Вершины многогранника обозначаются какими буквами. Объемы правильных многогранников

В школьной программе, к сожалению, сферическую геометрию и геометрию Лобачевского не изучают. Тем временем, их изучение совместно с Евклидовой геометрией, позволяет глубже понять происходящее с объектами. Например, понять связь правильных многогранников с разбиениями сферы, разбиениями плоскости Евклида и разбиениями плоскости Лобачевского.
Знания геометрии пространств постоянной кривизны помогает подниматься над трёхмерием и выявлять многогранники в пространствах размерности 4 и выше. Вопросы нахождения многогранников, нахождения разбиений пространств постоянной кривизны, вывода формулы двугранного угла правильного многогранника в n-мерном пространстве - так тесно переплетены, что выносить всё это в название статьи оказалось проблематично. Пусть в центре внимания будут, всем понятные, правильные многогранники, хотя они не только результат всех выводов, но и, одновременно, инструмент для постижения пространств высших размерностей и равномерно искривлённых пространств.

Для тех кто не знает (забыл) сообщаю (напоминаю), что в привычном нам трёхмерном Евклидовом пространстве всего пять правильных многогранников:

1. Тетраэдр: 2. Куб: 3. Октаэдр: 4. Додекаэдр: 5. Икосаэдр:






В трёхмерном пространстве правильным многогранником называется выпуклый многогранник, у которого все вершины равны между собой, все рёбра равны между собой, все грани равны между собой и грани являются правильными многоугольниками.

Правильный многоугольник - это выпуклый многоугольник, у которого все стороны между собой равны и все углы между собой равны.

Вершины равны между собой означает, что количество рёбер и количество граней подходящих к каждой вершине одинаковое и подходят они под одинаковыми углами, в каждой вершине.

В такой записи наши многогранники получат обозначения:
1. Тетраэдр {3, 3},
2. Куб {4, 3},
3. Октаэдр {3, 4},
4. Додекаэдр {5, 3},
5. Икосаэдр {3, 5}
Например, {4, 3} - куб имеет 4 угольные грани, в каждой вершине сходится по 3 таких грани.
У октаэдра {3, 4} наоборот, грани 3 угольные, сходятся по 4 штуки в вершине.
Таким образом символ Шлефли полностью определяет комбинаторное строение многогранника.

Почему правильных многогранников всего 5? Может быть их больше?

Чтобы сполна дать ответ на этот вопрос, нужно сначала получить интуитивное представление о геометрии на сфере и на плоскости Лобачевского. Тем у кого такого представления ещё нет постараюсь дать необходимые объяснения.

Сфера

1. Что такое точка на сфере? Думаю, что всем интуитивно понятно. Мысленно не сложно представить точку на сфере.

2. Что такое отрезок на сфере? Берём две точки и соединяем их кратчайшим расстоянием на сфере, получится дуга, если смотреть на сферу со стороны.

3. Если продолжить этот отрезок в обе стороны, то он замкнётся и получится окружность. При этом плоскость окружности содержит центр сферы, это следует из того, что две исходные точки мы соединили кратчайшим, а не произвольным, расстоянием. Это со стороны она выглядит, как окружность, а в терминах сферической геометрии это прямая, так как была получена из отрезка, продолжением до бесконечности в обе стороны.

4. И, наконец, что такое треугольник на сфере? Берём три точки на сфере и соединяем их отрезками.

По аналогии с треугольником можно нарисовать произвольный многоугольник на сфере. Для нас принципиально важно свойство сферического треугольника, заключающееся в том, что сумма углов у такого треугольника больше 180 градусов, к которым мы привыкли в Евклидовом треугольнике. Более того, сумма углов у двух различных сферических треугольников различна. Чем больше треугольник, тем БОЛЬШЕ у него сумма углов.

Соответственно, появляется 4-й признак равенства треугольников на сфере - по трём углам: два сферических треугольника равны между собой, если у них соответствующие углы равны.

Для простоты саму сферу проще не рисовать, тогда треугольник будет выглядеть немного раздутым:

Сферу ещё называют пространством постоянной положительной кривизны. Кривизна пространства как раз и приводит к тому, что кратчайшим расстоянием является дуга, а не привычный нам прямолинейный отрезок. Отрезок как бы искривляется.

