Ионный радиус натрия. Радиус ионный

Мембранным транспортом называют переход ионов и молекул вещества через мембрану из среды в клетку и в обратном направлении.

В зависимости от характера связи транспорта иона или молекулы с переносом др. ионов и молекул выделяют:

1) унипорт – транспорт независимо от транспорта др. соединений;

2) котранспорт – согласованный (взаимозависимый) транспорт через мембрану; к нему относят симпорт (одновременный и однонаправленный перенос двух различных веществ) и антипорт (одновременный транспорт через мембрану в противоположных направлениях).

В зависимости от изменения свободной энергии системы выделяют два типа транспорта:

Пассивный транспорт (простую диффузию) .

Активный транспорт – перенос неэлектролитов и ионов против градиента хим. или электрохим. потенциала, сопряженный с энергетическими затратами (перенос через мембрану аминокислот и моносахаридов).

31. Пассивный транспорт. Уравнение Фика, Нернста-Планка, Теорелла .
Пассивный транспорт
– перенос неэлектролитов и ионов через мембрану по градиенту хим. или электрохим. потенциала, сопровождающийся уменьшением свободной энергии(простую диффузию) .

Движущей силой простой диффузии является разность хим. потенциалов данного вещества в двух областях, между которыми происходит диффузия. Хим. потенциал – величина, численно равная свободной энергии, приходящейся на 1 моль вещества; определяется как частная производная от свободной энергии.

Основной термодинамический принцип, управляющий стационарным распределением диффундирующих молекул в системе с мембраной, заключается в том, что химические потенциалы данного вещества по обе стороны мембраны должны быть равны.

Если через мембрану, разграничивающую отсеки I и II, переносится dn молей вещества, то этот процесс сопровождается изменением свободной энергии системы на величину:

dG = (II - I) dn.

Диффузия прекращается и система переходит в состояние термодинамического равновесия, когда II = I .

I закон Фика имеет вид:

Поток вещества можно представить с учетом коэффициента проницаемости (Р) мембраны для данного вещества:

,

где с I и с II – концентрации диффундирующего вещества в водном растворе. [P] = см/с.

Коэффициент проницаемости зависит от свойств мембраны и переносимых веществ:

где D – коэффициент диффузии, - коэффициент распределения вещества между водным раствором и мембраной, характеризующий растворимость вещества в липидной фазе мембраны, d – толщина мембраны.



Движущей силой пассивного потока ионов через мембрану служит градиент электрохимического потенциала. Электрохимический потенциал иона для условий, при которых активность иона соответствует его концентрации (с), равен:

где - электрический потенциал, z – валентность иона, F - число Фарадея, 0 - стандартный химический потенциал.

Электрохимический потенциал – это мера работы, необходимой для переноса 1 моля из раствора с данной концентрацией и данным электрическим потенциалом в бесконечно удаленную точку в вакууме. Эта работа складывается из затрат на преодоление сил химического взаимодействия (0 + RTlnc) и на перенос зарядов в электрическом поле (zF).

Диффузию ионов в растворе и в гомогенной незаряженной мембране описывает уравнение электродиффузииНернста-Планка :

,

где u – подвижность иона, D = uRT. Первый член в правой части уравнения описывает свободную диффузию, второй – миграцию ионов в электрическом поле.

Уравнение Теорелла: Плотность потока при пассивном транспорте: J = - cU(dm/dx), где m - электрохимический потенциал, U – подвижность частиц, с – концентрация.

32. Виды пассивного транспорта через мембрану. Простая и облегченная диффузия.

Пассивный транспорт – это перенос неэлектролитов и ионов через мембрану по градиенту химического или электрохимического потенциала, сопровождающийся уменьшением свободной энергии. К пассивному транспорту относят простую диффузию через липидный бислой и облегченную диффузию по каналам в мембране и при помощи переносчиков. Процессы простой и облегченной диффузии направлены на выравнивание градиентов и установление равновесия в системе.
Диффузия - самопроизвольное перемещение вещества из мест с большей концентрацией в места с меньшей концентрацией вещества вследствие хаотического теплового движения молекул.
Отличия облегченной диффузии от простой:
1) перенос вещества с участием переносчика происходит быстрее;
2) облегченная диффузия обладает свойством насыщения: при увеличении концентрации с одной стороны мембраны плотность потока вещества возрастает лишь до некоторого предела, когда все молекулы переносчика уже заняты;



3) при облегченной диффузии наблюдается конкуренция переносимых веществ в тех случаях, когда переносчиком переносятся разные вещества; При этом одни вещества переносятся лучше, чем другие, и добавление одних веществ затрудняет транспорт других; Так, из сахаров глюкоза переносится лучше, чем фруктоза, фруктоза лучше, чем ксилоза;

33. Ионные каналы: механизм работы, селективность.
Ионные каналы – это интегральные гликопротеины, способные в результате внешних воздействий (изменение потенциала на мембране) изменять проницаемость мембраны для различных ионов. Ионные каналы обеспечивают реализацию важнейших физиологических процессов: передачу электрических и хим/ сигналов, сокращение, секрецию.

Ионным каналам биомембран свойственны избирательная проницаемость для ионов (селективность) и способность открываться и закрываться при различных воздействиях на мембрану. - «Воротный» механизм каналов управляется сенсором внешнего стимула (рецептором первичного посредника).

Ионные каналы работают по механизму облегченной диффузии. Движение по ним ионов при активации каналов идет по градиенту концентрации. Скорость перемещения через мембрану составляет 10 ионов в секунду. Селективность канала определяется наличием избирательного фильтра. Его роль выполняет начальный участок канала, который имеет определенный заряд, конфигурацию и размер (диаметр), что позволяет пройти в канал только определенному виду ионов. Некоторые из ионных каналов неселективные, например, каналы "утечки". Это такие каналы мембраны, по которым в состоянии покоя по градиенту концентрации из клетки выходят ионы К+, однако по этим каналам в клетку в состоянии покоя по градиенту концентрации входит и небольшое количество ионов Na+.

34. Основные семейства ионных каналов .

Ионный канал - это интегральный белок, образующий в мембране пору для обмена клетки с окружающей средой ионами K + , Na + , H + , Ca 2+ , Cl - , а также водой, и способный изменять свою проницаемость.

Натриевые каналы имеют простое строение: белок из трёх разных субъединиц, которые образуют структуру, похожую на пору - то есть трубку с внутренним просветом. Канал может находиться в трёх состояниях: закрытом, открытом и инактивированном (закрыт и невозбудим). Это обеспечивается локализацией отрицательных и положительных зарядов в самом белке; эти заряды притягиваются к противоположным, существующим на мембране, и таким образом канал при изменении состояния мембраны открывается и закрывается. Когда он открыт, ионы натрия могут беспрепятственно проникать через него в клетку по градиенту концентрации.

Калиевые каналы устроены проще: это отдельные субъединицы, имеющие в разрезе трапециевидную форму; они расположены почти вплотную друг к другу, но между ними всегда остаётся зазор. Калиевые каналы не закрываются до конца, в состоянии покоя калий свободно уходит из цитоплазмы (по градиенту концентрации).

Кальциевые каналы - это трансмембранные белки сложного строения, состоящие из нескольких субъединиц. Через эти каналы поступают также ионы натрия, бария и водорода. Различают потенциал-зависимые и рецептор-зависимые кальциевые каналы. Через потенциал-зависимые каналы ионы Са 2+ проходят сквозь мембрану, как только ее потенциал снижается ниже определенного критического уровня. Во втором случае поток Са 2+ через мембраны регулируется специфическими агонистами (ацетилхолин, катехоламины, серотонин, гистамин и др.) при их взаимодействии с рецепторами клетки. В настоящее время выделяют несколько типов кальциевых каналов обладающих разными свойствами (проводимость, длительность открытия) и имеющих разную тканевую локализацию.

Пассивный транспорт - транспорт веществ по градиенту концентрации, не требующий затрат энергии. Пассивно происходит транспорт гидрофобных веществ сквозь липидный бислой. Пассивно пропускают через себя вещества все белки-каналы и некоторые переносчики. Пассивный транспорт с участием мембранных белков называют облегченной диффузией.

Другие белки-переносчики (их иногда называют белки-насосы) переносят через мембрану вещества с затратами энергии, которая обычно поставляется при гидролизе АТФ. Этот вид транспорта осуществляется против градиента концентрации переносимого вещества и называется активным транспортом.

Один из механизмов, транслокация групп, осуществляется при химической модификации переносимого вещества. Лучше всего изучена фосфотрансферазная система Сахаров. Механизм ее действия заключается в фосфорилировании Сахаров на наружной поверхности трансмембранного белка и переносе внутрь фосфорилированного соединения, например, глюкозо-6-фосфата. Фосфотрансферазная система Сахаров представляет собой сложный мультиферментный комплекс, в котором важно отметить два основных компонента: один, ответственный за фосфорилирование данного сахара, а другой (НРг), ответственный за перенос к первому компоненту фосфатной группы, поступающей в конечном итоге от фос-фоенолпирувата. Фосфотрансферазная система используется также при переносе пуринов, некоторых жирных кислот.

Метаболи́зм (от греч. μεταβολή - «превращение, изменение»), или обмен веществ - набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды. Метаболизм обычно делят на две стадии: в ходе катаболизма сложные органические вещества деградируют до более простых; в процессах анаболизма с затратами энергии синтезируются такие вещества, как белки, сахара, липиды и нуклеиновые кислоты. Питательные вещества, поглощаемые клеткой, в результате сложных биохимических реакций превращаются в специфические клеточные компоненты. Совокупность биохимических процессов поглощения, усвоения питательных веществ и создания за их счет структурных элементов клетки называется конструктивным обменом или анаболизмом. Конструктивные процессы идут с поглощением энергии. Энергию, необходимую для процессов биосинтеза других клеточных функций, таких, как движение, осморегуляция и т. д., клетка получает за счет потока окислительных реакций, совокупность которых представляет собой энергетический обмен, или катаболизм (рис. 1).



Биосинтетич составляющую конструктивного метаб-ма делят на генеральный и специализированный мет-мы. Генер-ый – биосинтез мономеров из стандартных предшеств-ок в стандартных реакциях, Специали-ый – биосинтез из станд-ых предш-ов низкомолек-ых нестандартн соед-ий в нестандартных реакциях, т.е. специализ.метаболиты не явл особо необх-ми для роста и размнож.

Фотосинтез – комплексная ассимиляция световой энергии неорг углерода с исп-ем неорг донора электронов;

Фототрофия – подразумевается только энергитич метаболизм, сязанный с ассимиляцией световой энергии фотосинтетич аппарата, способен преобразовывать кванты электромагн поля в электрохим энергоноситель pmf.

Квазефототрофия – характерно для экстремальных … и для некот бакт и для хемоорганогеторотрофов, Это адаптивный механизм получения энергии гемоорганогетеротр орг-ми архей и доменобактерий в усл энергитич стресса с помощью временного фотосинтетич аппарата. Специфика связана с недостатком кислорода (энергию получ в ходе аэр дых-ия). В усл энергитич стресса – они создают 3хкомпонентный фотосинт аппарат и получают энергию в виде pmf.

Хемотрофия – источником энергии служ разнообр орг и неорг соед. Хемотрофы исп энергию, кот освоб-ся в ходе протекания ОВР орг и неорг соед-ий. В ОВР 1 субстрат восст-ся за счет ок-ия 2го, ок-ие сопров-ся выдел-ем энергии в форме pmf.

