, получаем также несократимую дробь. Это не упрощает ее для дальнейшего решения. Когда заданная дробь может быть сокращена, тогда при возведении в степень получаем, что необходимо выполнение сокращения алгебраической дроби, во избежание выполнения сокращения после того, как возведем в степень.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter