Какие звенья входят в состав функциональной системы. Функциональные системы - это что такое? Величина основного обмена зависит от

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

Понятие о функциональных системах организма (П.К. Анохин). Звенья функциональной системы. Свойства функциональных систем и их значение.

Функциональная система – временное функциональное объединение различных нервных центров,различных органов и тканей,различных физиологических систем во имя достижения конечного полезного приспособительного результата.

Функциональная система включает в себя:

1) конечный полезный приспособительный результат – системообразующий фактор. 3 вида: а)биол.константы внутр.среды организма(т.тела,ур.глюкозы), б) поведенческие реакции,направленные на удовлетворение биол.потребностей(в еде,пище), в) поведенческие реакции,напр.на удовлетворение соц потребностей.

2) центральное звено – сов-сть нейронов в пределах ЦНС,которые получают афферентные импульсы от рецепторов и в центральном звене решаются вопросы(что делать,когда и как)

3) исполнител.звено– это органы эффекторы,гормональные компоненты,вегетативные компоненты НС,поведенческие реакции,внутренние органы.

4) обратная афферентация-поставляется информация от рецептора в центральное звено

функциональной системы. Если имеются рассогласования между эталоном и полученным результатом,то кон.полезный результат не достигнут и ФС продолжает функционировать.

Если нет рассогласованности,то конечный результат достигнут и ФС распадается.

Свойства функциональной системы:

1) динамичность. Закл в том,что ФС-образование временное.

2) способность к саморегуляции. При отклонении регулируемой величины или конечного

полезного результата от оптимальной величины происходит ряд реакций

самопроизвольного комплекса, что возвращает показатели на оптимальный уровень.

Саморегуляция осуществляется при наличии обратной связи.

Значение: на основе ФС осуществляется самая сложная рефлекторная регуляция организма.

2. Структурно-функциональная характеристика эритроцитов. Физиологические свойства и функции эритроцитов, Количество эритроцитов. Скорость оседания эритроцитов и факторы на нее влияющие.Значение определения СОЭ для клиники.

Методичка КРОВЬ стр 13 и 33.

Химические синапсы: холинергические, адренергические, гистаминергические, пуринергические и ГАМК-ергические, их функциональные отличия.

Синапсом называется место контакта нервной клетки с другим нейроном или исполнительным органом. Все синапсы делятся на следующие группы:

1. По механизму передачи: а. электрические. В них возбуждение передается посредством электрического поля. Поэтому оно может передаваться в обе стороны. Их в ЦНС мало; б. химические. Возбуждение через них передается с помощью ФАВ – нейромедиатора. Их в ЦНС большинство; в. смешанные (электрохимические).

2. По локализации: а. центральные, расположенные в ЦНС; б. периферические, находящиеся вне ее. Это нервно-мышечные синапсы и синапсы периферических отделов вегетативной нервной системы.

3. По физиологическому значению: а. возбуждающие; б. тормозные.

4. В зависимости от нейромедиатора, используемого для передачи: а. холинергические – медиатор ацетилхолин (АХ); б. адренергические – норадреналин (НА); в. серотонинергические – серотонин (СТ); г. глицинергические – аминокислота глицин (ГЛИ); д. ГАМК-ергические – гамма-аминомасляная кислота (ГАМК); е. дофаминергические – дофамин (ДА); ж. пептидергические – медиаторами являются нейропептиды. В частности роль нейромедиаторов выполняют вещество Р, опиоидный пептид в-эндорфин и др. Предполагают, что имеются синапсы, где функции медиатора выполняют гистамин, АТФ, глутамат, аспартат, ряд местных пептидных гормонов.

5. По месту расположения синапса: а. аксо-дендритные (между аксоном одного и дендритом второго нейрона); б. аксо-аксональные ; в. аксо-соматические ; г. дендро-соматические ; д. дендро-дендритные. Наиболее часто встречаются три первых типа. Строение всех химических синапсов имеет принципиальное сходство.

Например, аксо-дендритный синапс состоит из следующих элементов:

1. пресинаптическое окончание или терминаль (конец аксона);

2. синаптическая бляшка , утолщение окончания;

3. пресинаптическая мембрана , покрывающая пресинаптическое окончание;

4. синаптические пузырьки в бляшке, которые содержат нейромедиатор;

5. постсинаптическая мембрана , покрывающая участок дендрита, прилегающий к бляшке; 6. синаптическая щель , разделяющая пре- и постсинаптическую мембраны, шириной 10-50 нМ;

7. хеморецепторы – белки, встроенные в постсинаптическую мембрану и специфичные для нейромедиатора.

Например, в холинергических синапсах это холинорецепторы, адренергических – адренорецепторы и т.д. Простые нейромедиаторы синтезируются в пресинаптических окончаниях, пептидные – в соме нейронов, а затем по аксонам транспортируются в окончания.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 2

Фазы деятельности сердца, их происхождение и значение. Компоненты систолы и диастолы желудочков. Общая пауза в деятельности сердца.

Методичка КРОВООБРАЩЕНИЕ стр.3

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 3

Гладкие мышцы, их строение и иннервация, физиологические свойства, функциональные особенности. Функции гладких мышц.

Гладкие мышцы имеются в стенках большинства органов пищеварения, сосудов, выводных протоков различных желез, мочевыводящей системы. Они являются непроизвольными и обеспечивают перистальтику органов пищеварения и мочевыводящей системы, поддержание тонуса сосудов. В отличие от скелетных, гладкие мышцы образованы клетками чаще веретенообразной формы и небольших размеров, не имеющими поперечной исчерченности. Миофибриллы состоят из тонких нитей актина, которые идут в различных направлениях и прикрепляющихся к разным участкам сарколеммы. Миозиновые протофибриллы расположен рядом с актиновыми. Элементы саркоплазматического ретикулума не образуют систему трубочек. Отдельные мышечные клетки соединяются между собой контактами с низким электрическим сопротивлением – нексусами , что обеспечивает распространение возбуждения по всей гладкомышечной структуре.

Свойства:

1. Возбудимость-способность тканей приходить в состояние возбуждения под действием раздражителей пороговой и сверхпороговой силы.

Гладкие мышцы менее возбудимы, чем скелетные: их пороги раздражения выше. Потенциалы действия большинства гладкомышечных волокон имеют малую амплитуду (порядка 60 мв вместо 120 мв в скелетных мышечных волокнах) и большую продолжительность - до 1-3 секунд.

2. Проводимость- способность мышечного волокна передавать возбуждение в виде нервного импульса или потенциала действия на протяжении всего мышечного волокна..

3. Рефрактерность-свойство ткани резко менять свою возбудимость при импульсном возбуждении вплоть до 0.

Рефрактерный период мышечной ткани более продолжителен, чем рефрактерный период нервной ткани.

4. Лабильность-максимальное число полных возбуждений,которое ткань может воспроизвести в единицу времени в точности с ритмом наносимых раздражений. Лабильность меньше,чем у нервной ткани (200-250 имп/с)

5. Сократимость-способность мыш.волокна изменять свою длину или свой тонус. Сокращение гладкой мускулатуры происходит более медленно и длительно. Сокращение развивается за счет кальция, входящего в клетку во время ПД.

Гладкие мышцы имеют и свои особенности:

1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии

постоянного частичного сокращения – тонуса;

2) самопроизвольную автоматическую активность;

3) сокращение в ответ на растяжение;

4) пластичность (уменьшение растяжения при увеличении растяжения);

5) высокую чувствительность к химическим веществам.

Сосудодвигательный центр, его составные части, их локализация и значение. Регуляция активности бульбарного сосудодвигательного центра. Особенности рефлекторной регуляции дыхания у лиц пожилого возраста.

Сосудодвигательный центр (СДЦ) в продолговатом мозге, на дне IV желудочка (В.Ф. Овсянников, 1871 г., открыт методом перерезки ствола мозга на различных уровнях), представлен двумя отделами (прессорный и депрессорный). Сосудодвигательный центр В. Ф. Овсянниковым в 1871 г. было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла - сосудодвигательный центр - находится в продолговатом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то артериальное давление не изменяется. Если перерезать мозг между продолговатым и спинным, максимальное давление крови в сонной артерии понижается до 60-70 мм рт. ст. Отсюда следует, что сосудодвигательный центр локализован в продолговатом мозге и находится в состоянии тонической активности, т. е. длительного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение артериального давления. Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов - прессорного и депрессорного. Раздражение первого вызывает сужение артерий и подъем артериального давления, а раздражение второго - расширение артерий и падение давления.

В настоящее время считают, что депрессорный отдел сосудодвигательного центра вызывает расширение сосудов, понижая тонус прессорного отдела и снижая, таким образом, эффект сосудосуживающих нервов. Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегетативной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, где образуются сосудосуживающие центры, регулирующие тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол. Кроме сосудодвигательного центра продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полушарий.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №4

1. Физиологические механизмы познания окружающей действительности. Сенсорные системы (анализаторы), их определение, классификация и строение. Значение отдельных звеньев сенсорных систем. Особенности мозгового (коркового) отдела анализатора (И.П. Павлов).

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №5

Функциональное значение различных областей коры большого мозга (Бродман). Представления И.П. Павлова о локализации функций в коре больших полушарий. Понятие о первичных, вторичных и третичных зонах коры большого мозга.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №6

Центральные

Эффекторные

Центральные механизмы выполняются, главным образом, центром терморегуляции, локализующимся в медиальной преоптической области переднего гипоталамуса и заднем гипаталамусе, где имеются:

а) термочувствительные нейроны , "задающие" уровень поддерживаемой температуры тела;

б) эффекторные нейроны , управляющие процессами теплопродукции и теплоотдачи./центр теплопродукции и центр теплоотдачи/.

На основе анализа и интеграции непрерывно определяется среднее значение температуры тела и приводится в соответствие фактическая и заданная температура.

Эффекторные механизмы регуляции теплообмена через изменение интенсивности кровотока в сосудах поверхности тела изменяют величину теплоотдачи организма.

Если уровень средней температуры тела , несмотря на расширение поверхностных сосудов , 1)превышает величину установочной температуры, происходит резкое усиление потоотделения . В случаях, когда, несмотря

на резкое сужение поверхностных сосудов и минимальное потоотделение, уровень средней температуры становится 2)ниже величины "установочной" температуры, активизируются процессы теплопродукции.

Если, несмотря на активацию обмена веществ , величина теплопродукции становится меньше величины теплоотдачи , возникает гипотермия - понижение температуры тела.

Гипотермия возникает тогда, когда интенсивность теплопродукции превышает теплоотдачу/ способность организма отдавать тепло в окружающую среду/.

В случае продолжительной гипертермии может развиваться "тепловой удар" -

В более легких случаях наблюдается" тепловой обморок",

Как при гипертермии, так и при гипертермии имеют место нарушения основного условия поддержания постоянства температуры тела - баланса теплопродукции и теплоотдачи.

В процессе эволюции в живых организмах выработалась особая ответная реакция на попадание во внутреннюю среду чужеродных веществ - лихорадка.

Это - состояние организма, при котором центр терморегуляции стимулирует повышение температуры тела. Это достигается перестраиванием механизма "установки" температуры регуляции на более высокую. Включаются механизмы , 1)активирующие теплопродукцию (повышение терморегуляционного тонуса мышц, мышечная дрожь) и 2)снижающие интенсивность теплоотдачи (сужение сосудов поверхности тела, принятие позы, уменьшающей площадь соприкосновения поверхности тела с внешней средой).

Переход "установочной точки" происходит в результате действия на соответствующую группу нейронов преоптической области гипоталамуса эндогенных пирогенов - веществ. вызывающих подъем температуры тела (альфа- и бетта- интерклейкин-1, альфа-интерферон, интерклейкин-6).

Система терморегуляции использует для осуществления своих функций компоненты других регулирующих систем.

Такое сопряжение теплообмена и других гомеостатических функций прослеживается, __________прежде всего, на уровне гипоталамуса . Его термочувствительные нейроны изменяют свою биоэлектрическую активность под действием эндопирогенов, половых гормонов, некоторых нейромедиаторов.

Реакции сопряжения на эффекторном уровне. В качестве эффекторов в реакциях теплообмена используются сосуды поверхности тела, что обусловлено выполнением более важной гомеостатической потребности организма - поддержания системного кровотока.

А) Когда температура поверхности тела выравнивается с таковой окружающей среды, ведущее значение приобретает потоотделение и испарение пота и влаги с поверхности тела.

Б) Если при подъеме температуры тела, в силу потоотделения теряется жидкость, уменьшается объем циркулирующей крови, то включаются системы осмо- и волюморегуляции ОЦК, как более древнее и более важные для сохранения гомеостаза.

В) При действии как гипер-, так и гипотермии могут наблюдаться сдвиги кислотно-щелочного равновесия.

*При действии на организм высокой температуры активация потоотделения и дыхания ведет к усиленному выделению из организма углекислого газа, некоторых минеральных ионов и за счет гиперпноэ и интенсификации потоотделения развивается дыхательный алколоз , при дальнейшем нарастании гипертермии - метаболический ацидоз .

*При действии гипотермии развивающаяся гиповентиляция является общим эффекторным механизмом, обеспечивающим снижение теплопотерь, поддержание на более низком уровне рН крови соответственно сниженной температуре тела.

Излучение - способ отдачи тепла в окружающую среду поверхностью тела человек в виде электромагнитных волн инфракрасного диапазона. Количество рассеиваемого тепла прямопропорционально площади поверхности излучения и разности температур кожи и окружающей среды.

При понижении температуры окружающей среды излучение увеличивается, при повышении температуры - понижается.

Теплопроведение - способ отдачи тепла при соприкосновении тела человека с другими физическими телами. Количество отдаваемого при этом тепла прямопропорционально:

а) разнице средних температур контактирующих тел

б) площади контактирующих поверхностей

в) времени теплового контакта

г) теплопроводности контактирующего тела

Сухой воздух, жировая ткань характеризуется низкой теплопроводностью.

Конвекция - способ теплопередачи, осуществляемый путем переноса тепла движущимися частицами воздуха (или воды). Для конвенции требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. Количество отдаваемого конвекцией тепла увеличивается при увеличении скорости движения воздуха (ветер, вентиляция).

Излучение, теплопроведение и конвекция становятся неэффективными способами теплоотдачи при выравнивании средних температур поверхности тела и окружающей среды.

Испарение - способ рассеивания организмом тепла в окружающую среду за счет его затрат на испарение пота в окружающую среду за счет его затрат на испарение пота в окружающую среду за счет его затрат на испарение пота или влаги с поверхности кожи или влаги со слизистых дыхательных путей.

У человека постоянно идет потоотделение потовыми железами кожи (36 гр/час при 20 0С) увлажнение слизистых дыхательных путей. Повышение внешней температуры, выполнение физической работы, длительное пребывание в теплоизолирующей одежде (костюм - "сауна") усиливает потоотделение (до 50 - 200 гр/час). Испарение (единственный из способов теплоотдачи) возможно при выравнивании температур кожи и окружающей среды при влажности воздуха менее 100 процентов.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №7

Обмен веществ и жизнь(Ф. Энгельс). Звенья обмена веществ и энергии и факторы, влияющие на них. Основной обмен и факторы, его определяющие. Методы изучения основного обмена. Прямая и непрямая калориметрия. Регуляция обмена веществ.

Обмен веществ и энергии связаны между собой. Обмен веществ сопровождается преобразованием энергии (химической, механической, электрической в тепловую ).

В отличие от машин мы не преобразуем тепловую энергию в др. виды (паровоз). Мы еѐ выделяем как конечный продукт метаболизма во внешнюю среду.

Количество тепла, выделяемое живым организмом, пропорционально интенсивности обмена веществ.

Из этого следует:

1. По количеству выделяемого организмом тепла можно оценить интенсивность обменных процессов.

2. Количество выделившейся энергии должно компенсироваться за счет поступления химической энергии с пищей (м. рассчитать должный рацион питания).

3. Энергетический обмен является составной частью процессов терморегуляции.

Факторы, определяющие интенсивность энергообмена:

1. Состояние окружающей среды - температура (+18-22оС),

Влажность (60-80%) ,

Скорость ветра (не более 5 м/с),

Газовый состав атмосферного воздуха (21% О2, 0,03% СО2, 79% N2).

Это показатели «зоны комфорта».Отклонение от "зоны комфорта" в любую сторону изменяет интенсивность обмена веществ, следовательно количество вырабатываемого тепла.

2. Физическая активность. Сокращение скелетных мышц является самым мощным источником тепла в организме.

3. Состояние нервной системы. Сон или бодрствование, сильные эмоции, регулируются через вегетативную нервную систему -

- симпатическая нервная система оказывает эрготропное действие (усиливает процессы распада с высвобождением энергии),

- парасимпатическая - трофотропное действие - (стимулирует сбережение,

накопление энергии).

4. Гуморальные факторы - БАВ и гормоны:

а). Трофотропное действие - ацетилхолин, гистамин, сератонин, инсулин, СТГ.

б). Эрготропное действие - адреналин, тироксин.

Клинико-физиологическая оценка энергетического обмена

Показатели энергообмена: 1. Основной обмен. 2. Рабочий обмен.

Основной обмен

Основной обмен - это минимальный обмен веществ, который характеризуется минимальным количеством энергии, которое необходимо для поддержания жизнедеятельности организма в состоянии физического и психического покоя.

Энергия ОО необходима для:

1. Обеспечение базального уровня обмена веществ в каждой клетке.

2. Поддержание деятельности жизненно-важных органов (ЦНС, сердце,

почки, печень, дыхательная мускулатура).

3. Поддержание постоянной температуры тела.

Для определения ОО необходимо есоблюдать следующие условия:

Физический и эмоциональный покой,

- "зона комфорта" (см. выше),

Натощак (не менее 12-16 часов после приема пищи, чтобы избежать

эффекта "специфически-динамического действия пищи", начинается через 1 час после приема пищи, достигает максимума через 3 часа, наиболее сильно повышается при белковом питании (на 30%)),

Бодрствование (во время сна ОО снижается на 8-10%).

Величина основного обмена зависит от:

Пола (у мужчин на 10% больше),

Роста (прямо пропорциональная зависимость), /правило поверхности тела/.

Возраста (до 20-25 лет увеличивается, максимальный прирост - в 14-17 лет, до 40 лет - "фаза плато", затем снижается),

веса (прямо пропорциональная зависимость), правило поверхности тела.

Методы определения энергетического обмена.

Прямая калориметрия.

(биокалориметров )

:

по интенсивности газообмена .

Интенсивность газообмена характеризуется дыхательным коэффициентом.

Дыхательный коэффициент (ДК) - соотношение между объемом

Для белков - 0,8,

Для жиров - 0,7.

Каждому ДК ).

КЭО2 -

Регуляция обмена веществ

Биоэлектрические явления в сердце, их происхождение и методы регистрации. Анализ электрокардиограммы. Понятие об электрической оси сердца и ее клиническое значение. Определение положения электрической оси сердца.

Методичка КРОВООБРАЩЕНИЕ стр.34

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №8

Прямая калориметрия.

Метод основан на улавливании и измерении тепловой энергии, теряемой организмом в окружающее пространство. Измеряется с помощью калориметрических камер (биокалориметров ) (по кол-ву Н2О, удельной теплопроводности и разнице температур).

2. Непрямая (косвенная) калориметрия :

Оценка энергозатрат - косвенно, по интенсивности газообмена .

В процессе расщепления - в-во + О2 = СО2 + Н2О + Q (энергия).

Т.е., зная количество поглощенного О2 и выделенного СО2, можно судить косвенно о количестве выделившейся энергии. Интенсивность газообмена характеризуется дыхательным коэффициентом.

Дыхательный коэффициент (ДК) - соотношение между объемом образовавшегося СО2 и поглощенного О2.

Для углеводов ДК=1(С6Н12О6 + 6О2=6СО2+6Н2О + Q),

Для белков - 0,8,

Для жиров - 0,7.

При смешанной пище - ДК - от 0,7 до 1,0, т.е. = 0,85.

Каждому ДК соответствует своѐ кол-во энергии, которое при этом выделяется (свой Калорический Эквивалент Кислорода. КЭО2 ).

КЭО2 - количество тепла, которое выделяется в соответствующих

условиях при потреблении организмом 1 л кислорода. Выражается в ккал. Находится по таблице, в зависимости от конкретного ДК.

Для получения показателей газообмена, необходимых для расчета основного обмена, используют следующие методы.

а) метод полного газового анализа - метод Дугласа-Холдейна.

По количеству и соотношению выделенного СО2 и поглощенного О2,

Менее точный, чем прямая калориметрия, но более точный, чем метод неполного газоанализа

б) метод неполного газового анализа - по оксиспирограмме.

Самый неточный, но самый распространенный,

Позволяет быстро и без больших затрат получить ориентир.результат.

Этапы расчетов энергозатрат по оксиспирограмме:

Количество поглощенного кислорода за 1 минуту.

Ему соответствует КЭО2 = 4,86 ккал.

Кол-во погл. О2 за 1 мин. x 1440 мин. в сутках = кол-во энергозатрат.

найденный показатель сравниваем с должным ОО, (опред. по таблице).

Регуляция обмена веществ

Высшие нервные центры регуляции энергетического обмена и обмена веществ находятся в гипоталамусе. Они влияют на эти процессы через вегетативную нервную систему и гипоталамо-гипофизарную систему. Симпатический отдел ВНС стимулирует процессы диссимиляции, парасимпатический ассимиляцию. В нем же находятся центры регуляции водно-солевого обмена. Но главная роль в регуляции этих базисных процессов принадлежит железам внутренней секреции. В частности инсулин и глюкагон регулируют углеводный и жировой обмены. Причем инсулин тормозит выход жира из депо. Глюкокортикоиды надпочечников стимулируют распад белков. Соматотропин наоборот усиливает синтез белка. Минералокортикоиды натрий-калиевый. Основная роль в регуляции энергетического обмена принадлежит тиреоидным гормонам. Они резко усиливают его. Они же главные регуляторы белкового обмена. Значительно повышает энергетический обмен и адреналин. Большое его количество выделяется при голодании.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №9

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №10

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №11

1. Локализация функций в коре больших полушарий (Бродман, И.П. Павлов). Современные представления о локализации функций в коре полушарий большого мозга. Парность в работе полушарий головного мозга и их функциональная асимметрия. Доминантность высших психических функций (речь).

Структурно-функциональная организация коры головного мозга

Кора головного мозга – это слой серого вещества, покрывающий большие полуша-

рия. В состав коры входят: а) нейроны ; б) клетки нейроглии . Нейроны коры головного

мозга имеют колончатую организацию (строение). В колонках осуществляется перера-

ботка информации от рецепторов одной модальности (одного значения). Связь между

нейронами осуществляется через аксодендритные и аксосоматические синапсы. На осно-

вании различий в строении коры головного мозга Бродман разделил ее на 52 поля.

2. Значение коры головного мозга:

1) осуществляет контакт организма с внешней средой за счет условных и безусловных

рефлексов;

2) регулирует работу внутренних органов;

3) регулирует процессы обмена веществ в организме;

4) обеспечивает поведение человека и животных в окружающей среде;

5) осуществляет психическую деятельность.

3. Методы изучения функций коры головного мозга

Для изучения функций коры головного мозга используются следующие методы:

1) экстирпация (удаление) различных зон коры головного мозга; 2) раздражение различ-

ных зон обнаженной коры; 3) метод условных рефлексов ; 4) отведение биопотенциалов ;

5) клинические наблюдения .

4. Функциональное значение различных областей коры головного мозга

По современным представлениям различают три типа корковых зон: 1) первичные

проекционные зоны; 2) вторичные проекционные зоны; 3) третичные (ассоциативные)

Локализация функций в коре головного мозга:

1. Лобная область (сомато-сенсорная кора) включает:

а) прецентральную зону – моторная и премоторная области (передняя центральная

извилина), в которой располагается мозговой конец двигательного анализатора;

б) постцентральную зону – задняя центральная извилина, является мозговым кон-

цом кожного анализатора.

2. Височная область – принимает участие в:

а)формировании целостного поведения животных и человека;

б) возникновении слуховых ощущений – мозговой конец слухового анализатора;

в) в функции речи (речедвигательный анализатор);

г) вестибулярных функциях (височно-теменная область) – мозговой конец вестибулярно-

го анализатора.

3. Затылочная область – мозговой конец зрительного анализатора.

4. Обонятельная область –грушевидная доля и гипокамповая извилина, являются моз-

говым концом обонятельного анализатора.

5. Вкусовая область - гиппокамп, в котором локализован мозговой конец вкусового ана-

лизатора.

6. Теменная область – отсутствуют мозговые концы анализаторов, относится к числу ас-

социативных зон. Расположена между задней центральной и сильвиевой бороздами. В

ней преобладают полисенсорные нейроны.

5. Совместная работа больших полушарий и их функциональная асимметрия

Совместная работа больших полушарий обеспечивается:

1) анатомическими особенностями строения (наличие комиссур и связей между двумя

полушариями через ствол мозга);

2) физиологическими особенностями.

Работа больших полушарий осуществляется по принципу: а) содружественных от-

ношений, б) реципрокных отношений.

Кроме парной целостной работы больших полушарий для их деятельности харак-

терна функциональная асимметрия . Особенно асимметрия проявляется в отношении двигательных функций и речи. У праворуких доминирующим является левое полушарие.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №12

1. Торможение в центральной нервной системе (И.М. Сеченов). Виды торможения (первичное, вторичное), их характеристика. Современные представления о механизмах центрального торможения.

Различают периферическое и центральное торможение. Периферическое торможение

было открыто братьями Вебер, центральное торможение – И.М. Сеченовым.

Виды центрального торможения : 1) первичное , 2) вторичное . Для возникновения

первичного торможения необходимо наличие специальных тормозных структур. Пер-

вичное торможение может быть: а) пресинаптическое, б) постсинаптическое. Пресинап-

тическое торможение развивается в аксо-аксональных синапсах, образованных тормоз-

ным нейроном на пресинаптических окончаниях обычного возбудимого нейрона. В осно-

ве пресинаптического торможения лежит развитие стойкой деполяризации пресинапти-

ческой мембраны. Постсинаптическое торможение развивается в аксо-соматических тор-

мозных синапсах, образованных тормозным нейроном на теле другой нервной клетки.

Выделяющийся тормозный медиатор вызывает гиперполяризацию постсинаптической

мембраны.

Вторичное торможение развивается при изменении физиологических свойств обыч-

ных возбудимых нейронов.

Рецептивные поля (рефлексогенные зоны) сердечно-сосудистой системы, их локализация и значение. Рефлекторные влияния с каротидных синусов и дуги аорты на деятельность сердца и тонус кровеносных сосудов. Рефлекс Бейнбриджа. Рефлекторные дуги указанных рефлексов.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №13

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №14

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №15

1. Отличие условных рефлексов от безусловных. Условия, необходимые для образования условных рефлексов. Механизм образования временной нервной связи (И.П. Павлов, Э.А. Асратян, П.К. Анохин). Роль подкорковых структур в формировании условных рефлексов.

И.П. Павлов высшей нервной деятельностью назвал деятельность больших полу-

шарий головного мозга и ядер ближайшей подкорки, обеспечивающую нормальные

взаимоотношения организма с окружающей средой. Высшая нервная деятельность осу-

ществляется совокупностью безусловных и условных рефлексов, высших психических

функций и обеспечивает индивидуальное приспособление организма к изменяющимся

условиям, то есть обеспечивает поведение во внешнем мире.

2. Принципы рефлекторной теории И.П. Павлова :

1) принцип структурности;

2) принцип детерминизма;

3) принцип анализа и синтеза.

3. Классификация рефлекторной деятельности организма

И.П. Павлов показал, что все рефлекторные реакции можно разделить на две

большие группы: безусловные и условные.

4. Основные отличия условных рефлексов от безусловных

Безусловные рефлексы – это врожденные, наследственно передающиеся реакции.

Они постоянны и являются видовыми, то есть свойственны всем представителям данного

вида. Безусловные рефлексы осуществляются всегда в ответ на адекватное раздражение

рецептивных полей. Рефлекторные дуги безусловных рефлексов проходят через низшие

отделы центральной нервной системы без участия коры больших полушарий.

Условные рефлексы – это индивидуальные приобретенные рефлекторные реакции,

которые вырабатываются на базе безусловных рефлексов. Условные рефлексы могут

Понятие функциональной системы, разработанное в физиологии П.К. Анохиным, было более широко и в новом контексте использовано в нейропсихологии в работах А.Р. Лурии и послужило одним из ключевых моментов при разработке теоретических основ нейропсихологии. Уточняя содержание понятия «функция», А.Р. Лурия пришел к выводу, что между физиологическими и высшими психическими функциями существует как сходство, так и различие. Любые физиологические функции, так же, как и высшие психические функции, нельзя представлять упрощенно как отправления той или иной ткани (или органа). Каждая функция - это сложная функциональная система, состоящая из многих звеньев и реализующаяся при участии многих сенсорных, моторных и иных нервных аппаратов. Подобным образом организованы функциональные системы, осуществляющие не только вегетативные и соматические процессы, но и те, которые управляют движениями, включая самые сложные - произвольные движения.

В соответствии с теорией системно-динамической локализации высших психических функций функциональная система рассматривается как морфофоизиологическая основа высших психических функций, как совокупность различных мозговых структур и протекающих в них физиологических процессов. Характеризуя основные черты физиологических функциональных систем, А.Р. Лурия отмечал, что они имеют сложное строение, включают в себя набор афферентных (настраивающих) и эфферентных (осуществляющих) компонентов (звеньев), обладающих большой подвижностью, гибкостью, вариативностью.

Сходной особенностью обладают и функциональные системы, обеспечивающие реализацию высших психических функций, или сложных сознательных форм психической деятельности. С физиологическими функциями их объединяет наличие множества афферентных и эфферентных звеньев, имеющих высокую изменчивость и подвижность. В то же время подчеркивается, что функциональные системы, с помощью которых осуществляются высшие психические функции, неизмеримо сложнее по организации.

С другой стороны, как утверждается в работе Анохина П.К. , в виде понятия «функциональной системы» была сделана попытка создания такого промежуточного понятия, которое позволило бы подойти к анализу приспособительного и целеустремленного поведения человека. Это позволяет перебросить мост между физиологией и психологией и возможно только в случае, если произвести некоторую промежуточную операцию, заключающуюся в таком синтезе всего физиологического материала, который помог бы видеть принципы, свойственные только целостной организации (, с. 52).

Функциональной системой, согласно П.К. Анохину, является всякая организация нервных процессов, в которой отдаленные и разнообразные импульсы нервной системы объединяются на основе одновременного и соподчиненного функционирования, заканчивающегося полезным приспособительным эффектом для организма. В такой функциональной системе конечный эффект в виде работы каких-либо органов не может быть строго отделен от собственно нервных процессов. Рабочий эффект является по существу для нервной системы новым комплексным стимулом со сложной градацией специфически отдельных импульсов. Следовательно, понятие функциональной системы обязательно включает в себя циклические взаимодействия между центром и периферией. По своему масштабу функциональные системы организма могут быть весьма различны. Одни из них охватывают огромные комплексы процессов нервного и гуморального характера, как, например, дыхательная система, другие сведены до незначительного движения одним-двумя пальцами по направлению к какому-либо предмету.

Организм животного есть совокупная деятельность многообразных и иногда принципиально различных функциональных систем. Их соотношение, точки соприкосновения и перекрытия друг с другом являются специальной большой проблемой, которая при достаточно глубоком ее рассмотрении может привести к формулировке таких законов, которые позволят на основе физиологии разъяснить формулу «организм - как целое». Функциональная система представляет собой систему активно объединенных процессов, которые, раз объединившись, стремятся сохранить созданную архитектуру соотношений. Понятие функциональной системы не может быть заменено понятиями «рабочее содружество центров», «констелляция центров» и т.д. Эти последние понятия, отражая собой лишь простое взаимодействие нервных образований, не характеризуют наиболее важного и решающего свойства функциональной системы: активно изменять соотношение и устанавливать определенным образом направленное соподчинение между ее компонентами. Функциональная система приобретает новые, не свойственные ее частям качества и формы поведения, которые присущи ей только как целостному образованию. Важным преимуществом данной концепции является также и то, что она аргументирована целиком на физиологическом основании.

Функциональная система может быть по преимуществу врожденной, т.е. определенной морфогенетически, или, наоборот, по преимуществу созданной заново, т.е. эпизодической, приспосабливающей организм для данного момента. Однако и в том, и в другом случае, поскольку она сложилась как система, она неизбежно приобретает новые свойства, не присущие частным процессам, являющимся традиционным объектом исследования классической физиологии.

В то же время, функциональная система - единица интеграции целого организма, складывающаяся динамически для достижения любой его приспособительной деятельности и всегда на основе циклических взаимоотношений избирательно объединяющая специальные центрально-периферические образования. Понятие функциональной системы возникло на основе систематических исследований нарушенных функций: наложение гетерогенных нервных анастомозов и наблюдений за ходом восстановления функций, пересадка мышц с целью придания им нового функционального значения и их деафферентация. Физиологическая суть компенсаторных приспособлений состоит в том, что каждая попытка животного или человека исправить имеющийся дефект должна быть оценена немедленно по ее результату. Это значит, что любой следующий этап компенсации может наступить только тогда, когда произошла оценка предыдущего этапа. Таким образом, на каждом отдельном этапе компенсаторного процесса имеется оценка полученного результата, степени его полезности для организма. Только эта цепь «положительных результатов» компенсации обеспечивает полное восстановление утраченной функции.

Такая система осуществляет качественный приспособительный эффект. Все части этой системы вступают в динамическое, экстренно складывающееся функциональное объединение на основе непрерывной обратной информации о приспособительном результате. П.К. Анохин отмечает этот принцип как центральный для объяснения всех приспособительных актов, которые приобретают черты целостных и заканчиваются полезным приспособительным эффектом. При этом каждая функциональная система представляет собой до некоторой степени замкнутую систему благодаря постоянной связи с периферическим органами и особенно благодаря постоянной афферентации от этих органов. Таким образом, каждая функциональная система имеет определенный комплекс афферентных сигнализаций, который через акцептор действия направляет реализацию ее функции. Отдельные афферентные импульсы в функциональной системе могут исходить от самых разнообразных и часто удаленных друг от друга органов. Напрмер, при дыхательном акте такие афферентные импульсы идут от диафрагмы, легких, трахеи; однако, несмотря на их различное происхождение, эти импульсы объединяются в центральную нервную систему благодаря тончайшим временным отношениям между ними. Каждой функциональной системе присуща определенная как в качественном, так и в количественном отношении афферентация, причем в зависимости от степени автоматизации и филогенетической древности такой системы требуемое количество и качество афферентных импульсов различно.

Роль афферентных функций находится в полной зависимости от свойств и от конечного эффекта данной функциональной системы. Иначе говоря, функциональная система как целое, подчиненное получению определенного приспособительного результата, имеет возможность динамически перераспределять участие афферентных импульсов, сохраняя какой-то постоянный их уровень.

Теорию функциональных систем предложил еще в 30-х годах 20 века П. К. Анохин, т. к. рефлекторная теория не объясняла сложное поведение человека.

Под функциональной системой понимается динамическая саморегулирующаяся организация, избирательно объединяющая центральную нервную систему, периферические органы и ткани в целях достижения полезного для организма приспособительного результата (П. К. Анохин, 1975 г.). Например, система речеобразования, которая формируется в онтогенезе, а защитная - внутриутробно.

Системообразующим фактором является конечный приспособительный результат. Например, у марафонца, а это длина дистанции, требующая длительного, устойчивого функционирования ЦНС, ЖВС, КТС, СД; у гимнастов - сложно-координационные упражнения, требующие совершенной системы управления (ЦНС), а в опоре на руки - развития мышц верхних конечностей, пояса мышц верхних конечностей и туловища, вестибулярной системы.

Каждая функциональная система, вне зависимости от сложности, имеет однотипную центральную организацию:

    афферентный синтез

    принятие решения

    акцептор результата действия

    принятие решения акцептора результата действия, эффекторного синтеза и оценка достигнутого результата действия.

Афферентный синтез является первой стадией формирования любой функциональной системы и обусловлен доминирующей на данный момент мотивацией, обстановочной афферентацией (воздействием на организм внешних факторов-рев трибун, жара, холод, ветер, дождь).

Доминирующая мотивацияформируется на основе ведущей потребности, при участии мотивационных центров гипоталамуса (рекорд, первое место, приз, слава). Доминирующая мотивация активирует память, в которой заложена программа всей функциональной системы, участвующей в достижении результата.

На фоне мотивации, обстановочной афферентации и памяти действует пусковая афферентация (пусковой стимул, условный сигал - свисток, табло, флажок).

Этап афферентного синтеза обеспечивает постановку цели, достижению которой будет посвящена реализация функциональной системы.

Принятие решения является второй стадией функциональной системы. По физиологической сути - означает выбор единственной линии эффективного действия, направленного на реализацию ведущей потребности организма (например, обеспечение кислорода).

Акцептор результата действия является третьей стадией формирования функциональной системы, в которой происходит программирование основных параметров потребного результата, и на основе обратной афферентации о достигнутых параметрах реального результата осуществляется их постоянное сопоставление, сравнение и оценка. Информация о них поступает в акцептор благодаря обратной афферентации, которая позволяет исправить ошибки или довести акты (движения) до совершенных (сигналы от работающих мышц).

Акцептор результата действия - это идеальный образ (эталон) будущих результатов действия. Морфофункционально - это нервный комплекс, куда приходят возбуждения афферентной (чувствительной) и эффекторной (двигательной) природы.

Стадия эфферентного синтеза начинается одновременно со стадией акцептора результата действия. Она состоит из программы действия, эфферентного возбуждения и заканчивается действием. В этой стадии возбуждение конвергирует (т. е. сходится) на те же промежуточные нейроны сенсомоторной коры, куда поступают афферентные возбуждения, несущие информацию о параметрах реального результата (v, L, F, t).

Если результаты не соответствуют прогнозу, то возникает реакция рассогласования, активирующая ориентировочно-исследовательскую реакцию. На ее основе формируется новый, более полный афферентный синтез, принимается более адекватное решение, что приводит к формированию более совершенной программы.

Нейроны, участвующие в формировании функциональной системы, расположены во всех структурах ЦНС.

При достижении желаемого полезного результата в акцепторе результатов действия формируется реакция согласования, если поступает афферентация, сигнализирующая об удовлетворении мотивации.

Оценка достигнутого результата начинается непосредственно после совершения действия, т. к. параметры о его результатах с помощью обратной афферентации (связи) анализируются акцептором результата действия. После этого функциональная система перестает существовать.

Согласно К. В. Судакову (1978), по своей структуре каждая функциональная система представляет собой циклическую, замкнутую саморегулирующуюся организацию. Примерами могут служить функциональные системы, определяющие уровни массы крови, число форменных элементов, кровяного давления, рН крови, содержание сахара в крови и т. д. Эти функциональные системы обусловлены внутренними, генетически обусловленными механизмами саморегуляции.

Другие функциональные системы, например, система дыхания, наряду с внутренними, имеют относительно активный внешний механизм саморегуляции. Например, недостаточное количество кислорода в атмосфере города.

В третью группу выделяют системы с активным внешним звеном саморегуляции. Например, ориентировка в пространстве. Функционирование этих систем определяется психической и поведенческой деятельностью человека. Такие функциональные системы формируются во время производственной и спортивной деятельности.

С эволюционных позиций выделяют: морфофункциональные, гомеостатические, нейродинамические и психофизиологические системы.

Цель гомеостатических функциональных систем состоит в поддержании относительно постоянными важнейших характеристик организма:

    температура тела

    энергетические запасы

    концентрация рН

Важнейшим структурным элементом нейродинамических и психофизиологических функциональных систем является кора головного мозга и в первую очередь - ее отделы, связанные с формированием второй сигнальной системы.

Функциональные системы постоянно создаются на основе текущих потребностей организма. С целью достижения полезного для организма приспособительного результата различные функциональные системы производят избирательное объединение различных органов, тканей и их комбинации. Например, в функциональную гомеостатическую систему, обеспечивающую оптимальную температуру тела, включаются легкие, почки, потовые желез, ЖКТ, ССС, НС, ЖВС.

