Согласно современной космологии наша вселенная. Задания для подготовки к ГИА и ЕГЭ по разделу «Как люди открывали Землю

Модели стационарной Вселенной. Уникальность Вселенной не позволяет провести экспериментальную проверку выдвигаемых гипотез и поднять их до уровня теорий, поэтому эволюция Вселенной может рассматриваться только в рамках моделей.

После создания классической механики научная картина мира основывалась на ньютоновских представлениях о пространстве, времени и гравитации и описывала неизменную во времени, т.е. стационарную, бесконечную Вселенную, созданную Творцом.

В XX в. появились новые теоретические основы для создания новых космологических моделей.

Прежде всего надо упомянуть космологический постулат, согласно которому устанавливаемые в ограниченной части Вселенной физические законы справедливы и для всей Вселенной. Кроме того, считается аксиомой однородность и изотропность крупномасштабного распределения вещества во Вселенной. При этом модель эволюции должна соответствовать так называемому антропному принципу, т.е. предусматривать возможность появления на определенном этапе эволюции наблюдателя (разумного человека).

Поскольку именно тяготение определяет взаимодействие масс и на больших расстояниях, теоретическим ядром космологии ХХ в. стала релятивистская теория гравитации и пространства–времени – общая теория относительности. Согласно данной теории распределение и движение материи определяют геометрические свойства пространства-времени и в то же время сами зависят от них. Гравитационное поле проявляется как «искривление» пространства-времени. В первой космологической модели Эйнштейна, созданной на основе общей теории относительности в 1916 г., Вселенная также стационарна. Она безгранична, но замкнута и имеет конечные размеры. Пространство замыкается само на себя.

Фридмановские модели нестационарной Вселенной. Эйнштейновская модель стационарной Вселенной была опровергнута в работах русского ученого А.А. Фридмана (1888 – 1925) , который в 1922 г. показал, что искривленное пространство не может быть стационарным: оно должно либо расширяться, либо сжиматься. Возможны три различных модели изменения радиуса кривизны Вселенной, зависящие от средней плотности вещества в ней, причем в двух из них Вселенная бесконечно расширяется, а в третьей – радиус кривизны периодически изменяется (Вселенная пульсирует).

Хотя открытие Э. Хабблом закона зависимости скорости удаления галактик от расстояния до них подтвердило расширение Вселенной, в настоящее время сравнение экспериментально оцененной плотности вещества с критическим значением данного параметра, определяющим переход от расширения к пульсации, не дает возможности однозначно выбрать сценарий дальнейшей эволюции. Эти две величины оказались близки, а экспериментальные данные - недостаточно надежны.

Расширение Вселенной в настоящее время является обоснованным и общепризнанным фактом, позволяющим оценить возраст Вселенной. В соответствии с наиболее распространенными оценками он составляет 10 18 с ( 18 млрд лет). Следовательно, современные модели предполагают «начало» Вселенной. Как же началась ее эволюция?

Модель горячей Вселенной. В основе современных представлений о начальных стадиях эволюции Вселенной лежит модель «горячей Вселенной», или «Большого Взрыва», основы которой были заложены в 40-х годах XX в. российским ученым, работавшим в США, Г.А. Гаммовым (1904 – 1968). В простейшем варианте данной модели представляется, что Вселенная возникла спонтанно в результате взрыва из сверхплотного и сверхгорячего состояния с бесконечной кривизной пространства (состояния сингулярности). «Горячесть» начального сингулярного состояния характеризуется преобладанием в нем электромагнитного излучения над веществом. Это подтверждается экспериментально обнаруженным в 1965 году американскими астрофизиками Пензиасом (г. р. 1933) и Вильсоном (г. р. 1936) изотропным электромагнитным «реликтовым излучением». Современные физические теории позволяют описать эволюцию материи начиная с момента времени t = 10 -43 c. Самые начальные моменты эволюции Вселенной пока находятся за физическим барьером. Только начиная с момента t = 10 -10 c после Большого Взрыва наши представления о состоянии вещества в ранней Вселенной и происходящих в ней процессах могут быть проверены экспериментально и описаны теоретически.

По мере расширения Вселенной плотность вещества в ней уменьшается и температура падает. При этом происходят процессы качественных превращений частиц вещества. В момент 10 -10 с вещество состоит из свободных кварков, лептонов и фотонов (см. раздел III). По мере остывания Вселенной происходит образование адронов, затем возникают ядра легких элементов – изотопов водорода, гелия, лития. Синтез ядер гелия прекращается в момент t = 3 мин. Только через сотни тысяч лет ядра соединяются с электронами, и возникают атомы водорода и гелия, и с этого момента вещество перестает взаимодействовать с электромагнитным излучением. «Реликтовое» излучение возникло именно в этот период. Когда размеры Вселенной были примерно в 100 раз меньше, чем в настоящую эпоху, из неоднородностей газообразного водорода и гелия возникли газовые сгустки, которые фрагментировались и привели к возникновению звезд и галактик.

Вопрос об исключительности Вселенной как объекта космологии остается открытым. Наряду с распространенной точкой зрения, что вся Вселенная – это наша Метагалактика, существует противоположное мнение, что Вселенная может состоять из множества метагалактик, а представление об уникальности Вселенной является исторически относительным, определяемым уровнем науки и практики.

Космология изучает физическую природу, строение и эволюцию Вселенной как целого .

Понятие "Вселенная" означает Космос, доступный человеческому наблюдению .

Космология рассматривает наиболее общие свойства всей области пространства, охваченной наблюдением. Мы называем ее Метагалактикой . Наши знания о Метагалактике ограничиваются горизонтом наблюдений. Этот горизонт определяется тем, что скорость света не мгновенна. Следовательно, мы можем наблюдать только те области Вселенной, от которых свет успел дойти до нас к настоящему времени. При этом мы видим объекты не в их нынешнем состоянии, а в том, в котором они были в момент испускания света.

Модели Вселенной, как и любые другие, строятся на основе теоретических представлений, которые существуют в данное время в космологии, физике, математике, химии и других смежных дисциплинах.

Несколько предпосылок изучения Вселенной:

  • считается, что формулируемые физикой законы функционирования мира действуют во всей Вселенной
  • считается, что наблюдения астрономов также распространяются на всю Вселенную
  • считается, что истинны те выводы, которые не противоречат существованию человека (антропный принцип)

Выводы космологии называются моделями происхождения и развития Вселенной.

Проблемы возникновения и устройства Вселенной занимали людей с древности. Несмотря на высокий уровень астрономических сведений народов древнего Востока, их взгляды на строение мира ограничивались непосредственными зрительными ощущениями. Поэтому в Вавилоне сложились представления, согласно которым Земля имеет вид выпуклого острова, окруженного океаном. Внутри Земли будто бы находится "царство мертвых". Небо - это твердый купол, опирающийся на земную поверхность и отделяющий "нижние воды" (океан, обтекающий земной остров) от "верхних" (дождевых) вод. На этом куполе прикреплены небесные светила, над небом будто бы живут боги. Согласно представлениям древних египтян, Вселенная имеет вид большой долины, вытянутой с севера на юг, в центре ее находится Египет. Небо уподоблялось большой железной крыше, которая поддерживается на столбах, на ней в виде светильников подвешены звезды.

В Древнем Китае существовало представление, согласно которому Земля имеет форму плоского прямоугольника, над которым на столбах поддерживается круглое выпуклое небо. Разъяренный дракон будто бы согнул центральный столб, вследствие чего Земля наклонилась к востоку. Поэтому все реки в Китае текут на восток. Небо же наклонилось на запад, поэтому все небесные светила движутся с востока на запад.

В греческих колониях на западных берегах Малой Азии (Иония), на юге Италии и в Сицилии в седьмом веке до нашей эры началось бурное развитие науки, в частности, философии, как учения о природе. Именно здесь на смену простому созерцанию явлений природы и их наивному толкованию приходят попытки научно объяснить эти явления, разгадать их истинные причины. Одним из выдающихся древнегреческих мыслителей был Гераклит Эфесский . Это ему принадлежат слова: "Мир, единый из всего, не создан никем из богов и никем из людей, а был, есть и будет вечно живым огнем, закономерно воспламеняющимся и закономерно угасающим..." Тогда же Пифагор Самосский высказал мысль о том, что Земля, как и другие небесные тела, имеет форму шара. Вселенная представлялась Пифагору в виде концентрических, вложенных друг в друга прозрачных хрустальных сфер, к которым будто бы прикреплены планеты

Гераклид Понтийский и Евдокс Книдский в IV в до н.э. утверждали, что все тела во Вселенной вращаются вокруг своей оси, и обращаются вокруг общего центра (Земли) по сферам, количество которых в разных космогониях варьировало от 30 до 55. Вершиной этой картины мира стала система Клавдия Птолемея (II в. н.э.).