Лобачевский

Теперь, когда мы познакомились с геометрией на сфере, понять геометрию на гиперболической плоскости, открытую великим русским учёным Николаем Ивановичем Лобачевским, будет тоже не сложно, так как тут всё происходит аналогично сфере, только «наизнанку», «наоборот». Если дуги на сфере мы проводили окружностями, с центром внутри сферы, то теперь дуги надо проводить окружностями с центром за пределами сферы.

Приступим. Плоскость Лобачевского будем представлять в интерпретации Пуанкаре II (Жюль Анри́ Пуанкаре́, великий французский учёный), эту интерпретацию геометрии Лобачевского ещё называют диском Пуанкаре.

1. Точка в плоскости Лобачевского. Точка - она и в Африке точка.

2. Отрезок на плоскости Лобачевского. Соединяем две точки линией по кратчайшему расстоянию в смысле плоскости Лобачевского.

Кратчайшее расстояние строится следующим образом:

Надо провести окружность ортогональную диску Пуанкаре, через заданные две точки (Z и V на рисунке). Центр этой окружности будет находиться всегда за пределами диска. Дуга соединяющая исходные две точки будет кратчайшим расстоянием в смысле плоскости Лобачевского.

3. Убрав вспомогательные дуги, получим прямую E1 - H1 в плоскости Лобачевского.

Точки E1, H1 «лежат» на бесконечности плоскости Лобачевского, вообще край диска Пуанкаре - это всё бесконечно удалённые точки плоскости Лобачевского.

4. И наконец, что такое треугольник в плоскости Лобачевского? Берём три точки и соединяем их отрезками.

По аналогии с треугольником, можно нарисовать произвольный многоугольник на плоскости Лобачевского. Для нас принципиально важно свойство гиперболического треугольника, заключающееся в том, что сумма углов у такого треугольника всегда меньше 180 градусов, к которым мы привыкли в Евклидовом треугольнике. Более того, сумма углов у двух различных гиперболических треугольников различна. Чем больше треугольник по площади, тем МЕНЬШЕ у него сумма углов.

Соответственно, тут тоже имеет место 4-й признак равенства гиперболических треугольников - по трём углам: два гиперболических треугольника равны между собой, если у них соответствующие углы равны.

Для простоты сам диск Пуанкаре иногда можно не рисовать, тогда треугольник будет выглядеть немного «усохшим», «сдутым»:

Плоскость Лобачевского (и вообще пространство Лобачевского любой размерности) ещё называют пространством постоянной ОТРИЦАТЕЛЬНОЙ кривизны. Кривизна пространства как раз и приводит к тому, что кратчайшим расстоянием является дуга, а не привычный нам прямолинейный отрезок. Отрезок как бы искривляется.

Правильные разбиения двумерной Сферы и правильные трёхмерные многогранники

Всё сказанное про сферу и плоскость Лобачевского относится к двумерию, т.е. поверхность сферы - двумерна. Какое это имеет отношению к трёхмерию, указанному в заголовке статьи? Оказывается, каждому трёхмерному правильному Евклидову многограннику взаимно однозначно соответствует своё разбиение двумерной сферы. Лучше всего это видно на рисунке:

Чтобы из правильного многогранника получить разбиение сферы, нужно описать вокруг многогранника сферу. Вершины многогранника окажутся на поверхности сферы, соединив эти точки отрезками на сфере (дугами), получим разбиение двумерной сферы на правильные сферические многоугольники. Для примера сделана видео демонстрация как икосаэдр соответствует разбиению сферы на сферические треугольники и обратно, как разбиение сферы на сферические треугольники, сходящиеся по пять штук в вершине, соответствует икосаэдру.

Чтобы по разбиению сферы построить многогранник, соответствующие дугам вершины разбиения нужно соединить обычными, прямолинейными, Евклидовыми отрезками.

Соответственно символ Шлефли икосаэдра {3, 5} - трёхугольники, сходящиеся по пять штук в вершине, задаёт не только структуру этого многогранника, но и структуру разбиения двумерной сферы. Аналогично и с другими многогранниками, их символы Шлефли задают и структуру соответствующих разбиений. Более того, разбиения плоскости Евклида и плоскости Лобачевского на правильные многоугольники, тоже можно задавать символом Шлефли. Например, {4, 4} - четырёхугольники, сходящиеся по четыре - это всем привычная нам тетрадь в клеточку, т.е. это разбиение плоскости Евклида на квадраты. А есть ли другие разбиения плоскости Евклида? Увидим дальше.

