Фибоначчи в искусстве. Золотые котики Фибоначчи

Развитие человечества разграничивается определенными периодами в древнейшей и современной истории. Могут ли элементы ряда чисел Фибоначчи соответствовать хронологическим рубежам периодов в древнейшей и современной истории человечества, т. е. подчиняются ли рубежи периодов математической закономерности? Существует ли такая закономерность в других периодах: периодах мировой истории, периодах правления известных Российских государственных деятелей, и в датах современных событий, имеющих историческое значение? Цель нашей работы заключается в проведении аналогии между математикой и историей, то есть установлении некоторой связи. Для достижения данной цели необходимо было решить следующие задачи:

  • Познакомиться с числами Фибоначчи и золотым сечением, которое является самым гармоничным отношением;
  • Проверить, соответствуют ли рубежи периодов древнейшей, современной и мировой истории числам ряда Фибоначчи;
  • Рассчитать годы правления известных Российских государственных деятелей и найти их отношение;
  • Рассмотреть даты, имеющие историческое значение, во временных промежутках современной истории;
  • Проверить, являются ли полученные отношения между данными объектами известными математическими отношениями.

Объектами исследования будут являться археологические эпохи, периоды мировой истории, периоды правления известных Российских государственных деятелей, даты событий, имеющие историческое значение. Весьма полезными для нас оказались результаты исследований социолога - аналитика В. В. Дудихина, и метод поэта и переводчика А. Чернова, которые подтверждают математические закономерности чисел Фибоначчи, соответствующие хронологическим рубежам древнейшей истории человечества. Работа относится к прикладным исследованиям, ее результаты, выраженные с помощью математики, покажут связь между математикой и историей, которая подчиняется математическим законам.

Числа Фибоначчи и золотое сечение

Числовая последовательность, в которой, сумма двух соседних чисел дает значение следующего за ними является последовательностью Фибоначчи (например, 1+1=2; 2+3=5 (1,1,2,3,5,8,13,21,34,55 и т.д.)). Свойства различных членов последовательности, так называемые коэффициенты Фибоначчи, (т.е. постоянные отношения) определяются следующим образом:

  • Отношение каждого числа к последующему более и более стремится к 0,618 по увеличению порядкового номера. Отношение же каждого числа к предыдущему стремится к 1,618 (обратному к 0,618);
  • При делении каждого числа на следующее за ним через одно получаем число 0,382, наоборот - соответственно 2,618;
  • Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: ... 4,235; 2,618; 1,618; 0,618; 0,382; 0,236; упомянем также 0,5. Все они играют особую роль в природе, и в частности - техническом анализе.

Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи.

Обратимся к числу 0,618, мы уже его встречали (коэффициент Фибоначчи). Это числовое значение золотого сечения.

Одна из пропорций чаще других встречающаяся в искусстве получила название золотое сечение - деление отрезка, при котором одна его часть во столько же раз больше другой, во сколько сама она меньше целой. Пропорциональные отношения, близкие к золотому сечению дают впечатление развитие форм, их динамики, пропорционального дополнения друг друга.

Исследования ученых

Обратимся к современным исследованиям: социолога - аналитика В.В. Дудихина, поэта и переводчика А. Чернова.

Социолог и аналитик В.В. Дудихин рассмотрел хронологию эпох, в качестве инструмента хронологии он избрал гармоническую систему числовых отношений, так называемый ряд Фибоначчи. В.В. Дудихин сопоставил числа ряда Фибоначчи и археологические эпохи. Его исследования показали, что некоторые элементы этой последовательности, действительно, соответствуют хронологическим рубежам в древнейшей истории человечества, особенно если к числам добавить наименование "тыс. лет до н. э.", или "тыс. лет тому назад", или просто "тыс. лет". Хронология и периодизация исторического развития с помощью ряда Фибоначчи разделена на 18 временных ступеней: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1 597, 2 584, что подтверждается 60% проверенных совпадений.

Так же, полезным нам окажется метод А.Чернова, в основу которого положено нахождение отношений частей одного целого, т.е. пропорциональные отношения.

Внимание Чернова привлекли рассуждения о золотом сечении и числе PI, которые восходят к Пифагору. Исследования Андрей Чернова позволили сделать заключение о том, что построение стихов древнего автора Слова о полку Игореве, состоящего из девяти песен, подчиняется математическим законам. А именно, если число стихов во всех трех частях (их 804) разделить на число стихов в первой и последней части (256), получается 3,14, т.е. число PI с точностью до третьего знака.

Вышеназванные исследования, представляют интерес, не только, в плане используемых методов, но и в плане полученных результатов. Опираясь на данные современных исследований можно предположить, что не только эти археологические эпохи, но и другие исторические периоды подчиняются математическим законам.

Связь между историческими периодами и законами математики

Проведем аналогию между рубежами исторических периодов, числами Фибоначчи и золотым сечением, основываясь на данные ученых и собственные исследования. Для этого рассмотрим некоторые рубежи исторических периодов, в хронологии с древнейшей и современной историей.

Проверим исследование социолога В.В. Дудихина рубежей исторических периодов в хронологии c древнейшей историей. Сопоставим рубежи исторических периодов с числами Фибоначчи, т.е. проведем их соответствие. Для этого рассмотрим рубежи периодов древнейшей истории:

Железный век датируется II тыс. н.э.. На Ближнем Востоке, Египте, Греции - с начала I тыс. н.э., в Африке - с I тыс. н.э.;

Бронзовый век датируется в Южной Америке с середины I тыс. н.э., в Тропической Африке с I тыс. н.э., в Европе с середины III тыс. до н.э., в Индии с конца III тыс. до н.э., в Египте с начала II тыс. до н.э., в Передней Азии с конца IV тыс. до н.э.;

Медный век (энеолит) датируется VIII - IV тыс. до н.э.;

Каменный век (палеолит) ранний датируется до 35 тыс. лет назад, поздний 35 - 13 тыс. лет назад;

Каменный век (мезолит) датируется с начала XX - VIII тыс.до н.э. поV - IV тыс. н.э.;

Каменный век (неолит) датируется VIII - III тыс. н.э.;

Если рассмотреть происхождение человека, то выделяют следующие рубежи периодов: Australopithecus anfmensis, 4 - 3,7 млн. лет назад, Australopithecus africanus, 3-2 млн. лет, Australopithecus boisei, 2,4 - 1,1 млн. лет, Homo rudolfensis, 2,5 - 1,8 млн. лет, Homo erectus, 1,8 - 400 тыс. лет, Homo neandertalensis, 220 - 27 тыс. лет Полученные результаты соответствуют числам Фибоначчи (1, 3, 8, 13, 21, 33, 233, 1597, 2584, 4181) или близки к ним.

Проведем исследование рубежей периодов мировой истории и предистории: Эпоха первобытно общинных отношений 2,5 мил. лет назад - III тыс. до н.э.; Древний мир III тыс. до н.э.- V тыс. н.э.; История средних веков V века - конец XV века; История нового времени XVI - XX в.; Современная эпоха XX - XXI в. Полученные результаты соответствуют числам Фибоначчи (3, 5, 13, 21) или близки к ним.

Проведем исследование периодов правления известных Российских государственных деятелей с 862 г. н.э.