Первые научно-обоснованные модели Вселенной появились после открытий Коперника, Галилея и Ньютона. Сначала Р. Декарт выдвинул идею эволюционной вихревой Вселенной. Согласно его теории, все космические объекты образовались из первичной однородной материи в результате вихревых движений. Солнечная система, согласно Декарту – один из вихрей космической материи. И. Кант развивал идею бесконечной Вселенной, образовавшейся под действием механических сил притяжения и отталкивания, и попытался выяснить дальнейшую судьбу такой Вселенной. Математически описал гипотезу Канта великий французский математик Лаплас.

И. Ньютон считал, что тяготеющая вселенная не может быть конечной, так как в этом случае все звезды, ее составляющие, под действием сил тяготения соберутся в центре. Он пытался объяснить наблюдаемое противоречие бесконечным количеством звезд во Вселенной, а также бесконечностью мира во времени и пространстве. Однако космология столкнулась тогда с парадоксами.

Гравитационный парадокс : согласно ньютоновскому понятию гравитации бесконечный Космос с конечной плотностью массы должен давать бесконечную силу притяжения. Бесконечно возрастающее тяготение неизбежно приводит к бесконечным ускорениям и бесконечным скоростям космических тел. Следовательно, скорость тел должна расти с увеличением расстояния между телами. Но этого не происходит, и тогда получается, что Вселенная не может существовать вечно.

Решая эту проблему, И. Кант сделал вывод о нестатичности Космоса. Туманности он называл "мировыми островами". Ламберт развил идеи Канта. По его мнению, при увеличении размеров островов увеличивается и расстояние между ними так, что суммарные силы Космоса остаются конечными. Тогда парадокс разрешается.

Фотометрический парадокс (парадокс Ольберса): при бесконечной Вселенной, заполненной бесконечным числом звезд, небо должно быть равномерно ярким. На самом же деле такого эффекта не наблюдают. В 1823 г. Ольберс показал, что пылевые облака, которые поглощают свет более дальних звезд, сами нагреваются и должны, поэтому излучать свет. Этот парадокс разрешился сам собой после создания модели расширяющейся Вселенной.

Современная космология возникла после появления общей теории относительности Эйнштейна и поэтому ее, в отличие от классической Галилеевой и Ньютоновой космологии, называют релятивистской. Эмпирической базой для космологии являются оптические и радиолокационные астрономические наблюдения. Открытие элементарных частиц и исследование их поведения на ускорителях в условиях, приближенных к существовавшим на первоначальных этапах развития Вселенной, помогло понять, что происходило в первые моменты ее эволюции.

Когда Эйнштейн работал над своей общей теорией относительности, Вселенная представлялась ученым не такой, как сейчас. Еще не были открыты Метагалактика и ее расширение, поэтому Эйнштейн опирался на представления о стационарной Вселенной, которая равномерно наполнена Галактиками, находящимися на неизменных расстояниях. Тогда неизбежно следовал вывод о сжатии мира под действием силы притяжения. Этот результат находился в противоречии с выводами ОТО. Чтобы не вступать в конфликт с общепринятой картиной мира, Эйнштейн произвольно ввел в свои уравнения новый параметр - космическое отталкивание, которое характеризовалось с помощью космологической постоянной. А. Эйнштейн предполагал, что Вселенная стационарна, бесконечна, но не безгранична. То есть она мыслилась в виде сферы, постоянно увеличивающейся в объеме, но имеющей границы.

Единственным человеком, который в 1922 году верил в правильность выводов ОТО применительно к космологическим проблемам, был молодой советский физик А. А. Фридман. Он заметил, что из теории относительности вытекает нестационарность искривления пространства.

Модель Фридмана опирается на представления об изотропном, однородном и нестационарном состоянии Вселенной .

Изотропность указывает на то, что во Вселенной не существует каких-либо выделенных точек направлений, то есть ее свойства не зависят от направления.

