Большая энциклопедия нефти и газа.

При электризации тел выполняется закон сохранения электрического заряда . Этот закон справедлив для замкнутой системы. В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной . Если заряды частиц обозначить через q 1 , q 2 и т.д., то

q 1 + q 2 + q 3 + … + q n = const.

Основной закон электростатики – закон кулона

Если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно не влияют на взаимодействия между ними. В таком случае эти тела можно рассматривать как точечные.

Сила взаимодействия заряженных тел зависит от свойств среды между заряженными телами.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними. Эту силу называют кулоновской.

|q 1 | и |q 2 | - модули зарядов тел,

r – расстояние между ними,

k – коэффициент пропорциональности.

F - сила взаимодействия

Силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела.

Единица электрического заряда

Единица силы тока – ампер.

Один кулон (1 Кл) – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А

g [Кулон=Кл]

е=1,610 -19 Кл

-электрическая постоянная

БЛИЗКОДЕЙСТВИЕ И ДЕЙСТВИЕ НА РАССТОЯНИИ

Предположение о том, что взаимодействие между удаленными друг от друга телами всегда осуществляется с помощью промежуточных звеньев (или среды), передающих взаимодействие от точки к точке, составляет сущность теории близкодействия. Распр. с конечной скоростью.

Теория прямого действия на расстоянии непосредственно через пустоту. Согласно этой теории действие передается мгновенно на сколь угодно большие расстояния.

Обе теории являются взаимно противоположными друг другу. Согласно теории действия на расстоянии одно тело действует на другое непосредственно через пустоту и это действие передается мгновенно.

Теория близкодействия утверждает, что любое взаимодействие осуществляется с помощью промежуточных агентов и распространяется с конечной скоростью.

Существования определенного процесса в пространстве между взаимодействующими телами, который длится конечное время, - вот главное, что отличает теорию близкодействия от теории действия на расстоянии.

Согласно идее Фарадея электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой заряд, и наоборот. По мере удаления от заряда поле ослабевает.

Электромагнитные взаимодействия должны распространятся в пространстве с конечной скоростью.

Электрическое поле существует реально, его свойства можно исследовать опытным путем, но мы не можем сказать из чего это поле состоит.

О природе электрического поля можно сказать, что поле материально; оно сущ. независимо от нас, от наших знаний о нем;

Поле обладает определенными свойствами, которые не позволяют спутать его с чем-либо другим в окружающем мире;

Главное свойство электрического поля – действие его на электрические заряды с некоторой силой;

Электрическое поле неподвижных зарядов называют электростатическим . Оно не меняется со временем. Электростатическое поле создается только электрическими зарядами. Оно существует в пространстве, окружающем эти заряды, и неразрывно с ним связано.

Напряженность электрического поля.

Отношение силы, действующей на помещенный в данную точку поля заряд, к этому заряду для каждой точки поля не зависит от заряда и может рассматриваться как характеристика поля.

Напряженность поля равна отношению силы, с которой поле действует на точечный заряд, к этому заряду.


Напряженность поля точечного заряда.

.

Модуль напряженности поля точечного заряда q o на расстоянии r от него равен:

.

Если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых и т. д., то результирующая напряженность поля в этой точке равна:

СИЛОВЫЕ ЛИНИИ ЭЛЕКТРИЧЕСКОГО ПОЛ.

НАПРЯЖЕННОСТЬ ПОЛЯ ЗАРЯЖЕННОГО ШАРА

Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным.

Густота силовых линий больше вблизи заряженных тел, где напряженность поля также больше.

-напряженность поля точечного заряда.

Внутри проводящего шара (r > R) напряженность поля равна нулю.

ПРОВОДНИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ.

В проводниках имеются заряженные частицы, способные перемещаться внутри проводника под влиянием электрического поля. Заряды этих частиц называют свободными зарядами.

Электростатического поля внутри проводника нет. Весь статический заряд проводника сосредоточен на его поверхности. Заряды в проводнике могут располагаться только на его поверхности.