Построение разбиений двумерной сферы, плоскости Евклида и плоскости Лобачевского

Для построения разбиений двумерных пространств постоянной кривизны (таково общее название этих трёх пространств) нам потребуется элементарная школьная геометрия и знание того, что сумма углов сферического треугольника больше 180 градусов (больше Пи), что сумма углов гиперболического треугольника меньше 180 градусов (меньше Пи) и что такое символ Шлефли. Обо всём об этом уже сказано выше.

Итак, возьмём произвольный символ Шлефли {p1, p2}, он задаёт разбиение одного из трёх пространств постоянной кривизны (для плоскости это верно, для пространств высших размерностей дело обстоит сложнее, но ничто нам не мешает исследовать все комбинации символа).

Рассмотрим правильный p1 угольник, проведём отрезки, соединяющие его центр и вершины. Получим p1 штук равнобедренных треугольника (на рисунке показан только один такой треугольник). Сумму углов каждого из этих треугольников обозначим за t и выразим t через пи и коэффициент лямда.

Тогда если лямда = 1, то треугольник Евклидов, т.е. находится в Евклидовой плоскости, если лямда в интервале (1, 3), то это значит, что сумма углов больше пи и значит этот треугольник сферический (не трудно представить, что при увеличении сферического треугольника в пределе получается окружность с тремя точками на ней, в каждой точке угол треугольника получается равным пи, а в сумме 3*пи. Это объясняет верхнюю границу интервала = 3). Если же лямда в интервале (0, 1), то треугольник гиперболический, так как сумма углов у него меньше пи (т.е. меньше 180 градусов). Коротко это можно записать так:

С другой стороны, для сходимости в вершине p2 штук (т.е. целого числа) таких же многоугольников нужно, чтобы

Приравнивая выражения для 2*бетта, найденные из условия сходимости и из многоугольника:

Получили уравнение которое показывает какое из трёх пространств разбивает фигура заданная своим символом Шлефли {p1, p2}. Для решения этого уравнения надо вспомнить, так же, что p1, p2 - целые числа, большие либо равные 3. Это, так сказать, следует из их физического смысла, так как это p1 угольники (не меньше 3 углов), сходящиеся по p2 штук в вершине (тоже не меньше 3, иначе это не вершина получится).

Решение этого уравнения заключается в переборе всех возможных значений для p1, p2 больших либо равных 3 и вычислении значения лямда. Если оно получится равным 1, то {p1, p2} разбивает плоскость Евклида, если больше 1 но меньше 3, то это разбиение Сферы, если от 0 до 1, то это разбиение плоскости Лобачевского. Все эти вычисления удобно свести в таблицу.

Откуда видно, что:
1. Сфере соответствует всего 5 решений, когда лямда больше 1 и меньше 3, они выделены зелёным цветом в таблице. Это: {3, 3} - тетраэдр, {3, 4} - октаэдр, {3, 5} - икосаэдр, {4, 3} - куб, {5, 3} - додекаэдр. Их картинки были представлены в начале статьи.
2. Разбиениям Евклидовой плоскости соответствует всего три решения, когда лямда = 1, они выделены синим цветом в таблице. Вот как выглядят эти разбиения.



3. И наконец, все остальные комбинации {p1, p2} соответствуют разбиениям плоскости Лобачевского, соответственно таких разбиений бесконечное (счётное) количество. Осталось только проиллюстрировать некоторые из них, для примера.

Итоги

Таким образом, правильных многогранников всего 5, они соответствуют пяти разбиениям двумерной сферы, разбиений плоскости Евклида всего 3, и разбиений плоскости Лобачевского счётное количество.
Какое приложение этих знаний?

Есть люди, которые напрямую интересуются разбиениями сферы.

1. На рисунке 1 укажите выпуклые и невыпуклые многогранники.

Ответ: Выпуклые - б), д); невыпуклые - а), в), г).

2. Приведите пример невыпуклого многогранника, у которого все грани являются выпуклыми многоугольниками.

Ответ: Рисунок 1, а).

3. Верно ли, что объединение выпуклых многогранников является выпуклым многогранником?