Однородность Вселенной характеризует распределение вещества в ней. Эту равномерность распределения вещества можно обосновать, подсчитывая число галактик до данной видимой звездной величины. Согласно наблюдениям, плотность вещества в видимой нами части пространства в среднем одинакова.

Нестационарность означает, что Вселенная не может находиться в статичном, неизменном состоянии, а должна либо расширяться, либо сжиматься

В современной космологии три этих утверждения называются космологическими постулатами . Совокупность этих постулатов является основополагающим космологическим принципом. Космологический принцип непосредственно вытекает из постулатов общей теории относительности.

А.Фридман , на базе выдвинутых им постулатов, создал модель строения Вселенной, в которой все галактики удаляются друг от друга. Эта модель похожа на равномерно раздувающийся резиновый шар, все точки пространства которого удаляются друг от друга. Расстояние между любыми двумя точками увеличивается, однако ни одну из них нельзя назвать центром расширения. Причем, чем больше расстояние между точками, тем быстрее они удаляются друг от друга.

Сам Фридман рассматривал только одну модель строения Вселенной, в которой пространство изменяется по параболическому закону. То есть, вначале оно будет медленно расширяться, а затем, под влиянием сил гравитации – расширение сменится сжатием до первоначальных размеров. Его последователи показали, что существует как минимум три модели, для которых выполняются все три космологических постулата. Параболическая модель А.Фридмана – один из возможных вариантов. Несколько иное решение задачи нашел голландский астроном В. де Ситтер . Пространство Вселенной в его модели гиперболическое, то есть расширение Вселенной происходит с нарастающим ускорением. Скорость расширения настолько велика, что гравитационное воздействие не может препятствовать этому процессу. Он фактически предсказал расширение Вселенной. Третий вариант поведения Вселенной рассчитал бельгийский священник Ж.Леметр . В его модели Вселенная будет расширяться до бесконечности, однако темп расширения будет постоянно снижаться - эта зависимость носит логарифмический характер. В этом случае скорость расширения только-только достаточна, чтобы избежать сжатия до нуля.

В первой модели пространство искривлено и замкнуто само на себя. Это сфера, поэтому размеры его конечны. Во второй модели пространство искривлено иначе, в форме гиперболического параболоида (или седла), пространство бесконечно. В третьей модели с критической скоростью расширения пространство плоское, и, следовательно, тоже бесконечное.

Первоначально эти гипотезы воспринимались как казус, в том числе и А. Эйнштейном. Однако, уже в 1926 году произошло эпохальное событие в космологии, которое подтвердило правильность расчетов Фридмана - Де Ситтера – Леметра. Таким событием, оказавшим воздействие на построение всех существующих моделей Вселенной, явились работы американского астронома Эдвина П. Хаббла . В 1929 году при проведении наблюдений на крупнейшем в то время телескопе, он установил, что свет, идущий к Земле из далеких галактик, смещается в сторону длинноволновой части спектра. Это явление, получившее название «Эффект красного смещения» имеет в своей основе принцип, открытый известным физиком К. Доплером. Эффект Доплера говорит о том, что в спектре источника излучения, приближающегося к наблюдателю линии спектра смещены в коротковолновую (фиолетовую) сторону, в спектре источника, удаляющегося от наблюдателя спектральные линии смещены в красную (длинноволновую)сторону .

Эффект красного смещения свидетельствует об удалении галактик от наблюдателя. За исключением знаменитой Туманности Андромеды и нескольких, ближайших к нам звездных систем, все остальные галактики удаляются о нас. Более того, оказалось, что скорость разлета галактик не одинакова в различных частях Вселенной. Они удаляются от нас тем быстрее, чем дальше расположены. Иначе говоря, величина красного смещения оказалась пропорциональной расстоянию до источника излучения - такова строгая формулировка открытого закона Хаббла. Закономерная связь скорости удаления галактик с расстоянием до них описывается с помощью постоянной Хаббла (Н , км/сек на 1 расстояния).

V = Hr , где V - скорость удаления галактик, r - расстояние между ними.

Величина этой постоянной до сих пор окончательно не установлена. Различные ученые определяют ее в интервале 80 ± 17 км/ сек на каждый мегапарсек расстояния.