Пересчитаем годы их правления:

Рюрик (862 - 879) - 17 лет; Василий III (1505 - 1533) - 28 лет; Иван Грозный (1533 - 1584) - 51 год; Романов М.Ф. (1613 - 1676) - 63 года; Пётр I (1682 - 1725) - 43 года; Екатерина II (1762 - 1796) - 34 года; Александр II (1855 - 1981) - 26 лет; Николай II (1894 - 1917); падение монархии Романовых 1917 до 1931 - 14 лет; Сталин И.В. (1931 -1953) - 22 года; Хрущев Н.С. (1953 - 1964) - 11 лет; Брежнев Л.И. (1964 - 1982) - 18 лет; Горбачев М.С. (1985 - 1991) - 6 лет; Ельцин Б.Н. (1991 - 1999) - 8 лет; Путин В.В. (2000 - 2008) - 8 лет.

Найдем отношения годов правления.

Если разделить годы правления Рюрика (17 лет) на годы правления Василия III (28 лет), то их отношение равно 0,607. Если разделить годы правления Василия III (28 лет) на годы правления Ивана Грозного (51 год), то их отношение равно 0,549. Если разделить годы правления Ивана Грозного (51 год) на сумму годов правления Василия III и Ивана Грозного (79 лет), то их отношение равно 0,646. Отношение годов правления Романова М.Ф. (63 года) к годам правления Петра I (43 года) равно 0,682. Отношение годов правления Екатерины II (34 года) к годам правления Романова М.Ф. (63 года) равно 0,54. Если разделить годы правления Петра I (43 года) на сумму годов правления Петра I и Екатерины II (77 лет), то их отношение равно 0,55. Отношение годов правления Сталина И.В. (22 года) к сумме годов от 1917 до 1953 (36 лет) равно 0,611 т.е. числовое значение золотого сечения с точностью до третьего знака;

Отношение годов правления Хрущева Н.С. (11 лет) к сумме годов от 1917 до 1964 (47 лет) равно 0,234. Отношения годов правления Хрущева Н.С. (11 лет) к годам правления Брежнева Л.И. (18 лет) и наоборот, равны соответственно 0,611 и 1,636. Данные отношения близки к фибоначчиевским коэффициентам (0,236; 0,618; 1,618) с точностью до третьего и второго знаков соответственно. Отношение годов правления Сталина И.В. (22 года) к сумме годов правления Сталина И.В. и Хрущева Н.С. (33 года) равно 0,666. Отношение годов правления Горбачёва М.С. (6 лет) к годам правления Хрущева Н.С. (11 лет) равно 0,545. Отношения годов правления Хрущева Н.С. (11 лет) к сумме годов правления Хрущева Н.С. и Брежнева Л.И. (29 лет) и наоборот, равно соответственно 0,379 и 0,620 т.е. фибоначчиевским коэффициентам (0,382; 0,618) с точностью до второго знака.

Рассмотрим временные промежутки, периоды правления известных Российских государственных деятелей, и даты некоторых событий в эти периоды, имеющие историческое значение.

  • Временной промежуток с 1984 по 1917 год, годы правления Николая II. Историческим событием является 1904 год - начало Русско-японской войны. Найдем отношение годов после данного события (13 лет), во временном промежутке, к годам всего временного промежутка (23 года). Отношение годов равно 0,565.
  • Временной промежуток с 1894 по 1931 год, с начала правления Николая II по начало правления Сталина И.В. Историческим событием является 1917 год - начало революции в России. Найдем отношение годов до данного события (23 года) к годам после данного события (14 лет). Отношение годов равно 1,64.
  • Временной промежуток с 1917 по 1931 год, падение монархии Романовых. Историческим событием является 1922 год - образование Союза Советских Социалистических республик. Найдем отношение годов до данного события (5 лет) к годам после данного события (9 лет). Отношение годов равно 0,556.
  • Временной промежуток с 1931 по 1953 год, годы правления Сталина И. В. Историческим событием является 1941 год - нападение Германии на СССР, Найдем отношение годов до данного события (10 лет) к годам данного временного промежутка (22 года). Отношение годов равно 0,454.
  • Временной промежуток с 1985 по 2000 год, с начала правления Горбачева М.С. по начало правления Путина В.В. Историческим событием является 1991 год - распад Союза Советских Социалистических республик. Найдем отношение годов до данного события (6 лет) к годам после данного события (9 лет). Отношение годов равно 0,666.

Полученные результаты соответствуют фибоначчиевским коэффициентам (0,618; 1,618) с точностью до второго знака или близки к ним.

Давайте выясним, что общего между древнеегипетскими пирамидами, картиной Леонардо да Винчи «Мона Лиза», подсолнухом, улиткой, сосновой шишкой и пальцами человека?

Ответ на этот вопрос сокрыт в удивительных числах, которые были открыты итальянским математиком средневековья Леонардо Пизанским, более известным по именем Фибоначчи (род. ок. 1170 — умер после 1228) , итальянский математик . Путешествуя по Востоку, познакомился с достижениями арабской математики; способствовал передаче их на Запад.

После его открытия числа эти так и стали называться именем известного математика. Удивительная суть последовательности чисел Фибоначчи состоит в том, что каждое число в этой последовательности получается из суммы двух предыдущих чисел.

Итак, числа, образующие последовательность:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, …

называются «числами Фибоначчи», а сама последовательность — последовательностью Фибоначчи .

В числах Фибоначчи существует одна очень интересная особенность. При делении любого числа из последовательности на число, стоящее перед ним в ряду, результатом всегда будет величина, колеблющаяся около иррационального значения 1.61803398875… и через раз то пpевосходящая, то не достигающая его. (Прим. иррациональное число, т.е. число, десятичное представление которого бесконечно и не периодично)

Более того, после 13-ого числа в последовательности этот результат деления становится постоянным до бесконечности ряда… Именно это постоянное число деления в средние века было названо Божественной пропорцией, а ныне в наши дни именуется как золотое сечение, золотое сpеднее или золотая пропорция . В алгебpе это число обозначается гpеческой буквой фи (Ф)

Итак, Золотая пропорция = 1: 1,618

233 / 144 = 1,618

377 / 233 = 1,618

610 / 377 = 1,618

987 / 610 = 1,618

1597 / 987 = 1,618

2584 / 1597 = 1,618

Тело человека и золотое сечение

Художники, ученые, модельеры, дизайнеры делают свои расчеты, чертежи или наброски, исходя из соотношения золотого сечения. Они используют мерки с тела человека, сотворенного также по принципу золотой сечения. Леонардо Да Винчи и Ле Корбюзье перед тем как создавать свои шедевры брали параметры человеческого тела, созданного по закону Золотой пропорции.

Самая главная книга всех современных архитекторов справочник Э.Нойферта «Строительное проектирование» содержит основные расчеты параметров туловища человека, заключающие в себе золотую пропорцию.

Пропорции различных частей нашего тела составляют число, очень близкое к золотому сечению. Если эти пропорции совпадают с формулой золотого сечения, то внешность или тело человека считается идеально сложенными. Принцип расчета золотой меры на теле человека можно изобразить в виде схемы:

M/m=1,618

Первый пример золотого сечения в строении тела человека:
Если принять центром человеческого тела точку пупа, а расстояние между ступней человека и точкой пупа за единицу измерения, то рост человека эквивалентен числу 1.618.

Кроме этого есть и еще несколько основных золотых пропорции нашего тела:

* расстояние от кончиков пальцев до запястья до локтя равно 1:1.618;

* расстояние от уровня плеча до макушки головы и размера головы равно 1:1.618;

* расстояние от точки пупа до макушки головы и от уровня плеча до макушки головы равно 1:1.618;

* расстояние точки пупа до коленей и от коленей до ступней равно 1:1.618;

* расстояние от кончика подбородка до кончика верхней губы и от кончика верхней губы до ноздрей равно 1:1.618;

* расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1.618;

* расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1.618:

Золотое сечение в чертах лица человека как критерий совершенной красоты.

В строении черт лица человека также есть множество примеров, приближающихся по значению к формуле золотого сечения. Однако не бросайтесь тотчас же за линейкой, чтобы обмерять лица всех людей. Потому что точные соответствия золотому сечению, по мнению ученых и людей искусства, художников и скульпторов, существуют только у людей с совершенной красотой. Собственно точное наличие золотой пропорции в лице человека и есть идеал красоты для человеческого взора.

К примеру, если мы суммируем ширину двух передних верхних зубов и разделим эту сумму на высоту зубов, то, получив при этом число золотого сечения, можно утверждать, что строение этих зубов идеально.

На человеческом лице существуют и иные воплощения правила золотого сечения. Приведем несколько таких соотношений:

* Высота лица / ширина лица;

* Центральная точка соединения губ до основания носа / длина носа;

* Высота лица / расстояние от кончика подбородка до центральной точки соединения губ;

* Ширина рта / ширина носа;

* Ширина носа / расстояние между ноздрями;

* Расстояние между зрачками / расстояние между бровями.

Рука человека

Достаточно лишь приблизить сейчас вашу ладонь к себе и внимательно посмотреть на указательный палец, и вы сразу же найдете в нем формулу золотого сечения. Каждый палец нашей руки состоит из трех фаланг.

* Сумма двух первых фаланг пальца в соотношении со всей длиной пальца и дает число золотого сечения (за исключением большого пальца);

* Кроме того, соотношение между средним пальцем и мизинцем также равно числу золотого сечения;

* У человека 2 руки, пальцы на каждой руке состоят из 3 фаланг (за исключением большого пальца). На каждой руке имеется по 5 пальцев, то есть всего 10, но за исключением двух двухфаланговых больших пальцев только 8 пальцев создано по принципу золотого сечения. Тогда как все эти цифры 2, 3, 5 и 8 есть числа последовательности Фибоначчи:

Золотая пропорция в строении легких человека

Американский физик Б.Д.Уэст и доктор А.Л. Гольдбергер во время физико-анатомических исследований установили, что в строении легких человека также существует золотое сечение.

Особенность бронхов, составляющих легкие человека, заключена в их асимметричности. Бронхи состоят из двух основных дыхательных путей, один из которых (левый) длиннее, а другой (правый) короче.

* Было установлено, что эта асимметричность продолжается и в ответвлениях бронхов, во всех более мелких дыхательных путях. Причем соотношение длины коротких и длинных бронхов также составляет золотое сечение и равно 1:1,618.

Строение золотого ортогонального четырехугольника и спирали

Золотое сечение — это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

В геометрии прямоугольник с таким отношением сторон стали называть золотым прямоугольником. Его длинные стороны соотносятся с короткими сторонами в соотношении 1,168: 1.

Золотой прямоугольник также обладает многими удивительными свойствами. Золотой прямоугольник обладает многими необычными свойствами. Отрезав от золотого прямоугольника квадрат, сторона которого равна меньшей стороне прямоугольника, мы снова получим золотой прямоугольник меньших размеров. Этот процесс можно продолжать до бесконечности. Продолжая отрезать квадраты, мы будем получать все меньшие и меньшие золотые прямоугольники. Причем располагаться они будут по логарифмической спирали, имеющей важное значение в математических моделях природных объектов (например, раковинах улиток).

Полюс спирали лежит на пересечении диагоналей начального прямоугольника и первого отрезаемого вертикального. Причем, диагонали всех последующих уменьшающихся золотых прямоугольников лежат на этих диагоналях. Разумеется, есть и золотой треугольник.

Английский дизайнер и эстетик Уильям Чарлтон констатировал, что люди считают спиралевидные формы приятными на вид и используют их вот уже тысячелетия, объяснив это так:

«Нам приятен вид спирали, потому что визуально мы с легкостью можем рассматривать ее.»

В природе

* Лежащее в основе строения спирали правило золотого сечения встречается в природе очень часто в бесподобных по красоте творениях. Самые наглядные примеры — спиралевидную форму можно увидеть и в расположении семян подсолнечника, и в шишках сосны, в ананасах, кактусах, строении лепестков роз и т.д.;

* Ботаники установили, что в расположении листьев на ветке, семян подсолнечника или шишек сосны со всей очевидность проявляется ряд Фибоначчи, а стало быть, проявляется закон золотого сечения;

Всевышний Господь каждому Своему творению установил особую меру и придал соразмерность, что подтверждается на примерах, встречающихся в природе. Можно привести великое множество примеров, когда процесс роста живых организмов происходит в строгом соответствии с формой логарифмической спирали.

Все пружинки в спирали имеют одинаковую форму. Математики установили, что даже при увеличении размеров пружинок форма спирали остается неизменной. В математике нет более иной формы, которая обладала бы такими же уникальными свойствами как спираль.

Строение морских раковин

Ученые, изучавшие внутреннее и внешнее строение раковин мягкотелых моллюсков, обитающих на дне морей, констатировали:

«Внутренняя поверхность раковин безупречно гладкая, а внешняя вся покрыта шероховатостями, неровностями. Моллюск был в раковине и для этого внутренняя поверхность раковины должна была быть безупречно гладкой. Внешние углы-изгибы раковины увеличивают ее крепость, твердость и таким образом повышают ее прочность. Совершенство и поразительная разумность строения ракушки (улитки) восхищает. Спиральная идея раковин является совершенной геометрической формой и удивительна по своей отточенной красоте.»

У большинства улиток, которые обладают раковинами, раковина растет в форме логарифмической спирали. Однако нет сомнения, что эти неразумные существа не имеют представления не только о логарифмической спирали, но не обладают даже простейшими математическими знаниями, чтобы самим создать себе спиралевидную раковину.

Но тогда как же эти неразумные существа смогли определить и избрать для себя идеальную форму роста и существования в виде спиральной раковины? Могли ли эти живые существа, которых ученых мир называет примитивными формами жизни, рассчитать, что идеальной для их существования будет логарифмическая форму ракушки?

Конечно же нет, потому что такой замысел невозможно осуществить без наличия разума и знаний. Но таковым разумом не обладают ни примитивные моллюски, ни бессознательная природа, которую, правда, некоторые ученые называют создательницей жизни на земле(?!)

Пытаться объяснить происхождение подобной даже самой примитивной формы жизни случайным стечением неких природных обстоятельств по меньшей мере абсурдно. Совершенно ясно, что этот проект является осознанным творением.

Биолог Сэр Д`арки Томпсон этот вид роста морских раковин называет «форма роста гномов».

Сэр Томпсон делает такой комментарий:

«Нет более простой системы, чем рост морских ракушек, которые растут и расширяются соразмерно, сохраняя ту же форму. Раковина, что самое удивительное, растет, но никогда не меняет формы.»

Наутилус, размером в несколько сантиметров в диаметре, представляет собой самый выразительный пример гномового вида роста. С.Моррисон так описывает этот процесс роста наутилуса, спланировать который даже человеческим разумом представляется довольно сложным:

«Внутри раковины наутилуса есть множество отделов-комнат с перегородками из перламутра, причем сама раковина внутри представляет собой спираль, расширяющуюся от центра. По мере роста наутилуса в передней части ракушки нарастает еще одна комнатка, но уже больших размеров, чем предыдущая, а перегородки оставшейся позади комнатки покрываются слоем перламутра. Таким образом, спираль все время пропорционально расширяется.»

Приведем лишь некоторые типы спиралевидных раковин имеющих логарифмическую форму роста в соответствии с их научными названиями:
Haliotis Parvus, Dolium Perdix, Murex, Fusus Antiquus, Scalari Pretiosa, Solarium Trochleare.

Все обнаруженные ископаемые останки раковин также имели развитую спиральную форму.

Однако логарифмическая форма роста встречается в животном мире не только у моллюсков. Рога антилоп, диких козлов, баранов и прочих подобных животных также развиваются в виде спирали по законам золотой пропорции.

Золотое сечение в ухе человека

Во внутреннем ухе человека имеется орган Cochlea («Улитка»), который исполняет функцию передачи звуковой вибрации . Эта костевидная структура наполнена жидкостью и также сотворена в форме улитки, содержащую в себе стабильную логарифмическую форму спирали = 73º 43’.

Рога и бивни животных, развивающиеся в форме спирали

Бивни слонов и вымерших мамонтов, когти львов и клювы попугаев являют собой логарифмические формы и напоминают форму оси, склонной обратиться в спираль. Пауки всегда плетут свои паутины в виде логарифмической спирали. Строение таких микроорганизмов, как планктоны (виды globigerinae, planorbis, vortex, terebra, turitellae и trochida) также имеют форму спирали.

Золотое сечение в строении микромиров

Геометрические фигуры не ограничиваются только лишь треугольником, квадратом, пяти- или шестиугольником. Если соединить эти фигуры различным образом между собой, то мы получим новые трехмерные геометрические фигуры. Примерами этому служат такие фигуры как куб или пирамида. Однако кроме них существуют также другие трехмерные фигуры, с которыми нам не приходилось встречаться в повседневной жизни, и названия которых мы слышим, возможно, впервые. Среди таких трехмерных фигур можно назвать тетраэдр (правильная четырехсторонняя фигура), октаэдр, додекаэдр, икосаэдр и т.п. Додекаэдр состоит из 13-ти пятиугольников, икосаэдр из 20-и треугольников. Математики отмечают, что эти фигуры математически очень легко трансформируются, и трансформация их происходит в соответствии с формулой логарифмической спирали золотого сечения.

В микромире трехмерные логарифмические формы, построенные по золотым пропорциям, распространены повсеместно . К примеру, многие вирусы имеют трехмерную геометрическую форму икосаэдра. Пожалуй, самый известный из таких вирусов — вирус Adeno. Белковая оболочка вируса Адено формируется из 252 единиц белковых клеток, расположенных в определенной последовательности. В каждом углу икосаэдра расположены по 12 единиц белковых клеток в форме пятиугольной призмы и из этих углов простираются шипообразные структуры.

Впервые золотое сечение в строении вирусов обнаружили в 1950-хх гг. ученые из Лондонского Биркбекского Колледжа А.Клуг и Д.Каспар. 13 Первым логарифмическую форму явил в себе вирус Polyo. Форма этого вируса оказалась аналогичной с формой вируса Rhino 14.

Возникает вопрос, каким образом вирусы образуют столь сложные трехмерные формы, устройство которых содержит в себе золотое сечение, которые даже нашим человеческим умом сконструировать довольно сложно? Первооткрыватель этих форм вирусов, вирусолог А.Клуг дает такой комментарий:

«Доктор Каспар и я показали, что для сферической оболочки вируса самой оптимальной формой является симметрия типа формы икосаэдра. Такой порядок сводит к минимуму число связующих элементов… Большая часть геодезических полусферических кубов Букминстера Фуллера построены по аналогичному геометрическому принципу. 14 Монтаж таких кубов требует чрезвычайно точной и подробной схемы-разъяснения. Тогда как бессознательные вирусы сами сооружают себе столь сложную оболочку из эластичных, гибких белковых клеточных единиц.»

Леонардо Фибоначчи — один из знаменитейших математиков Средневековья. Одно из важнейших его достижений — числовой ряд, который определяет золотое сечение и прослеживается во всей природе нашей планеты.

Удивительное свойство этих чисел, что сумма всех предыдущих чисел равна последующему числу (проверьте сами):

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610… — ряд Фибоначчи

Оказывается, эта последовательность имеет множество интересных с точки зрения математики свойств. Вот пример: вы можете разделить линию на две части. Отношение меньшей части линии к большей будет равно отношению большей части ко всей линии. Этот коэффицент пропорциональности, приблизительно равный 1,618, известен как золотое сечение.

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого сечения находят эту последовательность во всем растительном и в животном мире. Вот несколько удивительных примеров:

Расположение листьев на ветке, семян подсолнечника, шишек сосны проявляет себя как золотое сечение. Если смотреть на листья такого растения сверху, можно заметить, что они распускаются по спирали. Углы между соседними листьями образуют правильный математический ряд, известный под названием последовательности Фибоначчи. Благодаря этому каждый отдельно взятый лист, растущий на дереве, получает максимально доступное количество тепла и света.

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции — длина ее хвоста так относится к длине остального тела, как 62 к 38.

Ученый Цейзинг проделал колоссальную работу,чтобы обнаружить золотое сечение в теле человека. Он измерил около двух тысяч человеческих тел. Деление тела точкой пупа — важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6. Пропорции золотого сечения проявляются и в отношении других частей тела — длина плеча, предплечья и кисти, кисти и пальцев и т.д.

В эпоху Возрождения считалось, что именно эта пропорция из ряда Фибоначчи, соблюденная в архитектурных сооружениях и других видах искусства, больше всего радует глаз. Вот несколько примеров использования золотого сечения в искусстве:

Хотите успевать больше? Быть более продуктивными? Больше развиваться?

Оставьте свой Email, чтобы мы отправили на него наш список инструментов и ресурсов 👇

Список придет вам на почту через минуту

Портрет Моны Лизы

Портрет Монны Лизы долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника, который строится на принципах золотого сечения.

Парферон

Золотые пропорции присутствуют в размерах фасада древнегреческого храма Парфенона. Это древнее сооружение с его гармоническими пропорциями дарит нам такое же эстетическое наслаждение как и нашим предкам. Многие искусствоведы, стремившиеся раскрыть секрет того могучего эмоционального воздействия, которое это здание оказывает на зрителя, искали и находили в соотношениях его частей золотую пропорцию.

Рафаэль — «Избиение младенцев»

Картина строится на спирали, соблюдающей пропорции золотого сечения. Мы не знаем, рисовал ли на самом деле Рафаэль золотую спираль при создании композиции»Избиение младенцев» или только»чувствовал» ее.

Наш мир чудесен и полон больших неожиданностей. Удивительная нить взаимосвязи соединяет множество обыденных для нас вещей. Золотое сечение легендарно тем, что оно объединило, казалось бы, две совершенно разные ветви познания — математику, царицу точности и порядка, и гуманитарную эстетику.

Вы слышали когда-нибудь, что математику называют «царицей всех наук»? Согласны ли вы с таким утверждением? Пока математика остается для вас набором скучных задачек в учебнике, вряд ли можно прочувствовать красоту, универсальность и даже юмор этой науки.

Но есть в математике такие темы, которые помогают сделать любопытные наблюдения за обычными для нас вещами и явлениями. И даже попытаться проникнуть за завесу тайны создания нашей Вселенной. В мире есть любопытные закономерности, которые могут быть описаны с помощью математики.

Представляем вам числа Фибоначчи

Числами Фибоначчи называют элементы числовой последовательности. В ней каждое следующее число в ряду получается суммированием двух предыдущих чисел.

Пример последовательности: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987…

Записать это можно так:

F 0 = 0, F 1 = 1, F n = F n-1 + F n-2 , n ≥ 2

Можно начинать ряд чисел Фибоначчи и с отрицательных значений n . При этом последовательность в таком случае является двусторонней (т.е. охватывает отрицательные и положительные числа) и стремится к бесконечности в обоих направлениях.

Пример такой последовательности: -55, -34, -21, -13, -8, 5, 3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

Формула в этом случае выглядит так:

F n = F n+1 - F n+2 или иначе можно так: F -n = (-1) n+1 Fn .

То, что мы сейчас знаем под названием «числа Фибоначчи», было известно древнеиндийским математикам задолго до того, как ими стали пользоваться в Европе. А с этим названием вообще один сплошной исторический анекдот. Начнем с того, что сам Фибоначчи при жизни никогда не называл себя Фибоначчи – это имя стали применять к Леонардо Пизанскому только спустя несколько столетий после его смерти. Но давайте обо всем по порядку.

Леонардо Пизанский, он же Фибоначчи

Сын торговца, который стал математиком, а впоследствии получил признание потомков в качестве первого крупного математика Европы периода Средних веков. Не в последнюю очередь благодаря числам Фибоначчи (которые тогда, напомним, еще так не назывались). Которые он в начале XIII века описал в своем труде «Liber abaci» («Книга абака», 1202 год).

Путешествую вместе с отцом на Восток, Леонардо изучал математику у арабских учителей (а они в те времена были в этом деле, да и во многих других науках, одними из лучших специалистов). Труды математиков Античности и Древней Индии он прочитал в арабских переводах.

Как следует осмыслив все прочитанное и подключив собственный пытливый ум, Фибоначчи написал несколько научных трактатов по математике, включая уже упомянутую выше «Книгу абака». Кроме нее создал:

  • «Practica geometriae» («Практика геометрии», 1220 год);
  • «Flos» («Цветок», 1225 год – исследование, посвященное кубическим уравнениям);
  • «Liber quadratorum» («Книга квадратов», 1225 год – задачи о неопределенных квадратных уравнениях).

Был большим любителем математических турниров, поэтому в своих трактатах много внимания уделял разбору различных математических задач.

О жизни Леонардо осталось крайне мало биографических сведений. Что же касается имени Фибоначчи, под которым он вошел в историю математики, то оно закрепилось за ним только в XIX веке.

Фибоначчи и его задачи

После Фибоначчи осталось большое число задач, которые были очень популярны среди математиков и в последующие столетия. Мы с вами рассмотрим задачу о кроликах, в решении которой и используются числа Фибоначчи.

Кролики – не только ценный мех

Фибоначчи задал такие условия: существует пара новорожденных кроликов (самец и самка) такой интересной породы, что они регулярно (начиная со второго месяца) производят потомство – всегда одну новую пару кроликов. Тоже, как можно догадаться, самца и самку.

Эти условные кролики помещены в замкнутое пространство и с увлечением размножаются. Оговаривается также, что ни один кролик не умирает от какой-нибудь загадочной кроличьей болезни.

Надо вычислить, сколько кроликов мы получим через год.

  • В начале 1 месяца у нас 1 пара кроликов. В конце месяца они спариваются.
  • Второй месяц – у нас уже 2 пары кроликов (у пара – родители + 1 пара – их потомство).
  • Третий месяц: Первая пара рождает новую пару, вторая пара спаривается. Итого – 3 пары кроликов.
  • Четвертый месяц: Первая пара рождает новую пару, вторая пара времени не теряет и тоже рождает новую пару, третья пара пока только спаривается. Итого – 5 пар кроликов.

Число кроликов в n -ый месяц = число пар кроликов из предыдущего месяца + число новорожденных пар (их столько же, сколько пар кроликов было за 2 месяца до настоящего момента). И все это описывается формулой, которую мы уже привели выше: F n = F n-1 + F n-2 .

Таким образом, получаем рекуррентную (пояснение о рекурсии – ниже) числовую последовательность. В которой каждое следующее число равно сумме двух предыдущих:

  1. 1 + 1 = 2
  2. 2 + 1 = 3
  3. 3 + 2 = 5
  4. 5 + 3 = 8
  5. 8 + 5 = 13
  6. 13 + 8 = 21
  7. 21 + 13 = 34
  8. 34 + 21 = 55
  9. 55 + 34 = 89
  10. 89 + 55 = 144
  11. 144 + 89 = 233
  12. 233+ 144 = 377 <…>

Продолжать последовательность можно долго: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 <…>. Но поскольку мы задали конкретный срок – год, нас интересует результат, полученный на 12-ом «ходу». Т.е. 13-ый член последовательности: 377.

Ответ в задаче: 377 кроликов будет получено при соблюдении всех заявленных условий.

Одно из свойств последовательности чисел Фибоначчи очень любопытно. Если взять две последовательные пары из ряда и разделить большее число на меньшее, результат будет постепенно приближаться к золотому сечению (прочитать о нем подробнее вы сможете дальше в статье).

Говоря языком математики, «предел отношений a n+1 к a n равен золотому сечению» .

Еще задачи по теории чисел

  1. Найдите число, которое можно разделить на 7. Кроме того, если разделить его на 2, 3, 4, 5, 6, в остатке получится единица.
  2. Найдите квадратное число. О нем известно, что если прибавить к нему 5 или отнять 5, снова получится квадратное число.

Ответы на эти задачи мы предлагаем вам поискать самостоятельно. Свои варианты вы можете оставлять нам в комментариях к этой статье. А мы потом подскажем, верными ли были ваши вычисления.

Пояснение о рекурсии

Рекурсия – определение, описание, изображение объекта или процесса, в котором содержится сам этот объект или процесс. Т.е., по сути, объект или процесс является частью самого себя.

Рекурсия находит широкое применение в математике и информатике, и даже в искусстве и массовой культуре.

Числа Фибоначчи определяются с помощью рекуррентного соотношения. Для числа n>2 n- е число равно (n – 1) + (n – 2) .

Пояснение о золотом сечении

Золотое сечение – деление целого (например, отрезка) на такие части, которые соотносятся по следующему принципу: большая часть относится к меньшей так же, как и вся величина (например, сумма двух отрезков) к большей части.

Первое упоминание о золотом сечении можно встретить у Евклида в его трактате «Начала» (примерно 300 лет до н.э.). В контексте построения правильного прямоугольника.

Привычный нам термин в 1835 году ввел в оборот немецкий математик Мартин Ом.

Если описывать золотое сечение приблизительно, оно представляет собой пропорциональное деление на две неравных части: примерно 62% и 38%. В числовом выражении золотое сечение представляет собой число 1,6180339887 .

Золотое сечение находит практическое применение в изобразительном искусстве (картины Леонардо да Винчи и других живописцев Ренессанса), архитектуре, кинематографе («Броненосец «Потемкин» С. Эзенштейна) и других областях. Долгое время считалось, что золотое сечение – наиболее эстетичная пропорция. Такое мнение популярно и сегодня. Хотя по результатам исследований визуально большинство людей не воспринимают такую пропорцию наиболее удачным вариантом и считают слишком вытянутой (непропорциональной).

  • Длина отрезка с = 1, а = 0,618, b = 0,382.
  • Отношение с к а = 1, 618.
  • Отношение с к b = 2,618

А теперь вернемся к числам Фибоначчи. Возьмем два следующих друг за другом члена из его последовательности. Разделим большее число на меньшее и получим приблизительно 1,618. А теперь задействуем то же большее число и следующий за ним член ряда (т.е. еще большее число) – их отношение рано 0,618.

Вот пример: 144, 233, 377.