Ответ: Нет.

4. Может ли число вершин многогранника равняться числу его граней?

Ответ: Да, у тетраэдра.

5. Установите связь между числом плоских углов П многогранника и числом его ребер Р.

Ответ: П = 2Р.

6. Гранями выпуклого многогранника являются только треугольники. Сколько у него вершин В и граней Г, если он имеет: а) 12 ребер; б) 15 ребер? Приведите примеры таких многогранников.

7. Из каждой вершины выпуклого многогранника выходит три ребра. Сколько он имеет вершин В и граней Г, если у него: а) 12 ребер; б) 15 ребер? Нарисуйте эти многогранники.

Ответ: а) В = 8, Г = 6, куб; б) В = 10, Г = 7, пятиугольная призма.

8. В каждой вершине выпуклого многогранника сходится по четыре ребра. Сколько он имеет вершин В и граней Г, если число ребер равно 12? Нарисуйте эти многогранники.

9. Докажите, что в любом выпуклом многограннике есть треугольная грань или в какой-нибудь его вершине сходится три ребра.

10. Подумайте, где в рассуждениях, показывающих справедливость соотношения Эйлера, использовалась выпуклость многогранника.

11. Чему равно В - Р + Г для многогранника, изображенного на рисунке 6?

Правильные многогранники

Выпуклый многогранник называется правильным, если его гранями являются равные правильные многоугольники, и все многогранные углы равны.

Рассмотрим возможные правильные многогранники и прежде всего те из них, гранями которых являются правильные треугольники. Наиболее простым таким правильным многогранником является треугольная пирамида, гранями которой являются правильные треугольники (рис. 7). В каждой ее вершине сходится по три грани. Имея всего четыре грани, этот многогранник называется также правильным тетраэдром, или просто тетраэдром, что в переводе с греческого языка означает четырехгранник.

Многогранник, гранями которого являются правильные треугольники, и в каждой вершине сходится четыре грани, изображен на рисунке 8. Его поверхность состоит из восьми правильных треугольников, поэтому он называется октаэдром.

Многогранник, в каждой вершине которого сходится пять правильных треугольников, изображен на рисунке 9. Его поверхность состоит из двадцати правильных треугольников, поэтому он называется икосаэдром.

Заметим, что поскольку в вершинах выпуклого многогранника не может сходиться более пяти правильных треугольников, то других правильных многогранников, гранями которых являются правильные треугольники, не существует.

Аналогично, поскольку в вершинах выпуклого многогранника может сходиться только три квадрата, то, кроме куба (рис. 10), других правильных многогранников, у которых гранями являются квадраты не существует. Куб имеет шесть граней и поэтому называется также гексаэдром.

Многогранник, гранями которого являются правильные пятиугольники, и в каждой вершине сходится три грани, изображен на рисунке 11. Его поверхность состоит из двенадцати правильных пятиугольников, поэтому он называется додекаэдром.

Рассмотрим понятие правильного многогранника с точки зрения топологии науки, изучающей свойсва фигур, не зависящих от различных деформаций без разрывов. С этой точки зрения, например, все треугольники эквивалентны, так как один треугольник всегда может быть получен из любого другого соответствующим сжатием или растяжением сторон. Вообще все многоугольники с одинаковым числом сторон эквивалентны по той же причине.

Как в такой ситуации определить понятие топологически правильного многогранника? Иначе говоря, какие свойства в определении правильного многогранника являются топологически устойчивыми и их следует оставить, а какие не являются топологически устойчивыми и их следует отбросить.

В определении правильного многогранника количество сторон и количество граней являются топологически устойчивыми, т.е. не меняющимися при непрерывных деформациях. Правильность же многоугольников не является топологически устойчивым свойством. Таким образом, мы приходим к следующему определению.

Выпуклый многогранник называется топологически правильным, если его гранями являются многоугольники с одним и тем же числом сторон и в каждой вершине сходится одинаковое число граней.

Два многогранника называются топологически эквивалентными, если один из другого можно получить непрерывной деформацией.

Например, все треугольные пирамиды являются топологически правильными многогранниками, эквивалентными между собой. Все параллелепипеды также являются эквивалентными между собой топологически правильными многогранниками. Не являются топологически правильными многогранниками, например, четырехугольные пирамиды.