Явление красного смещения получило объяснение в феномене «разбегания галактик» . В связи с этим, на первый план выдвигаются проблемы исследования расширения Вселенной и определения ее возраста по продолжительности этого расширения.

Согласно всем трем моделям эволюции Вселенной, она имела точку отсчета - состояние, характеризовавшееся нулевым моментом времени. Начальным состоянием материи в ней было некоторое сверхплотное состояние, которое характеризовалось неустойчивостью, что и привело к его разрушению. В результате вещество Вселенной стало стремительно разлетаться. Сейчас мы знаем, что за каждый млрд лет жизни Вселенная расширяется на 5 – 10%. Наиболее вероятное значение постоянной Хаббла в 80 км/сек дает нам значения времени расширения- от 13 до 17 млрд лет. В 2002 году с помощью компьютерной модели современного состояния Вселенной были получены результаты, дающие нам время ее жизни в 13,7 млрд лет .

Механизм дальнейшей эволюции зависит от средней плотности вещества в ней. Критической плотности вещества соответствует величина в 3 атома водорода в 1 м3 пространства. Однако неопределенность в современном значении плотности вещества Вселенной очень велика. Если сложить массы всех известных в настоящее время Галактик и межзвездного газа, то получится величина ρ=0,3 атома Н, то есть на порядок меньше критической. Соответственно, Вселенная может расширяться вечно.

Однако, существует так называемая проблема скрытой массы. Возможно, ученым известна не вся имеющаяся во Вселенной материя. По последним данным, наблюдаемая масса Вселенной составляет всего 5-10% относительно общей массы вещества. В случае подтверждения этого результата, эволюция Вселенной может пойти по другому пути. На роль скрытой носителей массы Вселенной претендуют различные космические объекты. В нашей и других Галактиках существует большое количество темной материи, которую нельзя видеть непосредственно, но о существовании которой мы узнаем по ее гравитационному воздействию на орбиты звезд. Более того, внутри галактических скоплений содержится еще большее количество такой материи. Эта материя представляет собой вакуумные квантовомеханические структуры. На ее долю падает 75% скрытой массы.

На роль носителей скрытой массы могут претендовать нейтрино, частицы, образовавшиеся на ранних стадиях развития вселенной. Как стало известно в последние 3 года, нейтрино все- таки имеют массу, следовательно, могут участвовать в формировании гравитационных взаимодействий.

Кандидатами на ту же роль являются и некоторые экзотические объекты, такие как черные дыры - объекты точечного размера и огромной массы, которые содержатся во вселенной в больших количествах, пространственные струнные объекты и т.п..

По мнению ряда ученых, 20% скрытой материи представлены « зеркальными частицами», из которых состоит невидимый нами « зеркальный мир», который пронизывает нашу Вселенную. Гипотез на этот счет достаточно, однако их подтверждение или опровержение - дело будущего.

В случае, если предположения ученых о неизвестной нам массе вещества Вселенной подтвердятся, то ее эволюция может пойти по пути, предложенному в модели Фридмана, или по схеме Пульсирующей Вселенной. В этой модели Вселенная проходит бесконечно большое количество осцилляций, то есть в конце каждого жизненного цикла возвращается в первоначальное состояние с точечным объемом и бесконечно большой плотностью.

Очень важной проблемой современной космологии являются начальные моменты существования нашей Вселенной. Удачная попытка решения этой проблемы связана с именем американского астрофизика Георгия Антоновича Гамова , который в 1942 г. предложил концепцию эволюции Вселенной путем «Большого взрыва». Основная цель автора концепции заключалась в том, чтобы, рассматривая ядерные реакции в начале космологического расширения, получить наблюдаемые в наше время соотношения между количеством различных химических элементов и их изотопов. Теория Горячей Вселенной и Большого взрыва дает определенные предсказания о состоянии вещества Вселенной в первые моменты ее жизни.

В первоначальный момент времени Вселенная была сосредоточена в минимальном объеме, который был в миллиарды раз меньше булавочной головки. А если точно следовать математическим расчетам, то в начале расширения радиус Вселенной был и вовсе равен нулю, а ее плотность – равна бесконечности. Это начальное состояние называется сингулярностью – точечный объем с бесконечной плотностью. Известные законы физики в сингулярности не работают. Согласно оценкам, это происходило от 13,7 млрд лет назад.