Число функциональных систем в жизнедеятельности человека очень велико, т. к. формируются они в соответствии с потребностями обеспечения конкретных целевых задач в трудовой и спортивной деятельности. Например, исходя из функциональной системы спортивной деятельности, доминирующая мотивация, обусловленная конечной целью (спортивный результат), определяет потребность спортсмена выполнять спортивное задание (прыжок, забег, подъем штанги) и формирует установку на ее выполнение.

Обстановочная и пусковая афферентация представляют собой воздействие на организм внешних конкретных условий выполнения задания (температура, влажность, ветер, солнце, атмосферное давление) и внутренних факторов (здоровье, работоспособность).

Память спортсмена позволяет сопоставить желание и возможность выполнения упражнения с учетом личного опыта. Формируется образ упражнения (у гимнастов), который включает конечную цель, систему двигательных программ, знание механических свойств снарядов.

Одновременно с образом формируется программа действий, происходит мобилизация и активация функций и систем организма, которым предстоит обеспечить жизнедеятельность и эфферентное возбуждение.

В процессе выполнения упражнения (например, бега) идет постоянное сопоставление ожидаемого результата и текущей деятельности (скорость бега). Если они не совпадают, то через аппарат эмоций происходит экстренная мобилизация физиологических резервов. Функциональная система реорганизуется и приводит в соответствие с текущей ситуацией путем избыточной активации физиологических функций.

Таким образом, под функциональной системой понимается такая форма организации внутренней деятельности организма, которая обеспечивает достижение стоящей перед субъектом цели и корректирует при этом свою структуру и свои функции в соответствии с данными текущего контроля за промежуточными результатами.

Функциональные состояния. Под функциональным состоянием (организма) понимается совокупность различных характеристик физиологических и психофизиологических процессов, определяющих уровень активности функциональных систем организма, определяющих жизнедеятельность, работоспособность и поведение человека.

Все элементарные процессы организма можно объединить в физиологические, психологические и поведенческие. На физиологическом уровне выделяют: двигательный и вегетативный компоненты. На психологическом-характеристики основных психических процессов. На поведенческом-количественные и качественные характеристики деятельности (м, с, км, образы и т. д.).

Функциональное состояние представляет собой динамическую картину изменений отдельных функций и систем. В то же время функциональная система обладает достаточно высокой степенью устойчивости, допуская в определенных пределах колебание параметров отдельных функций. В спорте это -спортивная форма, переходное состояние и утомление.

Применительно к физиологии труда и спорта понятие «функциональное состояние» необходимо для определения возможности человека выполнить конкретный вид профессиональной или спортивной деятельности.

Классификация функциональных состояний строится по надежности, цели деятельности, степени напряженности регуляторных механизмов гомеостаза, адекватности ответной реакции.

В настоящее время наиболее совершенная модель структуры поведения изложена в концепции функциональной системы П.К. Анохина.

Функциональная система - это единица интегративной деятельности целого организма, осуществляющая избирательное вовлечение и объединение структур и процессов на выполнение какого-либо конкретного акта поведения или функции организма.

Функциональная система имеет разветвленный морфофизиологический аппарат, обеспечивающий за счет присущих ей закономерностей эффект гомеостаза. Выделяют два чипа функциональных систем. Функциональные системы первого чипа обеспечивают само регуляцию функционирования систем организма, направленных на возможность его существования в данных условиях среды. Функциональные системы второго типа обеспечивают приспособительный эффект через изменение поведения. Именно этот тип функциональных систем лежит в основе различных поведенческих актов.

Согласно П.К. Анохину, функциональная система второго типа состоит

из следующих стадий:

Афферентный синтез;

Стадия принятия решения;

Стадия акцепторов результата действия;

Эфферентный синтез (программа действия);

Само действие;

Оценка достигнутого результата.

Афферентный синтез представляет собой объединение всей сенсорной информации, поступающей в мозг. Его содержание определяется мотивационным возбуждением, памятью, обстановочной и пусковой афферентациями. Любая информация, поступающая информация соотносится с доминирующим в настоящее время мотивационным возбуждением. Пусковая афферентация определяет то возбуждение, которое будет формироваться в сенсорной системе под влиянием внешнего биологически значимого раздражителя. Распределение раздражителей во времени и пространстве определяет обстановочную афферентацию (при изменении последовательности действий (обстановки) условный рефлекс может не проявляться). Функциональная роль пусковых и обстановочных афферентаций обусловлена прошлым опытом животного, хранящегося в виде памяти. На основе взаимодействия мотивационного, обстановочного возбуждения и памяти формируется так называемая интеграция или готовность к определенному поведению. Чтобы она трансформировалась в определенное целенаправленное поведение требуется воздействие со стороны пусковых раздражителей (пусковая афферентация). Внешним проявлением афферентного синтеза, обусловленного влияниями лимбической системы и ретикулярной формации на кору, является активизация ориентировочно-исследовательского поведения.

Завершение этой стадии сопровождается переходом в стадию принятия решения, которая определяет тип и направленность поведения, этот этап реализуется через формирование аппарата акцепторов результата действия, программирующий результаты будущих событий.


Эфферентный синтез или стадия программа действия осуществляет интеграцию соматических и вегетативных возбуждений в целостный поведенческий акт. Эта стадия характеризуется тем, что действие уже сформировано как нервный процесс, но внешне оно еще не реализуется.

На основании этой программы происходит конкретное действие, результаты которого благодаря наличию обратной афферентации сопоставляются с акцептором результатов действия. В случае достижения желаемого результата действие прекращается, в противном случае в программу поведения вносятся соответствующие корректировки.

Механизмы управления движением. Поведение организма в той или иной степени связано с работой мышц. Мышцы способствуют поддержанию определенной позы, ориентации на источник внешнего сигнала, перемещению тела в пространстве и манипулированию (частный случай - оперантная деятельность).

Любое движение, совершаемое организмом, находится под четким контролем нервной системы. Еще в XIX веке Ч. Белл доказал, что между мозгом и мышцей имеется нервный круг: один нерв приносит информацию от мозга к мышце, а другой передаст ощущения состояния мышц к мозгу. Такое взаимодействие нервных и мышечных структур обеспечивается благодаря наличию проприорецепторов (Ч. Шеррингтон).

Изучая данное явление П.К. Анохин для объяснения процессов координации деятельности мышц применил понятие «обратная связь», или «обратная афферентация». Суть данного явления сводится к тому, что в механизме координации двигательных реакций афферентная информация обеспечивает форму и состав эфферентного проявления центральной интеграции.

Долгое время основные представления о механизмах двигательного управления строились на положениях концепции кольцевого управления (принцип рефлекторного кольца). Согласно Н.А. Бернштейну, изменения в мышце, возникающие при движении, возбуждают чувствительные окончания проприорецепторов, а образующиеся при этом сигналы, достигая нервных центров, вносят изменения в эффекторный поток, то есть в физиологическое состояние мышцы.