Выясним вопрос о том, сколько существует не эквивалентных между собой топологически правильных многогранников.

Как мы знаем, существует пять правильных многогранников: тетраэдр, куб, октаэдр, икосаэдр и додекаэдр. Казалось бы, топологически правильных многогранников должно быть гораздо больше. Однако оказывается, что никаких других топологически правильных многогранников, не эквивалентных уже известным правильным, не существует.

Для доказательства этого воспользуемся теоремой Эйлера. Пусть дан топологически правильный многогранник, гранями которого являются n - угольники, и в каждой вершине сходится m ребер. Ясно, что n и m больше или равны трех. Обозначим, как и раньше, В - число вершин, Р - число ребер и Г - число граней этого многогранника. Тогда

nГ = 2P; Г = ; mB = 2P; В = .

По теореме Эйлера, В - Р + Г = 2 и, следовательно,

Откуда Р = .

Из полученного равенства, в частности, следует, что должно выполняться неравенство 2n + 2m - nm > 0, которое эквивалентно неравенству (n - 2)(m - 2) < 4.

Найдем всевозможные значения n и m, удовлетворяющие найденному неравенству, и заполним следующую таблицу

тетраэдр

В=6, Р=12, Г=8

В=12, Р=30, Г=20

икосаэдр

В=8, Р=12, Г=4

Не существует

Не существует

В=20, Р=30, Г=12

додекаэдр

Не существует

Не существует

Например, значения n = 3, m = 3 удовлетворяют неравенству (n - 2)(m - 2) < 4. Вычисляя значения Р, В и Г по приведенным выше формулам, получим Р = 6, В = 4, Г = 4.

Значения n = 4, m = 4 не удовлетворяют неравенству (n - 2)(m - 2) < 4 и, следовательно, соответствующего многогранника не существует.

Самостоятельно проверьте остальные случаи.

Из этой таблицы следует, что возможными топологически правильными многогранниками являются только правильные многогранники, перечисленные выше, и многогранники, им эквивалентные.

Правильным многогранником называется такой многогранник, у которого все грани равны и представляют собой равные правильные многоугольники, все ребра и все вершины также равны между собой. В то время, как правильных многоугольников существует сколько угодно, правильных многогранников ограниченное число.

Как правильные многоугольники начинаются с треугольника, так правильные многогранники начинаются с его аналога – тетраэдра (т. е., по-гречески, четырехгранника). У него минимально возможное число вершин и граней – тех и других по четыре, а ребер шесть (три вершины всегда лежат в одной плоскости, для объемного тела нужно поэтому не меньше четырех вершин; тремя же плоскими гранями нельзя ограничить конечный объем в пространстве). В каждой вершине сходятся три треугольных грани и, соответственно, по три ребра. Тетраэдр – это пирамида, причем самая простая – трехгранная (любая пирамида состоит из основания и боковых граней; пирамида называется n -гранной, если у нее n боковых граней; легко видеть, что у n -гранной пирамиды основание неминуемо должно иметь форму n -угольника). Все, что мы пока говорили о тетраэдре, применимо к любому тетраэдру, не обязательно правильному; у правильного же тетраэдра грани – это правильные треугольники.

Со следующим правильным многогранником вы хорошо знакомы – это куб . Если тетраэдр в определенном смысле аналогичен треугольнику, то куб – квадрату. Куб – это такой прямоугольный параллелепипед, у которого все грани – квадраты. Попробуйте, не глядя на картинку, сообразить, сколько у куба (и, на самом деле, у любого прямоугольного параллелепипеда) граней, сколько вершин, сколько ребер и по сколько граней и ребер сходятся в каждой вершине.

Еще у одного правильного многогранника – октаэдра (т. е. восьмигранника) – нет аналогов в плоском мире, т. к. он немного похож на треугольник, а немного на квадрат. Октаэдр можно сделать из двух четырехгранных пирамид, склеив их основания. Грани правильного октаэдра являются правильными треугольниками. В каждой его вершине сходятся не три, как у тетраэдра и куба, а четыре грани. Форму октаэдра имеют, например, природные кристаллы алмаза.