В состоянии сингулярности кривизна пространства и времени становится бесконечной, сами эти понятия теряют смысл. Идет не просто замыкание пространственно-временного континуума, как следует из общей теории относительности, а его полное разрушение

Причины возникновения такого начального состояния, а также характер пребывания материи в этом состоянии считаются неизвестными и выходящими за рамки компетенции любой современной физической теории. Неизвестно также, что было до момента взрыва. Долгое время ничего нельзя было сказать и о причинах Большого взрыва, и о переходе к расширению Вселенной, но сегодня появились некоторые гипотезы, в которых содержится попытка объяснить эти процессы.

Итак, исходное состояние перед «началом» обладает свойствами, выходящими за рамки научных представлений сегодняшнего дня. В нем было нарушено все, что нам привычно: формы материи, законы, управляющие их поведением, пространственно-временной континуум. Такое состояние можно назвать хаосом , из которого в последующем развитии системы шаг за шагом формировался порядок . Хаос оказался неустойчивым, это послужило исходным толчком для последующего развития Вселенной.

Экстремальные условия «начала», когда даже пространство-время было деформировано, предполагают, что и вакуум находился в особом состоянии, которое назвали «ложным» вакуумом . Это состояние характеризуется энергией предельно высокой плотности, которой соответствует предельно высокая плотность вещества. В этом состоянии вещества в нем могут возникать сильнейшие напряжения, которые равносильны гравитационному отталкиванию такой силы, которая вызвала безудержное и стремительное расширение. Это и было первым толчком – началом. С началом стремительного расширения Вселенной возникает время и пространство.

Согласно гипотезе Алана Гута, американского математика, в первые моменты времени Вселенная расширялась со все возрастающей скоростью. Такое расширение получило название раздувания . По разным оценкам период раздувания занимает невообразимо малый промежуток времени – до 10-39 секунды после начала. Этот период называется инфляционным . За это время Вселенная успевала раздуться до гигантского «пузыря», радиус которого на несколько порядков превышал радиус современной Вселенной, но там практически отсутствовали частицы вещества. К концу фазы инфляции Вселенная была пустой и холодной. Более того, в ней сформировались локальные неоднородности, которые затем сглаживались при дальнейшем расширении Вселенной. Затем нарушилось равновесие сил, удерживавших Вселенную в подобном неустойчивом состоянии, и произошел всплеск энергии, заключенной в «ложном» вакууме. Когда это состояние вакуума распалось, его энергия высвободилась в виде излучения, которое нагрело Вселенную до 1027° К.. С этого момента Вселенная развивалась согласно теории горячего Большого взрыва.

При сверхвысоких температурах и плотностях даже общая теория относительности еще не применима, поскольку она не учитывает квантовые эффекты, которые в тот момент преобладают. Возможно, в этот период могли возникать кванты гравитационного поля- гравитоны.

На этом этапе, возможно, происходили взаимные превращения частиц и квантов излучения. То есть излучение и вещество еще неотделимы друг от друга. Все три вида взаимодействия –сильное, слабое и электромагнитное, еще не разичаются и являются различными формами единого взаимодействия. Физики называют эту фазу ЭРОЙ ВЕЛИКОГО ОБЪЕДИНЕНИЯ .

Из двух квантов гамма - излучения возникают пары электрон-позитрон.

Это хорошо известный в настоящее время процесс:

g + g ó е + + е -

Когда температура несколько упала, электрон-позитронные пары начали аннигилировать. При аннигиляции каждой такой пары выделяются два фотона, обладающие высокой энергией, то есть гамма лучи. Они обладают огромной проникающей способностью.

Чем больше энергия квантов, тем более массивные частицы могут образовываться в результате взаимодействия.

По мнению современной физической теории, в ранней Вселенной должны были существовать уникальные условия, способствующие возникновению кварков и антикварко в - этих первичных кирпичиков Вселенной. В этот момент кварки либо могли находиться в свободном состоянии, либо существовать в виде кварк-глюонных струй.

В момент времени менее миллисекунды температура была настолько высокой, что доминировали сильные взаимодействия. В результате из кварков формировались тяжелые частицы класса адронов – мезоны и антимезоны , протоны и антипротоны , а также некоторые экзотические виды ядерных частиц, например гипероны. Процесс рождения ядерных частиц оказывал в высшей степени стабилизирующее действие. Начальная анизотропия быстро сглаживалась, в результате Вселенная стала изотропной и наполнялась излучением.