В настоящее время установлено, что принцип рефлекторного кольца не соблюдается при возникновении быстрых действий, когда не остается времени для сопоставления результата с текущими установками. В данных ситуация главная роль в управлении движением отводится так называемым центральным моторным программам. Такие выводы основываются на работах Ч. Шеррипггона, который установил, что сигналы, идущие от разных областей головного мозга, сходятся к одним и тем же мотонейронам спинного мозга. Шеррингтон охарактеризовал эти нервные клетки как «общий конечный путь», связывающий центры головного мозга с деятельностью мышц. Низшие центры локомоций (движений) у человека располагаются в спинном мозге и их деятельность проявляется у новорожденного. В дальнейшем деятельность этих структур подавляется работой выше лежащих отделов мозга. Программы цепных двигательных актов широко представлены в различных структурах мозга. Так, например, глотательные, дыхательные и другие движения управляются врожденными моторными программами, информация о которых располагается в соответствующих подкорковых структурах. Программы приобретенных двигательных актов располагаются в выше лежащих отделах мозга (кора больших полушарий). При определенном опыте человека эти движения выполняются автоматически и обратная афферентация перестает играть существенную роль в их управлении. Необходимость в ней возникает только в случае изменения навыка.

Для многих видов движения управление может осуществляться одновременно двумя механизмами при разном их соотношении для движений, различающихся сложностью и уровнем организации. При этом обратная афферентация сопоставляется с программой движений и служит уточнению координат цели и траектории движения.

Нейроны движения. В теменной и лобной областях коры больших полушарий обнаружены три типа нейронов, участвующих в процессе осуществления условно-рефлекторного двигательного акта.

Первая группа нейронов - сенсорные нейроны реагируют только на условный сигнал и подученную информацию передают второй группе нейронов.

Нейроны второй группы сохраняют полученную информацию в течение непродолжительного времени, то есть относятся к структурам, обеспечивающим кратковременную память.

Третьи нейроны - нейроны моторных программ. Они получают информацию от нейронов второй группы и запускают хорошо отработанную двигательную реакцию.

В формировании центральных двигательных программ и их хранении принимают участие и подкорковые структуры: мозжечок и стриопаллидарная система.

Мозжечок обучается различным программам поведения, затем сохраняя их. В нем хранятся программы сложных и автоматически выполняемых двигательных актов, которые сформировались при жизни человека. Помимо этого мозжечок в ответ на команду к действию осуществляет перспективное планирование движений за счет выбора типа моторной программы и обеспечивает ближайшее планирование, постоянно корректируя движение, за счет информации, непрерывно поступающей от сенсоров. Кроме этого мозжечок является центром координации различных двигательных реакций, органом равновесия и регуляции мышечного тонуса.

Структуры стриопаллидарной системы, в частности базальные ганглии, являются местом хранения программ врожденных двигательных актов и двигательных автоматизмов.

Функциональная система - динамическая совокупность органов и тканей, относящихся к различным анатомо-физиологическим структурам и объединившихся для достижения определенной приспособительной деятельности (полезного приспособительного результата).

В основе функциональной системы лежит принцип возвращения к норме той или иной величины. Каждая функциональная система возникает в том случае, если какая-либо величина отклоняется от нормы. Функциональная система - это временное образование, до достижения определенного результата.

Цель работы функциональной системы - возвращение величины к норме.

Организм человека - совокупность различных функциональных систем. Из всех функциональных систем в данный момент есть одна - доминирующая.

Каждая функциональная система состоит из 4-х звеньев:

1. центральное звено - совокупность нервных центров, регулирующих ту или иную функцию;

2. исполнительное звено - органы и ткани, которые работают для достижения результата (сюда включаются поведенческие реакции);

3. обратная связь (афферентация) - после работы второго звена возникает вторичный поток импульсов от рецепторов в центральную нервную систему, идет информация об изменении той или иной величины;

4. полезный результат - для достижения которого и работает функциональная система.

Каждая функциональная система обладает 2-мя свойствами:

1. динамичность - каждая функциональная система - это образование временное. Различные органы могут входить в состав одной функциональной системы, одни и те же органы могут входить в состав различных функциональных систем;

2. саморегуляция - функциональная система обеспечивает поддержание на постоянном уровне различных параметров без вмешательства из вне. Все функциональные системы работают по принципу опережения. При отклонении от нормы величины импульсы поступают в центральное звено, и там формируется эталон будущего результата. Затем начинает работать 2-е звено. Как только полученный результат будет соответствовать эталону, то функциональная система распадается.

Выделяют два типа функциональных систем. Функциональные системы первого типа обеспечивают само регуляцию функционирования систем организма, направленных на возможность его существования в данных условиях среды. Функциональные системы второго типа обеспечивают приспособительный эффект через изменение поведения. Именно этот тип функциональных систем лежит в основе различных поведенческих актов.

Согласно П.К. Анохину, функциональная система второго типа состоит из следующих стадий:

Афферентный синтез; стадия принятия решения; стадия акцепторов результата действия; эфферентный синтез (программа действия); само действие; оценка достигнутого результата.



Афферентный синтез представляет собой объединение всей сенсорной информации, поступающей в мозг. Его содержание определяется мотивационным возбуждением, памятью. Любая информация, поступающая информация соотносится с доминирующим в настоящее время мотивационным возбуждением. Пусковая афферентация определяет то возбуждение, которое будет формироваться в сенсорной системе под влиянием внешнего биологически значимого раздражителя. Распределение раздражителей во времени и пространстве определяет обстановочную афферентацию (при изменении последовательности действий (обстановки) условный рефлекс может не проявляться). Функциональная роль пусковых и обстановочных афферентаций обусловлена прошлым опытом человека, хранящегося в виде памяти. На основе взаимодействия мотивационного, обстановочного возбуждения и памяти формируется так называемая интеграция или готовность к определенному поведению. Чтобы она трансформировалась в определенное целенаправленное поведение требуется воздействие со стороны пусковых раздражителей (пусковая афферентация). Внешним проявлением афферентного синтеза, обусловленного влияниями лимбической системы и ретикулярной формации на кору, является активизация ориентировочно-исследовательского поведения.

Завершение этой стадии сопровождается переходом в стадию принятия решения, которая определяет тип и направленность поведения, этот этап реализуется через формирование аппарата акцепторов результата действия, программирующий результаты будущих событий.

Эфферентный синтез или стадия программа действия осуществляет интеграцию соматических и вегетативных возбуждений в целостный поведенческий акт. Эта стадия характеризуется тем, что действие уже сформировано как нервный процесс, но внешне оно еще не реализуется.

На основании этой программы происходит конкретное действие, результаты которого благодаря наличию обратной афферентации сопоставляются с акцептором результатов действия. В случае достижения желаемого результата действие прекращается, в противном случае в программу поведения вносятся соответствующие корректировки.