Октаэдр тесно связан с кубом так называемым свойством взаимности : центры граней куба являются вершинами правильного октаэдра, а центры граней правильного октаэдра являются вершинами куба. Если соединять отрезками центры соседних граней куба, то эти отрезки станут ребрами октаэдра; если проделать ту же операцию с октаэдром, получится куб. Между прочим, исходя из этого, понятно, что число вершин октаэдра равно числу граней куба, и наоборот; более того, количества ребер у них совпадают.

Тетраэдр связан с собой свойством взаимности

Можно ли сформулировать какой-нибудь аналог свойства взаимности для правильных многоугольников?

Между прочим, тетраэдр тоже родствен кубу. А именно, если выбрать такие четыре вершины куба, из которых никакие две не являются смежными, и соединить их отрезками, то эти отрезки образуют тетраэдр!

Рис. 3. Куб и тетраэдр

Самое важное свойство правильных многогранников, сразу обращающее на себя внимание – это их высокая степень симметричности. Определенное количество отражений вокруг разных плоскостей, а также целый ряд поворотов вокруг разных осей, переводят каждый из многогранников сам в себя. У каждого из них есть центр, через который проходят все эти плоскости симметрии и оси; вершины равноудалены от этого центра, это же верно для граней и ребер. Поэтому в каждый правильный многогранник можно вписать сферу, и около каждого из них можно описать сферу. (В этом плане, впрочем, они вполне аналогичны правильным многоугольникам, в каждый из которых можно вписать окружность и вокруг каждого из которых тоже можно описать окружность).

Сколько у куба, тетраэдра, октаэдра плоскостей симметрии? Сколько у каждого из них осей поворотов, переводящих многогранник сам в себя?

Урок 7 по теме: «Многогранники. Вершины, ребра, грани многогранника»

Цель занятия: познакомить обучающихся с одним из видов многогранников – кубом; путём измерения и наблюдения найти как можно больше свойств куба.

Тип урока: изучение нового материала

Методы:

    По источникам знаний: словесные, наглядные;

    По степени взаимодействия учитель-ученик: эвристическая беседа;

    Относительно дидактических задач: подготовка к восприятию;

    Относительно характера познавательной деятельности: репродуктивный, частично-поисковый.

    Оборудование: Учебник: Математика: Наглядная геометрия. 5-6 классы И.Ф. Шарыгин , мультимедиа проектор, компьютер.

Результаты обучения:

Личностные: способность к эмоциональному восприятию математических объектов, умение ясно и точно излагать свои мысли.

Метапредметные: умение понимать и использовать средства наглядности.

Предметные: научиться изображать развертки и составлять с их помощью фигуры.

Оборудование: учебник «Наглядная геометрия. 5 - 6 класс» С.Шарыгин, интерактивная доска, ножницы.

УУД:

познавательные: анализ и классификация объектов

регулятивные: целеполагание; определение и осознание того, что уже известно и что нужно усвоить

коммуникативные: учебное сотрудничество с учителем и сверстниками.

Ход урока

    Организационный момент.

    Актуализация и фиксирование опорных знаний.

На столе стоят многогранники, с которыми учащиеся познакомились еще в начальных классах. Какие фигуры вы можете назвать? Каких фигур больше всего?

Трудно найти человека, которому бы не был знаком куб. Ведь кубики – любимая игра малышей. Кажется, что мы знаем о кубе всё. Но так ли это?

Куб является представителем большого семейства многогранников. С некоторыми вы уже встречались – это пирамида, прямоугольный параллелепипед. Знакомство с другими вас ожидает впереди.

Многогранники имеют при всем различии ряд общих свойств.

Поверхность каждого из них состоит из плоских многоугольников, которые называются гранями многогранника . Два соседних плоских многоугольника имеют общую сторону – ребро многогранника . Концы ребер являются вершинами многогранника.

На прошлом уроке вы интересовались видами многогранников и вот 5 представителей правильных многоугольников.

Тетраэдр октаэдр икосаэдр гексаэдр додекаэдр

    Обобщение и систематизация знаний

Рассмотрите изображение куба на рисунке, перечертите его в тетрадь и подпишите названия основных элементов куба. Запомните и в дальнейшем используйте эти термины.

Куб- это правильный многогранник, у которого грани – квадраты и в каждой вершине сходится по три ребра и три грани. У него: 6 граней, 8 вершин и 12 ребер.

Работа с моделями.

Работа с развертками.