233/144 = 1,618 и 233/377 = 0,618

Кстати, если вы попробуете проделать тот же эксперимент с числами из начала последовательности (например, 2, 3, 5), ничего не получится. Ну, почти. Правило золотого сечения почти не соблюдается для начала последовательности. Но зато по мере продвижения вдоль ряда и возрастания чисел работает отлично.

И для того, чтобы вычислить весь ряд чисел Фибоначчи, достаточно знать три члена последовательности, идущих друг за другом. Можете убедиться в этом сами!

Золотой прямоугольник и спираль Фибоначчи

Еще одну любопытную параллель между числами Фибоначчи и золотым сечением позволяет провести так называемый «золотой прямоугольник»: его стороны соотносятся в пропорции 1,618 к 1. А ведь мы уже знаем, что за число 1,618, верно?

Например, возьмем два последовательных члена ряда Фибоначчи – 8 и 13 – и построим прямоугольник со следующими параметрами: ширина = 8, длина = 13.

А затем разобьем большой прямоугольник на меньшие. Обязательное условие: длины сторон прямоугольников должны соответствовать числам Фибоначчи. Т.е. длина стороны большего прямоугольника должна быть равной сумме сторон двух меньших прямоугольников.

Так, как это выполнено на этом рисунке (для удобства фигуры подписаны латинскими буквами).

Кстати, строить прямоугольники можно и в обратном порядке. Т.е. начать построение с квадратов со стороной 1. К которым, руководствуясь озвученным выше принципом, достраиваются фигуры со сторонами, равными числам Фибоначчи. Теоретически продолжать так можно бесконечно долго – ведь и ряд Фибоначчи формально бесконечен.

Если соединить плавной линией углы полученных на рисунке прямоугольников, получим логарифмическую спираль. Вернее, ее частный случай – спираль Фибоначчи. Она характеризуется, в частности, тем, что не имеет границ и не изменяет формы.

Подобная спираль часто встречается в природе. Раковины моллюсков – один из самых ярких примеров. Более того, спиральную форму имеют некоторые галактики, которые можно разглядеть с Земли. Если вы обращаете внимание на прогнозы погоды по телевизору, то могли заметить, что подобную спиральную форму имеют циклоны при съемке их со спутников.

Любопытно, что и спираль ДНК подчиняется правилу золотого сечения – соответствующую закономерность можно усмотреть в интервалах ее изгибов.

Такие удивительные «совпадения» не могут не будоражить умы и не порождать разговоры о неком едином алгоритме, которому подчиняются все явления в жизни Вселенной. Теперь вы понимаете, почему эта статья называется именно так? И двери в какие удивительные миры способна открыть для вас математика?

Числа Фибоначчи в живой природе

Связь чисел Фибоначчи и золотого сечения наводит на мысли о любопытных закономерностях. Настолько любопытных, что возникает соблазн попробовать отыскать подобные числам Фибоначчи последовательности в природе и даже в ходе исторических событий. И природа действительно дает повод для подобного рода допущений. Но все ли в нашей жизни можно объяснить и описать с помощью математики?

Примеры живой природы, которые могут быть описаны с помощью последовательности Фибоначчи:

  • порядок расположения листьев (и веток) у растений – расстояния между ними соотносимы с числами Фибоначчи (филлотаксис);

  • расположение семян подсолнуха (семечки располагаются двумя рядами спиралей, закрученных в разном направлении: один ряд по часовой стрелке, другой – против);

  • расположение чешуек сосновых шишек;
  • лепестки цветов;
  • ячейки ананаса;
  • соотношение длин фаланг пальцев на человеческой руке (приблизительно) и т.д.

Задачи по комбинаторике

Числа Фибоначчи находят широкое применение при решении задач по комбинаторике.

Комбинаторика – это раздел математики, который занимается исследованием выборки некого заданного числа элементов из обозначенного множества, перечислением и т.п.

Давайте рассмотрим примеры задач по комбинаторике, рассчитанных на уровень старшей школы (источник - http://www.problems.ru/).

Задача №1:

Леша поднимается по лестнице из 10 ступенек. За один раз он прыгает вверх либо на одну ступеньку, либо на две ступеньки. Сколькими способами Леша может подняться по лестнице?

Число способов, которыми Леша может подняться на лестницу из n ступенек, обозначим а n. Отсюда следует, что a 1 = 1, a 2 = 2 (ведь Леша прыгает либо на одну, либо через две ступеньки).

Оговорено также, что Леша прыгает по лестнице из n > 2 ступенек. Предположим, с первого раза он прыгнул на две ступеньки. Значит, по условию задачи, ему нужно запрыгнуть еще на n – 2 ступеньки. Тогда количество способов закончить подъем описывается как a n–2 . А если считать, что в первый раз Леша прыгнул только на одну ступеньку, тогда количество способов закончить подъем опишем как a n–1 .

Отсюда получаем такое равенство: a n = a n–1 + a n–2 (выглядит знакомо, не правда ли?).

Раз мы знаем a 1 и a 2 и помним, что ступенек по условию задачи 10, вычисли по порядку все а n : a 3 = 3, a 4 = 5, a 5 = 8, a 6 = 13, a 7 = 21, a 8 = 34, a 9 = 55, a 10 = 89.

Ответ: 89 способов.

Задача №2:

Требуется найти количество слов длиной в 10 букв, которые состоят только из букв «а» и «б» и не должны содержать две буквы «б» подряд.

Обозначим за a n количество слов длиной в n букв, которые состоят только из букв «а» и «б» и не содержат двух букв «б» подряд. Значит, a 1 = 2, a 2 = 3.

В последовательности a 1 , a 2 , <…>, a n мы выразим каждый следующий ее член через предыдущие. Следовательно, количество слов длиной в n букв, которые к тому же не содержат удвоенной буквы «б» и начинаются с буквы «а», это a n–1 . А если слово длиной в n букв начинается с буквы «б», логично, что следующая буква в таком слове – «а» (ведь двух «б» быть не может по условию задачи). Следовательно, количество слов длиной в n букв в этом случае обозначим как a n–2 . И в первом, и во втором случае далее может следовать любое слово (длиной в n – 1 и n – 2 букв соответственно) без удвоенных «б».

Мы смогли обосновать, почему a n = a n–1 + a n–2 .

Вычислим теперь a 3 = a 2 + a 1 = 3 + 2 = 5, a 4 = a 3 + a 2 = 5 + 3 = 8, <…>, a 10 = a 9 + a 8 = 144. И получим знакомую нам последовательность Фибоначчи.

Ответ: 144.

Задача №3:

Вообразите, что существует лента, разбитая на клетки. Она уходит вправо и длится бесконечно долго. На первую клетку ленты поместим кузнечика. На какой бы из клеток ленты он ни находился, он может перемещаться только вправо: или на одну клетку, или на две. Сколько существует способов, которыми кузнечик может допрыгать от начала ленты до n -ой клетки?

Обозначим число способов перемещения кузнечика по ленте до n -ой клетки как a n . В таком случае a 1 = a 2 = 1. Также в n + 1 -ую клетку кузнечик может попасть либо из n -ой клетки, либо перепрыгнув ее. Отсюда a n + 1 = a n – 1 + a n . Откуда a n = F n – 1 .

Ответ: F n – 1 .

Вы можете и сами составить подобные задачи и попробовать решить их на уроках математики вместе с одноклассниками.

Числа Фибоначчи в массовой культуре

Разумеется, такое необычное явление, как числа Фибоначчи, не может не привлекать внимание. Есть все же в этой строго выверенной закономерности что-то притягательное и даже таинственное. Неудивительно, что последовательность Фибоначчи так или иначе «засветилась» во многих произведениях современной массовой культуры самых разных жанров.