ОБЩАЯ ХАРАКТЕРИСТИКА ЭНЕРГЕТИЧЕСКИХ ПРОЦЕССОВ

В самом общем виде процессы, способные служить источником энергии для прокариот, можно представить следующим образом:

А ® В + е – .

Например,

Fe 2+ ® Fe 3+ + е – ; (1)

CH 2 -CH 2 - ® -CH 2 =CH 2 - + 2e – ; (2)

СН 4 + 1/2 O 2 ® СН 3 ОН. (3)

В первой реакции окисление иона двухвалентного железа - это потеря электрона. Во втором примере окисление углеродного субстрата можно в равной мере рассматривать как отрыв от него водорода (дегидрирование) или независимое удаление двух протонов (Н +) и электронов (e – ). В биохимических процессах, как правило, перенос водорода осуществляется путем раздельного транспорта протонов и электронов: протоны выделяется в среду и при необходимости поглощаются из нее, электроны обязательно должны быть переданы на соответствующие молекулы Поэтому все окислительно-восстановительные превращения определяются по существу "перемещениями" электронов. Разнообразные соединения, способные окисляться, т. е. являющиеся источниками отрываемых электронов, называются донорами электронов. Поскольку электроны не могут существовать самостоятельно, они обязательно должны быть перенесены на молекулы, способные их воспринимать и, таким образом, восстанавливаться. Такие молекулы называются акцепторами электронов. Таким образом, должен существовать внешний энергетический ресурс - исходный субстрат. С помощью ферментных систем организм извлекает энергию из этого субстрата в реакциях его ступенчатого окисления, приводящего к освобождению энергии небольшими порциями.

У прокариот известны три способа получения энергии: разные виды брожения, дыхания и фотосинтеза. В процессах брожения в определенных окислительно-восстановительных реакциях образуются нестабильные молекулы, фосфатная группа которых содержит много свободной энергии. Эта группа с помощью соответствующего фермента переносится на молекулу АДФ, что приводит к образованию АТФ. Реакции, в которых энергия, освобождающаяся на определенных окислительных этапах брожения запасается в молекулах АТФ, получили название субстратного фосфорилирования. Их особенностью является катализирование растворимыми ферментами. Образующийся в восстановительной части окислительно-восстановительных преобразований сбраживаемого субстрата восстановитель (НАД·H 2 , восстановленный ферредоксин) переносит электроны на подходящий эндогенный акцептор электрона (пируват, ацетальдегид, ацетон и др.) или освобождается в виде газообразного водорода (H 2).

Нередко в процессах брожения окислительные и восстановительные преобразования могут происходить внутримолекулярно, т. е. одна часть образуемой молекулы подвергается восстановлению, другая - окислению. Многие прокариоты получают энергию в процессе дыхания. Они окисляют восстановленные вещества с относительно низким окислительно-восстановительным потенциалом (E 0 ), возникающие в реакциях промежуточного метаболизма или являющиеся исходными субстратами, например НАД·H 2 , сукцинат, лактат, NH 3 , H 2 S и др. (табл. 11).

Окисление происходит в результате переноса электронов через локализованную в мембране дыхательную электронтранс-портную цепь, состоящую из набора переносчиков, и приводит в большинстве случаев к восстановлению молекулярного кислорода до H 2 O. Таким образом, в процессе дыхания молекулы одних веществ окисляются, других - восстанавливаются, т. е. окислительно-восстановительные процессы в этом случае всегда межмолекулярны.

Наиболее широко распространена среди прокариот способность окислять органические субстраты. Обнаружены также весьма специализированные группы прокариот, способные окислять различные неорганические субстраты (H 2 , NH 4 + , NO 2 – , H 2 S, S 0 , S 2 O 3 2– , Fe 2+ и др.) с соответствующим восстановлением O 2 . Наконец, прокариоты могут окислять органические и неорганические вещества с использованием в качестве конечного акцептора электронов не молекулярного кислорода, а целого ряда органических и неорганических соединений (фумарат, CO 2 , NO 3 – , S 0 , S0 4 2– , S 0 , S0 3 2– и др.). Количество освобождающейся энергии определяется градиентом окислительно-восстановительных потенциалов при переносе электронов от донора к акцептору.

У прокариот известны три типа фотосинтеза: I - зависимый от бактериохлорофилла бескислородный фотосинтез, осуществляемый группами зеленых, пурпурных бактерий и гелиобактерий; II - зависимый от хлорофилла кислородный фотосинтез, свойственный цианобактериям и прохлорофитам; III - зависимый от бактериородопсина бескислородный фотосинтез, найденный у экстремально галофильных архебактерий. В основе фотосинтеза I и II типа лежит поглощение солнечной энергии различными пигментами, приводящее к разделению электрических зарядов, возникновению восстановителя с низким и окислителя с высоким окислительно-восстановительным потенциалом. Перенос электронов между этими двумя компонентами приводит к выделению свободной энергии. В фотосинтезе III типа окислительно-восстановительные переносчики отсутствуют. В этом случае энергия в доступной для организма форме возникает в результате светозависимого перемещения H + через мембрану.