2 (Математика: Наглядная геометрия. 5-6 классы И.Ф. Шарыгин) На листке бумаги изобразите развертку куба. Вырежьте её и сверните из нее куб, склейте его.

Вырезанная фигура называется разверткой куба . Подумайте, почему она так названа.

3 (Математика: Наглядная геометрия. 5-6 классы И.Ф. Шарыгин) Из предложенных разверток попробуйте собрать куб, и перенесите их в тетрадь.

5 (Математика: Наглядная геометрия. 5-6 классы И.Ф. Шарыгин) Дана развертка куба. Какие из кубиков на рисунке 30, а-в можно из нее склеить? Выберите кубик и обоснуйте выбор.

12 (Математика: Наглядная геометрия. 5-6 классы И.Ф. Шарыгин) Имеется полоска бумаги размером 1*7. Как из нее сложить единичный кубик?

15 (Математика: Наглядная геометрия. 5-6 классы И.Ф. Шарыгин) В противоположных вершинах куба сидят паук и муха. Каким кратчайшим путем паук может доползти до мухи? Ответ объясните

    Рефлексия учебной деятельности.

    сегодня я узнал…

    было интересно…

    было трудно…

    я выполнял задания…

    я приобрел…

    я научился…

    у меня получилось …

    я смог…

    я попробую…

    меня удивило…

    урок дал мне для жизни…

    Домашнее задание. Изготовить модель куба из картона.

Тема. «Многогранник. Элементы многогранника – грани, вершины, ребра».

Цели. Создать условия для расширения теоретических знаний о пространственных фигурах: ввести понятия «многогранник», «грани», «вершина», «ребро»; обеспечить развитие у школьников умения выделять главное в познавательном объекте; содействовать развитию пространственного воображения учащихся.

Учебные материалы. Учебник «Математика. 4 класс» (авт. В.Н. Рудницкая, Т.В. Юдачева); компьютер; проектор; презентация «Многоугольники»; печатные бланки «Координатный угол», «Многоугольники», «Задача»; модели многогранников, развертки многогранников; зеркала; ножницы.

ХОД УРОКА

Перед началом урока дети распределяются на три группы соответственно уровню знаний – высокий, средний, низкий.

I. Организационный момент

Учитель. Дорогие мои непоседы, в очередной раз я приглашаю вас в увлекательный мир математики. И я уверена в том, что и на этом уроке вы узнаете новое, закрепите изученное и сможете полученные знания применить на практике.

Сегодня наш урок мне хочется начать словами английского философа Роджера Бэкона о математике: «Тот, кто не знает математики, не может изучить другие науки и не может познать мир». Я думаю, что на уроке мы непременно найдем подтверждение словам этого философа.

II. Повторение пройденного материала. Построение многоугольников по координатам

У. На уроках математики в 1-м, 2-м, 3-м классах мы изучали различные плоские геометрические фигуры, а также учились их строить. Я предлагаю вам построить в координатном угле плоские фигуры по данным координатам.

Задание выполняется на печатных бланках.

Группа 1

Постройте фигуру, если известны координаты А (0; 2), В (2; 5), С (9; 2). Какая фигура получилась?

Группа 2

Постройте прямоугольник, если точки А (3; 2) и В (6; 5) – его противоположные вершины. Назовите координаты противоположных вершин. Как по-другому называется эта фигура?

Группа 3

Постройте фигуру, если известны координаты ее вершин А (2; 3), В (2; 6), С (5; 8), D (8; 6), K (8; 3), М (5; 1). Какая фигура получилась?

– Как можно назвать все эти фигуры?

Дети. Это многоугольники.

Слайд 1

У. Нам известно, что все многоугольники имеют вершины и стороны. Назовите и покажите их.

По одному человеку от группы выполняют задание у доски.

III. Знакомство с новым материалом

У. Сегодня я познакомлю вас с объемными геометрическими фигурами, которые называются многоугольниками. Их модели представлены у вас на столах.

На столах у учащихся объемные фигуры: куб, параллелепипед, пирамиды, призмы.

– Садитесь поудобнее, смотрите внимательно, слушайте старательно и запоминайте.