Мы вам расскажем про некоторые из них. А вы попробуйте поискать сами еще. Если найдете, поделитесь с нами в комментариях – нам ведь тоже любопытно!

  • Числа Фибоначчи упоминаются в бестселлере Дэна Брауна «Код да Винчи»: последовательность Фибоначчи служит кодом, при помощи которого главные герои книги открывают сейф.
  • В американском фильме 2009 года «Господин Никто» в одном из эпизодов адрес дома представляет собой часть последовательности Фибоначчи – 12358. Кроме этого, в другом эпизоде главный герой должен позвонить по телефонному номеру, который по сути – та же, но слегка искаженная (лишняя цифра после цифры 5) последовательность: 123-581-1321.
  • В сериале 2012 года «Связь» главный герой, мальчик, страдающий аутизмом, способен различать закономерности в происходящих в мире событиях. В том числе посредством чисел Фибоначчи. И управлять этими событиями также посредством чисел.
  • Разработчики java-игры для мобильных телефонов Doom RPG поместили на одном из уровней секретную дверь. Открывающий ее код – последовательность Фибоначчи.
  • В 2012 году российская рок-группа «Сплин» выпустила концептуальный альбом «Обман зрения». Восьмой трек носит название «Фибоначчи». В стихах лидера группы Александра Васильева обыграна последовательность чисел Фибоначчи. На каждый из девяти последовательных членов приходится соответствующее число строк (0, 1, 1, 2, 3, 5, 8, 13, 21):

0 Тронулся в путь состав

1 Щёлкнул один сустав

1 Дрогнул один рукав

2 Всё, доставайте стафф

Всё, доставайте стафф

3 Просьбой о кипятке

Поезд идёт к реке

Поезд идёт в тайге <…>.

  • лимерик (короткое стихотворение определенной формы – обычно это пять строк, с определенной схемой рифмовки, шуточное по содержанию, в котором первая и последняя строка повторяются или частично дублируют друг друга) Джеймса Линдона также использует отсылку к последовательности Фибоначчи в качестве юмористического мотива:

Плотная пища жён Фибоначчи

Только на пользу им шла, не иначе.

Весили жёны, согласно молве,

Каждая - как предыдущие две.

Подводим итоги

Мы надеемся, что смогли рассказать вам сегодня много интересного и полезного. Вы, например, теперь можете поискать спираль Фибоначчи в окружающей вас природе. Вдруг именно вам удастся разгадать «секрет жизни, Вселенной и вообще».

Пользуйтесь формулой для чисел Фибоначчи при решении задач по комбинаторике. Вы можете опираться на примеры, описанные в этой статье.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

– это всеобъемлющее проявление структурной гармонии. Оно встречается во всех сферах вселенной в природе, науке, искусстве во всем, с чем может соприкоснуться человек. Однажды познакомившись с золотым правилом, человечество больше ему не изменяло.

Наверняка вам не раз приходилось задумываться, почему Природа способна создавать такие удивительные гармоничные структуры, которые восхищают и радуют глаз. Почему художники, поэты, композиторы, архитекторы создают восхитительные произведения искусства из столетия в столетие. В чем же секрет и какие законы лежат в основе этих гармоничных созданий? Никто не сможет однозначно ответить на этот вопрос, но в нашей книге мы постараемся приоткрыть завесу и рассказать вам об одной из тайн мироздания – Золотом Сечении или, как его еще называют, Золотой или Божественной Пропорцией. Золотое Сечение называется числом PHI (Фи) в честь великого древнегреческого скульптора Фидия (Phidius), который использовал это число в своих скульптурах.

Не одно столетие ученые применяют уникальные математические свойства числа PHI и эти исследования продолжаются и в наши дни. Это число нашло широкое применение во всех областях современной науки, о чем мы так же попытаемся популярно рассказать на страницах . Также существует ряд и что это Вы узнаете далее…

Определение золотого сечения

Наиболее простое и ёмкое определение золотого сечения – малая часть относится к большей, как большая – ко всему целому. Приблизительная его величина 1,6180339887. В округленном процентном значении пропорции частей целого будут соотноситься как 62% на 38%. Это соотношение действует в формах пространства и времени.

Древние видели в золотом сечении отражение космического порядка, а Иоганн называл его одним из сокровищ геометрии. Современная наука рассматривает золотое сечение как ассиметричную симметрию, называя его в широком смысле универсальным правилом, отражающим структуру и порядок нашего мироустройства.

Числа фибоначчи в истории

Представление о золотых пропорциях имели древние египтяне, знали о них и на Руси, но впервые научно золотое сечение объяснил монах Лука Пачоли в книге Божественная пропорция, иллюстрации к которой предположительно сделал Леонардо . Пачоли усматривал в золотом сечении божественное триединство: малый отрезок олицетворял Сына, большой Отца, а целое Святой дух.

Непосредственным образом с правилом золотого сечения связано имя итальянского Леонардо . В результате решения одной из задач ученый вышел на последовательность чисел, известную сейчас как ряд : 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. Отношение соседних чисел ряда в пределе стремится к Золотому сечению. На отношение этой последовательности к золотой пропорции обратил внимание : Устроена она так, что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член. Сейчас ряд – это арифметическая основа для расчетов пропорций золотого сечения во всех его проявлениях.

Формула золотого сечения

Модельеры и дизайнеры одежды все расчеты делают, исходя из пропорций золотого сечения. Человек это универсальная форма может означать: Форма предмета - взаимное расположение границ (контуров) предмета, объекта, а также взаимное расположение точек линии для проверки законов золотого сечения. Конечно, от природы далеко не у всех людей пропорции идеальны, что создает определенные сложности с подбором одежды.

В дневнике Леонардо есть рисунок вписанного в окружность обнаженного человека, находящегося в двух наложенных друг на друга позициях. Опираясь на исследования римского архитектора Витрувия, Леонардо подобным образом пытался установить пропорции человеческого тела. Позднее французский архитектор Ле Корбюзье, используя Витрувианского человека Леонардо, создал собственную шкалу гармонических пропорций, повлиявшую на эстетику архитектуры XX века.

Адольф Цейзинг, исследуя пропорциональность человека, проделал колоссальную работу. Он измерил порядка двух тысяч человеческих тел, а также множество античных статуй и вывел, что золотое сечение выражает среднестатистический закон. В человеке живое разумное социальное, субъект общественно-исторической деятельности и культуры ему подчинены практически все части тела, но главный показатель золотого нечто, изготовленное из золота сечения это деление тела В математике: Тело (алгебра) - множество с двумя операциями (сложение и умножение), обладающее определёнными свойствами точкой пупа.
В результате измерений исследователь установил, что пропорции мужского тела 13:8 ближе к золотому сечению многозначный термин, означающий: Сечение в черчении - в отличие от разреза, изображение только фигуры, образованной рассечением тела плоскостью (плоскостями) без изображения частей за этой , чем пропорции женского тела 8:5.

Искусство пространственных форм

Художник Василий Суриков говорил, что в композиции есть непреложный закон, когда в картине нельзя ничего ни убрать, ни добавить, даже лишнюю точку поставить нельзя, это настоящая . Долгое время художники следовали этому закону интуитивно, но после Леонардо ди сер Пьеро (итал процесс создания живописного полотна уже не обходится без решения геометрических задач. Например, Альбрехт Дюрер для определения точек может означать: Точка - абстрактный объект в пространстве, не имеющий никаких измеримых характеристик, кроме координат золотого сечения использовал изобретенный им пропорциональный циркуль.