В обеих системах электронного транспорта есть флавопротеины, хиноны, цитохромы и белки, содержащие негемовое железо, позволяющие переносить электроны вниз по термодинамической лестнице. Таким образом, по существу обе электронтранспортные цепи являются окислительными. В процессах дыхания и фотосинтеза освобождающаяся при переносе электронов энергия запасается первоначально в форме электрохимического трансмембранного градиента ионов водорода (Dm H +), т. е. имеет место превращение химической и электромагнитной энергии в электрохимическую. Последняя затем может быть использована для синтеза АТФ. Поскольку в обоих процессах синтез АТФ обязательно связан с мембранами, реакции, приводящие к его образованию, получили название мембранзависимого фосфорилирования. Последнее подразделяется на два вида: окислительное (АТФ образуется в процессе электронного переноса при окислении химических соединений) и фотосинтетическое (синтез АТФ связан с фотосинтетическим электронным транспортом) фосфорилирование. Следует подчеркнуть, что принципы генерации АТФ при фотосинтезе и дыхании, т. е. механизмы мембранзависимого фосфорилирования, одинаковы. Таким образом, энергия, получаемая в процессах брожения, дыхания или фотосинтеза, запасается в определенных формах.

Существуют две универсальные формы энергии, которые могут быть использованы в клетке для выполнения разного рода работы: энергия высокоэнергетических химических соединений (химическая) и энергия трансмембранного потенциала ионов водорода (электрохимическая).

ВЫСОКОЭНЕРГЕТИЧЕСКИЕ СОЕДИНЕНИЯ. АТФ - УНИВЕРСАЛЬНАЯ ФОРМА ХИМИЧЕСКОЙ ЭНЕРГИИ В КЛЕТКЕ

Центральное место в процессах переноса химической энергии принадлежит системе АТФ. АТФ образуется в реакциях субстратного и мембранзависимого фосфорилирования. При субстратном фосфорилировании источником образования АТФ служат реакции двух типов:

I. Субстрат ~ Ф 20 + АДФ « субстрат + АТФ;

II. Субстрат ~ X + АДФ + Фц Н « субстрат + Х + АТФ.

20 Символ "~", введенный американским биохимиком Ф. Липманом (F. Lipmann), служит для обозначения макроэргической связи.

В реакциях первого типа осуществляется перенос высокоэнергетической фосфатной группы от молекулы-донора на АДФ катализируемый соответствующими киназами. Реакциями такого типа являются реакции субстратного фосфорилирования на пути анаэробного превращения Сахаров. У прокариот, имеющих ЦТК, реакция превращения сукцинил-КоА в янтарную кис лоту сопровождается запасанием энергии в фосфатной связь ГТФ, который затем отдает фосфатную группу АДФ. Эту реакцию можно рассматривать как реакцию субстратного фосфорилирования второго типа.

АТФ образуется также за счет энергии Dm в процессе мембранзависимого фосфорилирования. В общих чертах этот механизм фосфорилирования изложен в следующем разделе.

Молекула АТФ содержит две макроэргические фосфатные связи, при гидролизе которых высвобождается значительное количество свободной энергии:

АТФ + H 2 ® АДФ + Ф Н; DG 0 " = –31,8 кДж/моль;

АДФ + H 2 ® АМФ + Ф Н; DG 0 " = –31,8 кДж/моль;

Отщепление последней фосфатной группы от молекулы АМФ приводит к значительно меньшему высвобождению свободной энергии:

АМФ + H 2 ® аденозин + Ф Н; DG 0 " = –14,3 кДж/моль;

Молекула АТФ обладает определенными свойствами, которые и привели к тому, что в процессе эволюции ей была отведена столь важная роль в энергетическом метаболизме клеток. Термодинамически молекула АТФ нестабильна, что вытекает из большой отрицательной величины DG ее гидролиза. В то же время скорость неферментативного гидролиза АТФ в нормальных условиях очень мала, т. е. химически молекула АТФ высокостабильна. Малые размеры молекулы АТФ позволяют ей легко диффундировать в различные участки клетки, где необходим подвод энергии извне для выполнения химической, осмотической, механической работы.

И наконец, еще одно свойство молекулы АТФ, обеспечившее ей центральное место в энергетическом метаболизме клетки. Изменение свободной энергии при гидролизе АТФ составляет - 31,8 кДж/моль.

Броже́ние (тж. сбра́живание , фермента́ция ) - «это такой метаболический процесс, при котором регенерируется АТФ, а продукты расщепления органического субстрата могут служить одновременно и донорами, и акцепторами водорода» . Брожение - это анаэробный (происходящий без участия кислорода) метаболический распад молекул питательных веществ, например глюкозы. По выражению Луи Пастера, «брожение - это жизнь без кислорода». Большинство типов брожения осуществляют микроорганизмы - облигатные или факультативные анаэробы.

Брожение не высвобождает всю имеющуюся в молекуле энергию, поэтому промежуточные продукты брожения могут использоваться в ходе клеточного дыхания.

Биохимия

Брожение - это процесс, важный в анаэробных условиях, в отсутствие окислительного фосфорилирования. В ходе брожения, как и в ходе гликолиза, образуется АТФ. Во время брожения пируват преобразуется в различные вещества.

Хотя на последнем этапе брожения (превращения пирувата в конечные продукты брожения) не освобождается энергия, он крайне важен для анаэробной клетки, поскольку на этом этапе регенерируется никотинамидадениндинуклеотид (NAD +), который требуется для гликолиза. Это важно для нормальной жизнедеятельности клетки, поскольку гликолиз для многих организмов - единственный источник АТФ в анаэробных условиях.

В ходе брожения происходит частичное окисление субстратов, при котором водород переносится на NAD + (никотинамидадениндинуклеотид). В ходе других этапов брожения его промежуточные продукты служат акцепторами водорода, входящего в состав NADH; в ходе регенерации NAD + они восстанавливаются, а продукты восстановления выводятся из клетки.

Конечные продукты брожения содержат химическую энергию (они не полностью окислены), но считаются отходами, поскольку не могут быть подвергнуты дальнейшему метаболизму в отсутствие кислорода (или других высоко-окисленных акцепторов электронов) и часто выводятся из клетки. Следствием этого является тот факт, что получение АТФ брожением менее эффективно, чем путём окислительного фосфорилирования, когда пируват полностью окисляется до двуокиси углерода. В ходе разных типов брожения на одну молекулу глюкозы получается от двух до четырех молекул АТФ (ср. около 36 молекул путём аэробного дыхания).