О том, что электрические заряды в природе существуют, человечество знало со времен древнегреческих натурфилософов, которые открыли, что кусочки янтаря, если их потереть кошачьей шерстью, начинают отталкиваться друг от друга. Сегодня мы знаем, что электрический заряд, подобно массе, является одним из фундаментальных свойств материи. Все без исключения элементарные частицы, из которых состоит материальная Вселенная, имеют тот или иной электрический заряд — положительный (подобно протонам в составе атомного ядра), нейтральный (подобно нейтронам того же ядра) или отрицательный (подобно электронам, образующим внешнюю оболочку атомного ядра и обеспечивающим его электрическую нейтральность в целом).

Одним из полезнейших приемов в физике является выявление совокупных (суммарных) свойств системы, которые не изменяются ни при каких изменениях ее состояния. Такие свойства, выражаясь научным языком, являются консервативными , поскольку для них выполняются законы сохранения . Любой закон сохранения сводится к констатации того факта, что в замкнутой (в смысле полного отсутствия «утечки» или «поступления» соответствующей физической величины) консервативной системе соответствующая величина, характеризующая систему в целом, со временем не изменяется.

Электрический заряд как раз и относится к категории консервативных характеристик замкнутых систем. Алгебраическая сумма положительных и отрицательных электрических зарядов — чистый суммарный заряд системы — не изменяется ни при каких обстоятельствах, какие бы процессы в системе ни происходили. В частности, при химических реакциях, отрицательно заряженные валентные электроны могут каким угодно образом перераспределяться между внешними оболочками образующих химические связи атомов различных веществ — ни совокупный отрицательный заряд электронов, ни совокупный положительный заряд протонов в ядре в замкнутой химической системе не изменится. И это лишь самый простой пример, поскольку при химических реакциях не происходит трансмутаций самих протонов и электронов, в результате чего число положительных и отрицательных зарядов в системе можно просто подсчитать.

При более высоких энергиях, однако, электрически заряженные элементарные частицы начинают вступать во взаимодействия друг с другом, и проследить за соблюдением закона сохранения электрического заряда становится значительно сложнее, однако он выполняется и в этом случае. Например, при реакции спонтанного распада изолированного нейтрона происходит процесс, который можно описать следующей формулой:

где p — положительно заряженный протон, n — нейтрально заряженный нейтрон, e — отрицательно заряженный электрон, а v — нейтральная частица, называемая нейтрино. Нетрудно увидеть, что и в исходном материале, и в продукте реакции суммарный электрический заряд равен нулю (0 = (+1) + (-1) + 0), однако в этом случае налицо изменение общего числа положительно и отрицательно заряженных частиц в системе. Это — одна из реакций радиоактивного распада , в которых закон сохранения алгебраической суммы электрических зарядов выполняется, несмотря на образование новых заряженных частиц. Такие процессы характерны для взаимодействий между элементарными частицами, при которых из частиц с одними электрическими зарядами рождаются частицы с другими электрическими зарядами. Суммарный электрический заряд замкнутой системы, в любом случае, остается неизменным.

z:\Program Files\Physicon\Open Physics 2.5 part 2\content\chapter1\section\paragraph2\theory.htmlz:\Program Files\Physicon\Open Physics 2.5 part 2\content\chapter1\section\paragraph2\theory.htmlz:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\ring_h.gifq 1 +q 2 +q 3 + +q n = const. (1.1)

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака. Наличие носителей зарядов является условием того, что тело проводит электрический ток. В зависимости от способности проводить электрический ток, тела делятся на: проводники, диэлектрики и полупроводники.

Проводники – тела, в которых электрический заряд может перемещаться по всему его объёму. Проводники делятся на две группы:

1) проводники первого рода (металлы) – перенос в них электрических зарядов (свободных электронов) не сопровождается химическими превращениями;

2) проводники второго рода (расплавы солей, растворы солей и кислот и другие) – перенос в них зарядов (положительно и отрицательно заряженных ионов) ведёт к химическим изменениям.

Диэлектрики (стекло, пластмасса) – тела, которые не проводят электрический ток и в них практически отсутствуют свободные заряды.