Искусствовед Ф. В. Ковалев, подробно исследовав картину Николая Ге Александр Сергеевич Пушкин в селе Михайловском, отмечает, что каждая деталь полотна, будь то камин, этажерка, кресло или сам поэт, строго вписаны в золотые пропорции.

Исследователи золотого сечения без устали изучают и замеряют шедевры архитектуры, утверждая, что они стали таковыми, потому что созданы по золотым канонам: в их списке Великие пирамиды Гизы, Собор Парижской Богоматери, Храм Василия Блаженного, Парфенон.
И сегодня в любом искусстве пространственных форм стараются следовать пропорциям золотого сечения, так как они, по мнению искусствоведов, облегчают восприятие произведения и формируют у зрителя эстетическое ощущение.

Слово, звук и кинолента

Формы временно?го искусства по-своему демонстрируют нам принцип золотого деления. Литературоведы, к примеру, обратили внимание, что наиболее популярное количество строк в стихотворениях позднего периода творчества Пушкина соответствует ряду 5, 8, 13, 21, 34.

Действует правило золотого сечения и в отдельно взятых произведениях русского классика. Так кульминационным моментом Пиковой дамы является драматическая сцена Германа и графини, заканчивающаяся смертью последней. В повести 853 строки, а кульминация приходится на 535 строке (853:535=1,6) это и есть точка золотого сечения.

Советский музыковед Э. К. Розенов отмечает поразительную точность соотношений золотого сечения в строгих и свободных формах произведений Иоганна Себастьяна Баха, что соответствует вдумчивому, сосредоточенному, технически выверенному стилю мастера. Это справедливо и в отношении выдающихся творений других композиторов, где на точку золотого сечения обычно приходится наиболее яркое или неожиданное музыкальное решение.
Кинорежиссер Сергей Эйзенштейн сценарий своего фильма Броненосец Потёмкин сознательно согласовывал с правилом золотого сечения, разделив ленту на пять частей. В первых трех разделах действие разворачивается на корабле, а в последних двух в Одессе. Переход на сцены в городе и есть золотая середина фильма.

Гармония Золотого сечения

Научно-технический прогресс имеет длительную историю и прошел в своем историческом развитии несколько этапов (вавилонская и древнеегипетская культура, культура Древнего Китая и Древней Индии, древнегреческая культура, эпоха Средневековья, эпоха Возрождения, промышленная революция 18 в., великие научные открытия 19 в., научно-техническая революция 20 в.) и вошел в 21-й век, который открывает новую эпоху в истории человечества – эпоху Гармонии. Именно в античный период было сделано ряд выдающихся математических открытий, оказавших определяющее влияние на развитие материальной и духовной культуры, среди которых Вавилонская 60-ричная система счисления и позиционный принцип представления чисел, тригонометрия и геометрия Евклида, несоизмеримые отрезки, Золотое Сечение и Платоновы тела, начала теории чисел и теории измерения. И, хотя каждый из этих этапов имеет свою специфику, вместе с тем он обязательно включает содержание предшествующих этапов. В этом и состоит преемственность в развитии науки. Преемственность может осуществляться в различных формах. Одной из сущностных форм ее выражения являются фундаментальные научные идеи, которые пронизывают все этапы научно-технического прогресса и оказывают влияние на различные области науки, искусства, философии и техники.

К разряду таких фундаментальных идей относится идея Гармонии, связанная с Золотым Сечением. По словам Б.Г. Кузнецова, исследователя творчества Альберта Эйнштейна, великий физик свято верил в то, что наука, физика в частности, всегда имела своей извечной фундаментальной целью “найти в лабиринте наблюдаемых фактов объективную гармонию”. О глубокой вере выдающегося физика в существование универсальных законов гармонии мироздания свидетельствует и еще одно широко известное высказывание Эйнштейна: «Религиозность ученого состоит в восторженном преклонении перед законами гармонии».

В древнегреческой философии Гармония противостояла Хаосу и означала организованность Вселенной, Космоса. Гениальный русский философ Алексей Лосев так оценивает основные достижения древних греков в этой области:

“С точки зрения Платона, да и вообще с точки зрения всей античной космологии мир представляет собой некое пропорциональное целое, подчиняющееся закону гармонического деления – Золотого Сечения… Их (древних греков) систему космических пропорций нередко в литературе изображают как курьезный результат безудержной и дикой фантазии. В такого рода объяснениях сквозит антинаучная беспомощность тех, кто это заявляет. Однако понять данный историко-эстетический феномен можно только в связи с целостным пониманием истории, то есть, используя диалектико-материалистическое представление о культуре и ища ответа в особенностях античного общественного бытия».

«Закон золотого деления должен быть диалектической необходимостью. Это – та мысль, которую, насколько мне известно, я провожу впервые» , – убежденно высказывался Лосев более полувека назад в связи с анализом культурного наследия древних греков.

А вот еще одно высказывание, касающееся Золотого Сечения. Оно было сделано в 17 веке и принадлежит гениальному астроному Иоганну Кеплеру, автору трех знаменитых «Законов Кеплера». Свое восхищение Золотым Сечением выразил в следующих словах:

«В геометрии существует два сокровища – и деление отрезка в крайнем и среднем отношении. Первое можно сравнить с ценностью золота, второе можно назвать драгоценным камнем».

Напомним, что старинная задача о делении отрезка в крайнем и среднем отношении, которая упоминается в этом высказывании, – это и есть Золотое Сечение!

Числа в науке

В современной науке существует много научных групп, профессионально изучающих Золотое Сечение, числа и их многочисленные приложения в математике, физике, философии, ботанике, биологии, медицине, компьютерной науке. Множество художников, поэтов, музыкантов используют в своем творчестве «Принцип Золотого Сечения». В современной науке сделано ряд выдающихся открытий, основанных на числах и Золотом Сечении. Открытие “квази-кристаллов”, сделанное в 1982 г. израильским ученым Даном Шехтманом, основанное на Золотом Сечении и “пентагональной” симметрии, имеет революционное значение для современной физики. Прорыв в современных представлениях о природе формообразования биологических объектов, в начале 90-х годов сделан украинским ученым Олегом Боднаром, создавшим новую геометрическую теорию филлотаксиса. Белорусский философ Эдуард Сороко сформулировал «Закон структурной гармонии систем», основанный на Золотом Сечении и играющий важную роль в процессах самоорганизации. Благодаря исследованиям американских ученых Эллиотта, Пректера и Фишера числа активно вошли в сферу бизнеса и стали основой из оптимальных стратегий в сфере бизнеса и торговли. Эти открытия подтверждают гипотезу американского ученого Д. Винтера, руководителя группы “Планетарные сердцебиения”, согласно которой не только энергетический каркас Земли, но и строение всего живого основаны на свойствах додекаэдра и икосаэдра – двух “Платоновых тел”, связанных с Золотым Сечением. И наконец, самое, пожалуй, главное – структура ДНК генетического кода жизни, представляет собой четырехмерную развертку (по оси времени) вращающегося додекаэдра! Таким образом, оказывается, что вся Вселенная – от Метагалактики и до живой клетки – построена по одному принципу – бесконечно вписываемых друг в друга додекаэдра и икосаэдра, находящихся между собой в пропорции Золотого Сечения!

Украинский профессор и доктор наук Стахов А.П. смог создать некую . Суть этого обобщения предельно проста. Если задаться не­отрицательным целым числом р = 0, 1, 2, 3, … и разделить отрезок “AB” точкой С в такой пропорции, чтобы было.