Продукты реакции брожения

Продукты брожения - это по сути отходы, получившиеся во время превращения пирувата с целью регенерации NAD + в отсутствие кислорода. Стандартные примеры продуктов брожения - этанол (питьевой спирт), молочная кислота, водород и углекислый газ. Однако продукты брожения могут быть более экзотическими, такими как масляная кислота, ацетон, пропионовая кислота, 2,3-бутандиол и др.

Основные типы брожения

1.Спиртовое брожение (осуществляется дрожжами и некоторыми видами бактерий), в ходе него пируват расщепляется на этанол и двуокись углерода. Из одной молекулы глюкозы в результате получается две молекулы питьевого спирта (этанола) и две молекулы углекислого газа. Этот вид брожения очень важен в производстве хлеба, пивоварении, виноделии и винокурении . Если в закваске высока концентрация пектина, может также производиться небольшое количество метанола. Обычно используется только один из продуктов; в производстве хлеба алкоголь улетучивается при выпечке, а в производстве алкоголя двуокись углерода обычно уходит в атмосферу, хотя в последнее время её стараются утилизировать.

2.Молочнокислое брожение, в ходе которого пируват восстанавливается до молочной кислоты, осуществляют молочнокислые бактерии и другие организмы. При сбраживании молока молочнокислые бактерии преобразуют лактозу в молочную кислоту, превращая молоко в кисломолочные продукты (йогурт, простокваша и др.); молочная кислота придаёт этим продуктам кисловатый вкус.

Молочнокислое брожение происходит также в мышцах животных, когда потребность в энергии выше, чем обеспечиваемая дыханием, и кровь не успевает доставлять кислород.

Обжигающие ощущения в мышцах во время тяжелых физических упражнений соотносятся с получением молочной кислоты и сдвигом к анаэробному гликолизу , поскольку кислород преобразуется в двуокись углерода аэробным гликолизом быстрее, чем организм восполняет запас кислорода; а болезненность в мышцах после физических упражнений вызвана микротравмами мышечных волокон.

Пировиноградная кислота - химическое соединение с формулой СН 3 СОСООН, органическая кетокислота. Биохимическая роль Пируват - важное химическое соединение в биохимии. Он является конечным продуктом метаболизма глюкозы в процессе гликолиза. Одна молекула глюкозы превращается при этом в две молекулы пировиноградной кислоты. Дальнейший метаболизм пировиноградной кислоты возможен двумя путями - аэробным и анаэробным.

В условиях достаточного поступления кислорода, пировиноградная кислота превращается в ацетил-кофермент А, являющийся основным субстратом для серии реакций, известных как цикл Кребса, или дыхательный цикл, цикл трикарбоновых кислот. Пируват также может быть превращён в анаплеротической реакции в оксалоацетат. Оксалоацетат затем окисляется до углекислого газа и воды. Эти реакции названы по имени Ханса Адольфа Кребса, биохимика, получившего вместе с Фрицем Липманном Нобелевскую премию по физиологии в 1953 году за исследования биохимических процессов клетки. Цикл Кребса называют также циклом лимонной кислоты, поскольку лимонная кислота является одним из промежуточных продуктов цепи реакций цикла Кребса.

Если кислорода недостаточно, пировиноградная кислота подвергается анаэробному расщеплению с образованием молочной кислоты у животных и этанол у растений. При анаэробном дыхании в клетках пируват, полученный при гликолизе, преобразуется в лактат при помощи фермента лактатдегидрогеназы и NADP в процессе лактатной ферментации, либо в ацетальдегид и затем в этанол в процессе алкогольной ферментации.

Клеточное или тканевое дыхание - совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды. Высвобожденная энергия запасается в химических связях макроэргических соединений (АТФ и др.) и может быть использована по мере необходимости. Входит в группу процессов катаболизма

Пассивный транспорт включает простую и облегченную диф­фузию - процессы, которые не требуют затраты энергии. Диффузия – транспорт молекул и ионов через мембрану из области с высокой в область с низкой их концентрацией, те. вещества поступают по градиенту концентрации. Диффузия воды через полупроницаемые мембраны называется осмосом. Вода способна проходить также через мембранные поры, образованные белками, и переносить молекулы и ионы растворенных в ней веществ.Механизмом простой диффузии осуществляется перенос мелких молекул (например, О2, Н2О, СО2); этот процесс малоспецифичен и протекает со ско­ростью, пропорциональной градиенту концентрации транспортируемых молекул по обеим сторонам мембраны. Облегченная диффузия осущест­вляется через каналы и (или) белки-переносчики, которые обладают специфичностью в отношении транспортируемых молекул. В качестве ионных каналов выступают трансмембранные белки, образующие мел­кие водные поры, через которые по электрохимическому градиенту транспортируются мелкие водо растворимые молекулы и ионы. Белки-переносчики также являются трансмембранными белками, которые пре­терпевают обратимые изменения конформации, обеспечивающие транс­порт специфических молекул через плазмолемму. Они функционируют в механизмах как пассивного, так и активного транспорта.