Знакомство с понятиями «многогранник», «грань», «вершина», «ребро»

– Если взять 4 треугольника, то можно создать объемную фигуру – пирамиду . Из квадратов можно получить другую фигуру – куб, из прямоугольников – параллелепипед. У вас на столе еще одна фигура – призма, которая составлена из прямоугольников и треугольников. Все эти фигуры называются многогранниками .

Каждый из многоугольников (в данном случае треугольников) называют гранью многогранника. А стороны многоугольников называют ребрами многогранника. И, конечно же, вершины многоугольника будут вершинами многогранника. Вот так выглядит чертеж многогранника на листе бумаги.

Слайд 2

– Кажется, что фигура сделана из стекла. Как вы думаете, что изображено пунктиром на чертеже?

Д. Невидимые ребра.

Дети работают по рисунку у доски.

У. Итак, что это?

Д. Многогранник.

У. Назовите и покажите грани многогранника, его ребра и вершины.

Дети показывают указкой и перечисляют.

– Если разрезать пирамиду с вершины до основания по ребрам, то получится вот такая развертка.
А теперь, дорогие мои непоседы, отыщите на столе бланк с изображением многоугольника, внимательно прочитайте инструкцию:

1. Внимательно рассмотрите чертеж многоугольника.
2. Найдите нужную развертку многоугольника (модели на доске).
3. Соберите модель многоугольника.
4. Укажите число вершин __ , граней __ , ребер __ многоугольника.
5. Назовите каждую вершину __ , ребро __ , грань __ многоугольника.

Группа 1

Группа 2

Группа 3

– На доске представлены развертки многогранников. Попробуйте по чертежу отыскать развертку своей фигуры и собрать многогранник. Работайте вместе, и, я думаю, у вас все получится.

Проверка выполнения задания (слайды 3, 4, 5).

вершин – 8; ребер – 12; граней – 6;
вершины – M, B, C, A, X, K, O, T;
ребра – MB, MA, MT, TX, TO, XK, XA, KO, KC, CB, AC, BO;
грани – MBOT, MBCA, KCBO, TXKO, ACKX, MAXT.

вершин – 8; ребер – 12; граней – 6;
вершины – M, B, C, A, X, K, O, T;
ребра – MB, MA, MT, TX, TO, XK, XA, KO, KC, CB, AC, BO;
грани – MBOT, MBCA, KCBO, TXKO, ACKX, MAXT.

вершин – 12; ребер – 18; граней – 8;
вершины – Y, B, A, X, N, M, P, E, D, F, L, C;
ребра – YB, YX, BA, XA, XN, NM, AM, ME, EP, NP, ED, PF, DF, FL, LC, CD, LY, CB;
грани – BAMEDC, YXNPFL, YBAX, XAMN, NMEP, EDFP, DFLC, CLYB.

IV. Обобщение и систематизация знаний

У. Скажите, есть ли в окружающем нас мире предметы, которые имеют форму многогранников?

Выслушиваются ответы детей. Проводится импровизированная «прогулка» по школьному двору. Дети «рассматривают» модели школьного здания, подсобных помещений, которые имеют вид многогранников.

– Выполните задание:

Волк и Заяц склеили из цветной бумаги домик. Сколько граней каждого цвета потребовалось? Форму какого многоугольника имеет грань каждого цвета?

Слайд 6

V. Закрепление ранее изученного

У. Ребята, представьте себя архитекторами, дизайнерами или строителями и попробуйте решить задачи.

Задание для группы 1

Найдите площадь, которую будет занимать новое школьное здание, если его длина 74 м, а ширина – 13 м. (Ответ: 962 кв. м. )

Задание для группы 2

Площадь игровой площадки во дворе нашей школы равна 1080 кв. м. Это на 1320 кв. м меньше, чем площадь хоккейной площадки. Вычислите площадь хоккейной площадки. (Ответ: 2400 кв. м )

Задание для группы 3

Под строительство нового здания для нашей школы отведен участок площадью 2500 кв. м. Известно, что здание будет шириной 13 м, длиной 74 м. Какая площадь участка останется под цветники и дорожки после постройки здания? (Ответ: 1) 962 кв. м; 2) 1538 кв. м )

Дети проверяют решения задач, объясняют, как решали.

VI. Итог урока

У. Оказывается, Роджер Бэкон был прав, сказав: «Тот, кто не знает математики, не может изучить другие науки и не может познать мир».

Учитель оценивает работу групп.