Полупроводники – занимают промежуточное положение между проводниками и диэлектриками. Их проводимость сильно зависит от внешних условий (температура, ионизирующее излучение и т.д.). В Международной системе СИ за единицу заряда принят кулон (Кл)

Электрический заряд, проходящий через попереч­ное сечение

проводника при силе тока 1 А за время 1 с.

z:\Program Files\Physicon\Open Physics 2.5 part 2\content\chapter1\section\paragraph2\theory.html z:\Program Files\Physicon\Open Physics 2.5 part 2\content\chapter1\section\paragraph2\theory.htmlz:\Program Files\Physicon\Open Physics 2.5 part 2\content\chapter1\section\paragraph2\theory.htmlz:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\ring_h.gif 1.2. ЗАКОН КУЛОНА.

Точечным называется заряд, сосредоточенный на теле, линейные раз­меры которого пренебрежимо малы по сравнению с расстоянием до других заряжен­ных тел, с которыми он взаимодействует. Понятие точечного заряда, как и материаль­ной точки, является физической абстракцией.

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними: F = (1/4πεε 0)(q 1 q 2 /r 2), (1.2)

где ε 0 = 8,85 10 -12 (Кл 2 /Н.м 2) –электрическая постоянная.

Величина, показывающая во сколько раз сила взаимодействия зарядов в вакууме больше, чем в среде, называетсядиэлектрической проницаемостью среды ε .

Кулоновские силы - центральные, т.е. они направлены по линии соединения центра зарядов. Силы взаимодействия подчиняются третьему закону Ньютона:F 1 = -F 2 . (1.3)

Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках. Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ.

НАПРЯЖЕННОСТЬ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ.

По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силовое действие на другие заряженные тела. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда:

E = F/q. (1.4).

Рис. 2. Силовые линии кулоновских полей.

Направление вектора напряженности совпадает с направлением Кулоновской силы, действующей на положительный заряд.

Графически электростатическое поле изображают с помощью линий напряженности - линий, касательные к которым в каждой точке пространства совпадают с направлением напряженности.

Величина dФ E = E n dS (1.5)

называется потоком вектора напряженности через площадку dS. Для произвольной замкнутой поверхности S поток вектораE через эту поверхность: Ф E = ò S E n dS, (1.6.)

где интеграл берется по замкнутой поверхности S.

Поток вектора Е является алгебраической величиной и зависит не только от конфигурации поля Е , но и от выбора направления.

1.z:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\Fwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\Bwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\Fwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\Bwd_h.gif4. ПРИНЦИП СУПЕРПОЗИЦИИ. ЭЛЕКТРОСТАТИЧЕСКИХ ПОЛЕЙ.

E = S E i . (1.7.)

Согласно принципу суперпозиции электростатических полей, напряженность результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности E = S E i . (1.7.)

ЗАДАЧИ ЭЛЕКТРОСТАТИКИ.

Задачи сводятся к нахождению характеристик поля по заданному pасположению заpядов в пpостpанстве на основании закона Кулона и пpинципа супеpпозиции полей. В случае непpеpывного pаспpеделения заpядов по телам, их можно свести к системе точечных заpядов. Для этого достаточно заpяженные тела pазбить на бесконечно малые части.

ПОЛЕ ДИПОЛЯ.

Рис. 6. Поле диполя.

Электрический диполь - система двух равных по модулю разноименных точечных зарядов. Вектор, направленный по оси диполя, от отрицательного заряда к положительному и равный расстоянию между ними, называют плечом диполяl. Вектор p = |q|.l (1.8)

совпадающий, по направлению с плечом диполя и равный произведению заряда на плечо, называется электрическим моментом диполя или дипольным моментом.

1) Напряженность поля на продолжении оси диполя в точке А . равна

E A = E + - E - Обозначив расстояние от точки А до середины диполя через r , на основании формулы Кулона для вакуума, получим:

E = 1/(4pe 0) =

= q/(4pe 0){[(r + l/2) 2 - (r - l/2) 2 ]/ [(r - l/2) 2 (r + l/2) 2 ]} (1.9.)

согласно определению диполя, l/2 << r, поэтому

E = 1/(4pe 0).(2ql/r 3) = 1/(4pe 0)(p/r 3). (1.10.)

2) Напряженность поля на перпендикуляре, восстановленном к оси диполя из его середины, в точке В . Точка В равноудалена от зарядов, поэтому

E + = E - = 1/(4pe 0)}