Активный транспорт является энергоемким процессом, благода­ря которому перенос молекул осуществляется с помощью белков-пере­носчиков против электрохимического градиента. Примером механизма, обеспечивающего противоположно направленный активный транспорт ионов, служит натриево-калиевый насос (представленный белком-пере­носчиком Nа+-К+-АТФазой), благодаря которому ионы Na+ выводятся из цитоплазмы, а ионы К+ одновременно переносятся в нее. Концентрация К+ внутри клетки в 10-20 раз выше, чем снаружи, а концентрация Na наоборот. Такая разница в концентрациях ионов обеспечивается работой (Na*-K*> насоса. Для поддержания данной концентрации происходит перенос трех ионов Na из клетки на каждые два иона К* в клетку. В этом процессе принимает участие белок в мембране, выполняющий функцию фермента, расщепляющего АТФ, с высвобождением энергии, необходимой для работы насоса.
Участие специфических мембранных белков в пассивном и активном транспорте свидетельствует о высокой специфичности этого процесса. Этот ме­ханизм обеспечивает поддержание постоянства объема клетки (путем регуляции осмотического давления), а также мембранного потенциала. Активный транспорт глюкозы в клетку осуществляется белком-перенос­чиком и сочетается с однонаправленным переносом иона Nа+.



Облегченный транспорт ионов опосредуется особыми трансмем­бранными белками - ионными каналами, обеспечивающими избиратель­ный перенос определенных ионов. Эти каналы состоят из собственно транспортной системы и воротного механизма, который открывает канал на некоторое время в ответ на (а) изменение мембранного потен­циала, (б) механическое воздействие (например, в волосковых клетках внутреннего уха), (в) связывание лиганда (сигнальной молекулы или иона).

Транспорт через мембрану малых молекул.

Мембранный транспорт может включать однонаправленный перенос молекул какого-то вещества или совместный транспорт двух различных молекул в одном или противоположных направлениях.

Через нее с различной скоростью проходят разные молекулы и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы. Одно из важнейших свойств плазматической мембраны связано со способностью пропускать в клетку или из нее различные вещества. Это необходимо для поддержания постоянства ее состава (т.е. гомеостаза).

Транспорт ионов.

В отличие от искусственных бислойных липидных мембран, естественные мембраны, и в первую очередь плазматическая мембрана, все же способны транспортировать ионы. Проницаемость для ионов мала, причем скорость прохождения разных ионов неодинакова. Более высокая скорость прохождения для катионов (K+, Na+) и значительно ниже для анионов (Cl-). Транспорт ионов через плазмалемму проходит за счет участия в этом процессе мембранных транспортных белков - пермеаз. Эти белки могут вести транспорт в одном направлении одного вещества (унипорт) или нескольких веществ одновременно (симпорт), или же вместе с импортом одного вещества выводить из клетки другое (антипорт). Так, например, глюкоза может входить в клетки симпортно вместе с ионом Na+. Транспорт ионов может происходить по градиенту концентрации - пассивно без дополнительной затраты энергии. Так, например, в клетку проникает ион Na+ из внешней среды, где его концентрация выше, чем в цитоплазме.

Наличие белковых транспортных каналов и переносчиков казалось бы должно приводить к уравновешиванию концентраций ионов и низкомолекулярных веществ по обе стороны мембраны. На самом же деле это не так: концентрация ионов в цитоплазме клеток резко отличается не только от таковой во внешней среде, но даже от плазмы крови, омывающей клетки в организме животных.

Оказывается в цитоплазме концентрация K+ почти в 50 раз выше, а Na+ ниже, чем в плазме крови. Причем это различие поддерживается только в живой клетке: если клетку убить или подавить в ней метаболические процессы, то через некоторое время ионные различия по обе стороны плазматической мембраны исчезнут. Можно просто охладить клетки до +20С, и через некоторое время концентрация K+ и Na+ по обе стороны от мембраны станут одинаковыми. При нагревании клеток это различие восстанавливается. Это явление связано с тем, что в клетках существуют мембранные белковые переносчики, которые работают против градиента концентрации, затрачивая при этом энергию за счет гидролиза АТФ. Такой тип работы носит название активного транспорта , и он осуществляется с помощью белковых ионных насосов . В плазматической мембране находится двухсубъединичная молекула (K+ + Na+)-насоса, которая одновременно является и АТФазой. Этот насос при работе откачивает за один цикл 3 иона Na+ и закачивает в клетку 2 иона K+ против градиента концентрации. При этом затрачивается одна молекула АТФ, идущая на фосфорилирование АТФазы, в результате чего Na+ переносится через мембрану из клетки, а K+ получает возможность связаться с белковой молекулой и затем переносится в клетку. В результате активного транспорта с помощью мембранных насосов происходит также регуляция в клетке концентрации и двухвалентных катионов Mg2+ и Ca2+, также с затратой АТФ.

Так активный транспорт глюкозы, которая симпортно (одновременно) проникает в клетку вместе с потоком пассивно транспортируемого иона Na+, будет зависеть от активности (K+ + Na+)-насоса. Если этот (K+-Na+)- насос заблокировать, то скоро разность концентрации Na+ по обе стороны мембраны исчезнет, сократится при этом диффузия Na+ внутрь клетки, и одновременно прекратится поступление глюкозы в клетку. Как только восстановится работа (K+-Na+)-АТФазы и создается разность концентрации ионов, то сразу возрастает диффузный поток Na+ и одновременно транспорт глюкозы. Подобно этому осуществляется через мембрану и поток аминокислот, которые переносятся специальными белками-переносчиками, работающими как системы симпорта, перенося одновременно ионы.

Активный транспорт сахаров и аминокислот в бактериальных клетках обусловлен градиентом ионов водорода. Само по себе участие специальных мембранных белков, участвующих в пассивном или активном транспорте низкомолекулярных соединений, указывает на высокую специфичность этого процесса. Даже в случае пассивного ионного транспорта белки “узнают” данный ион, взаимодействуют с ним, связываются

специфически, меняют при этом свою конформацию и функционируют. Следовательно, уже на примере транспорта простых веществ мембраны выступают как анализаторы, как рецепторы. Особенно такая рецепторная роль проявляется при поглощении клеткой биополимеров.

Транспорт? Трансмембранное перемещение различных высокомолекулярных соединений, клеточных компонентов, надмолекулярных частиц, которые не способны проникать сквозь каналы в мембране, осуществляется посредством специальных механизмов, например, с помощью фагоцитоза, пиноцитоза, экзоцитоза, переноса через межклеточное пространство. То есть перемещение веществ сквозь мембрану может происходить при помощи различных механизмов, которые подразделяются по признакам участия в них специфических переносчиков, а также по энергозатратам. Ученые подразделяют транспорт веществ на активный и пассивный.

Основные виды транспорта

Пассивный транспорт представляет собой перенос вещества сквозь биологическую мембрану по градиенту (осмотический, концентрационный, гидродинамический и другие), не требующий расхода энергии.

Представляет собой перенос вещества сквозь биологическую мембрану против градиента. При этом расходуется энергия. Примерно 30 - 40% энергии, которая образуется в результате метаболических реакции в организме человека, тратится на осуществление активного транспорта веществ. Если рассматривать функционирование человеческих почек, то в них на активный транспорт тратится около 70 - 80% потребленного кислорода.

Пассивный транспорт веществ

он подразумевает перенос различных веществ сквозь биологические мембраны по разнообразным могут быть:

  • градиент электрохимического потенциала;
  • градиент концентрации вещества;
  • градиент электрического поля;
  • градиент осмотического давления и прочие.

Процесс осуществления пассивного транспорта не требует каких-либо энергозатрат. Он может происходить при помощи облегченной и простой диффузии. Как нам известно, диффузия представляет собой хаотическое перемещение молекул вещества в разнообразных средах, которое обусловлено энергией тепловых колебаний вещества.

Если частица вещества является электронейтральной, то направление, в котором будет происходить диффузия, определяется разностью концентрации веществ, содержащихся в средах, которые разделены мембраной. К примеру, между отсеками клетки, внутри клетки и вне ее. Если частицы вещества, его ионы имеют электрический заряд, то диффузия будет зависеть не только от разности концентраций, но и от величины заряда данного вещества, наличия и знаков заряда с обеих сторон мембраны. Величина электрохимического градиента определяется алгебраической суммой электрического и концентрационного градиентов на мембране.

Что обеспечивает транспорт через мембрану?

Пассивный транспорт мембраны возможен, благодаря наличию вещества, осмотического давления, возникающего между разными сторонами мембраны клетки или электрического заряда. К примеру, средний уровень содержащихся в плазме крови ионов Na+ составляет около 140 мМ/л, а содержание его в эритроцитах примерно в 12 раз больше. Подобный градиент, выражающийся в разности концентраций, способен создавать движущую силу, обеспечивающую перенос молекул натрия в эритроциты из плазмы крови.

Следует отметить, что скорость подобного перехода весьма низкая из-за того, что для клеточной мембраны характерна низкая проницаемость для ионов данного вещества. Гораздо большей проницаемостью данная мембрана обладает в отношении ионов калия. Энергия клеточного метаболизма не используется для совершения процесса простой диффузии.

Скорость диффузии

Активный и пассивный транспорт веществ через мембрану характеризуется скоростью диффузии. Описать ее можно при помощи уравнения Фика: dm/dt=-kSΔC/x.

В данном случае dm/dt представляет собой количество того вещества, которое диффундирует за одну единицу времени, а k представляет собой коэффициент процесса диффузии, который характеризует проницаемость биомембраны для диффундирующего вещества. S равняется площади, на которой происходит диффузия, а ΔC выражает разность концентрации веществ с разных сторон биологической мембраны, при этом x характеризует расстояние, которое имеется между точками диффузии.

Очевидно, что через мембрану наиболее легко будут перемещаться те вещества, которые диффундируют одновременно по градиентам концентраций и электрических полей. Немаловажным условием для осуществления диффузии вещества сквозь мембрану являются физические свойства самой мембраны, ее проницаемость для каждого конкретного вещества.

В силу того, что бислой мембраны сформирован углеводородными радикалами фосфолипидов, обладающих природы с легкостью диффундируют через нее. В частности, это относится к веществам, которые легко растворяются в липидах, например, тиреоидные и стероидные гормоны, а также некоторые вещества наркотического характера.

Минеральные ионы и низкомолекулярные вещества, имеющие гидрофильную природу, диффундируют посредством пассивных ионных каналов мембраны, которые сформированы из каналообразующих белковых молекул, а иногда сквозь дефекты упаковки мембраны фосфолипидных молекул, которые возникают в клеточной мембране в результате тепловой флуктуации.

Пассивный транспорт через мембрану - процесс очень интересный. Если условия нормальные, то значительные количества вещества могут проникать сквозь бислой мембраны только в том случае, если они неполярные и имеют небольшой размер. В противном случае перенос происходит посредством белков-переносчиков. Подобные процессы с участием белка-переносчика называются не диффузией, а транспортом вещества сквозь мембрану.

Облегченная диффузия

Облегченная диффузия, подобно простой диффузии, происходит по градиенту концентрации вещества. Основное отличие состоит в том, что в процессе переноса вещества принимает участие специальная молекула белка, называемая переносчиком.

Облегченная диффузия является видом пассивного переноса молекул вещества сквозь биомембраны, осуществляемым по градиенту концентрации при помощи переносчика.

Состояния белка-переносчика

Белок-переносчик может находится в двух конформационных состояниях. К примеру, в состоянии А данный белок может обладать сродством с веществом, которое он переносит, его участки для связывания с веществом развернуты внутрь, за счет чего формируется пора, открытая к одной стороне мембраны.

После того, как белок связался с переносимым веществом, изменяется его конформация и происходит его переход в состояние Б. При таком превращении у переносчика теряется сродство с веществом. Из связи с переносчиком оно высвобождается и перемещается в пору уже по другую сторону мембраны. После того, как вещество перенесено, белок-переносчик снова изменяет свою конформацию, возвращаясь в состояние А. Подобный транспорт вещества сквозь мембрану называется унипортом.

Скорость при облегченной диффузии

Низкомолекулярные вещества вроде глюкозы могут транспортироваться сквозь мембрану посредством облегченной диффузии. Такой транспорт может происходить из крови в мозг, в клетки из интерстициальных пространств. Скорость переноса вещества при таком виде диффузии способна достигать до 10 8 частиц через канал за одну секунду.

Как мы уже знаем, скорость активного и пассивного транспорта веществ при простой диффузии пропорциональна разности концентраций вещества с двух сторон мембраны. В случае же облегченной диффузии эта скорость увеличивается пропорционально увеличивающей разности концентрации вещества до определенного максимального значения. Выше этого значения скорость не увеличивается, даже несмотря на то что разность концентраций с разных сторон мембраны продолжает увеличиваться. Достижение такой максимальной точки скорости в процессе осуществления облегченной диффузии можно объяснить тем, что максимальная скорость предполагает вовлечение в процесс переноса всех имеющихся белков-переносчиков.

Какое понятие еще включают в себя активный и пассивный транспорт через мембраны?

Обменная диффузия

Подобный вид транспорта молекул вещества сквозь клеточную мембрану характеризуется тем, что в обмене участвуют молекулы одного и того же вещества, которые находятся с разных сторон биологической мембраны. Стоит отметить, что при таком транспорте веществ с обеих сторон мембраны абсолютно не изменяется.

Разновидность обменной диффузии

Одной из разновидностей обменной диффузии является обмен, при котором молекула одного вещества меняется на две и более молекул иного вещества. К примеру, один из путей, по которому происходит удаление положительных ионов кальция из гладкомышечных клеток бронхов и сосудов из сократительных миоцитов сердца - это обмен их на ионы натрия, расположенные вне клетки. Один ион натрия в этом случае обменивается на три иона кальция. Таким образом, происходит движение натрия и кальция сквозь мембрану, которое носит взаимообусловленный характер. Подобный вид пассивного транспорта сквозь клеточную мембрану называется антипортом. Именно таким образом клетка способна освободиться от ионов кальция, которые имеются в избытке. Этот процесс является необходимым для того, чтобы гладкие миоциты и кардиомиоциты расслаблялись.

В данной статье был рассмотрен активный и пассивный транспорт веществ через мембрану.

Пассивный транспорт - транспорт веществ по градиенту концентрации, не требующий затрат энергии. Пассивно происходит транспорт гидрофобных веществ сквозь липидный бислой. Пассивно пропускают через себя вещества все белки-каналы и некоторые переносчики. Пассивный транспорт с участием мембранных белков называют облегченной диффузией.

Другие белки-переносчики (их иногда называют белки-насосы) переносят через мембрану вещества с затратами энергии, которая обычно поставляется при гидролизе АТФ. Этот вид транспорта осуществляется против градиента концентрации переносимого вещества и называется активным транспортом.

Симпорт, антипорт и унипорт

Мембранный транспорт веществ различается также по направлению их перемещения и количеству переносимых данным переносчиком веществ:

1) Унипорт - транспорт одного вещества в одном направлении в зависимости от градиента

2) Симпорт - транспорт двух веществ в одном направлении через один переносчик.

3) Антипорт - перемещение двух веществ в разных направлениях через один переносчик.

Унипорт осуществляет, например, потенциал-зависимый натриевый канал, через который в клетку во время генерации потенциала действия перемещаются ионы натрия.

Симпорт осуществляет переносчик глюкозы, расположенный на внешней (обращенной в просвет кишечника) стороне клеток кишечного эпителия. Этот белок захватывает одновременно молекулу глюкозы и ион натрия и, меняя конформацию, переносит оба вещества внутрь клетки. При этом используется энергия электрохимического градиента, который, в свою очередью создается за счет гидролиза АТФ натрий-калиевой АТФ-азой.

Антипорт осуществляет, например, натрий–калиевая АТФаза (или натрий–зависимая АТФаза). Она переносит в клетку ионы калия. а из клетки - ионы натрия.

Работа натрий-калиевой атФазы как пример антипорта и активного транспорта

Первоначально этот переносчик присоединяет с внутренней стороны мембраны три иона Na + . Эти ионы изменяют конформацию активного центра АТФазы. После такой активации АТФаза способна гидролизовать одну молекулу АТФ, причем фосфат-ион фиксируется на поверхности переносчика с внутренней стороны мембраны.

Выделившаяся энергия расходуется на изменение конформации АТФазы, после чего три иона Na + и ион (фосфат) оказываются на внешней стороне мембраны. Здесь ионы Na + отщепляются, а замещается на два иона K + . Затем конформация переносчика изменяется на первоначальную, и ионы K + оказываются на внутренней стороне мембраны. Здесь ионы K + отщепляются, и переносчик вновь готов к работе.

Более кратко действия АТФазы можно описать так:

    1) Она изнутри клетки "забирает" три иона Na + ,затем расщепляет молекулу АТФ и присоединяет к себе фосфат

    2) "Выбрасывает" ионы Na + и присоединяет два иона K + из внешней среды.

    3) Отсоединяет фосфат, два иона K + выбрасывает внутрь клетки

В итоге во внеклеточной среде создается высокая концентрация ионов Na + , а внутри клетки - высокая концентрация K + . Работа Na + , K + - АТФаза создает не только разность концентраций, но и разность зарядов (она работает как электрогенный насос). На внешней стороне мембраны создается положительный заряд, на внутренней - отрицательный.