С понижением температуры спустя несколько микросекунд после большого взрыва пары адронов, тяжелых элементарных частиц, практически полностью аннигилировали. Завершилась адронная эра, когда доминировали сильные взаимодействия.

Далее наступил период слабых взаимодействий. В результате слабых взаимодействий происходил радиоактивный распад свободных нейтронов, оставшихся после адронной эры на электроны и протоны, а мезонов на мюоны и антинейтрино.

n° → p + + ē + ν

p + + ē → n° + νˉ

Именно в это время происходит образование нейтрино и антинейтрино . Эти частицы относятся к классу лептонов, соответственно во Вселенной наступила лептонная эра. В лептонную эру Вселенная состоит из фотонов, нейтрино и антинейтрино. Через 0,2 секунды после сингулярности происходит отрыв нейтрино от вещества . Эти частицы с огромной скоростью разлетаются по всему пространству Вселенной.

В течение короткого периода в начале эры присутствуют также электрон-позитронные пары. Спустя одну секунду с момента Большого взрыва условия меняются. Температура опускается менее 10 млрд К, .и электрон-позитронные пары аннигилируют. Реакции образования нейтронов прекращаются. В этот период во Вселенной на каждые шесть протонов приходится один нейтрон(это соотношение сохраняется во Вселенной до настоящего времени).

Затем происходят события, в которых нейтрон активно участвует. Идет процесс синтеза более тяжелых элементов из более легких. Этот процесс называется термоядерным синтезом.

Когда температура Вселенной упала до 1 млрд. К. начинаются реакции синтеза.

При такой температуре энергии протонов и нейтроно уже не хватает для сопротивления сильному ядерному взаимодействию. Они начинают объединяться между собой. Сначала нейтрон захватывается протоном и образуется ядро дейтерия. Дейтерий легко поглощает нейтроны. На следующей стадии образуется тритий, и, наконец – тритий вступает в реакцию с протоном и образуется ядро гелия. Почти все нейтроны оказываются связанными в ядра гелия. В результате термоядерного синтеза во Вселенной образовалось 25% по массе гелия, остальное вещество состояло из свободных протонов. Большой взрыв создал гелий. Такое соотношение водорода и гелия во Вселенной (75% : 25%) могло образоваться только при тех условиях, о которых идет речь. Любые изменения условий приведут к другому соотношению этих элементов во Вселенной. Затем температура упала, и дальнейший синтез более тяжелых ядер прекратился. Образовалось очень незначительное количество ядер лития и бериллия.

Через несколько часов после Большого взрыва образование ядер прекратилось. В этот период все вещество находится в форме плазмы - некоего промежуточного состояния. Спустя 10000 лет она остыла примерно до 3 тысяч К, протоны (ядра водорода) и ядра атомов гелия уже могли спокойно захватывать свободные электроны и превращаться в нейтральные атомы этих элементов. Плазма стала нейтральной. В этот момент излучение отделилось от атомарного вещества и образовало то, что называется сейчас реликтовым излучением. Оно поступает сейчас из всех точек небосвода и не связано с каким-нибудь отдельным источником. Именно этот факт и послужил одним из аргументов, подтверждающих, что Большой взрыв был. Этот период получил название периода отделения вещества от излучения .

Так как нейтральное вещество взаимодействует с излучением гораздо слабее, чем полностью ионизованное, длина пробега квантов этого "реликтового" (остаточного) излучения превысила размеры Вселенной. Начиная с "эпохи рекомбинации", реликтовое излучение и вещество эволюционируют независимо. Эффект Доплера в расширяющейся Вселенной приводит к уменьшению наблюдаемой частоты реликтового излучения и, соответственно, температуры, определяющей форму его спектра. В настоящее время температура реликтового излучения составляет 2,7 К и наблюдается оно в виде радиоволн сантиметрового и миллиметрового диапазонов. Необходимо подчеркнуть: реликтовое излучение - единственный прямой источник информации о структуре Вселенной в эпоху рекомбинации, 10 - 12 миллиардов лет назад.

В следующие 300 тысяч лет расширение Вселенной проходило без особых изменений в ее составе и свойствах. Вывод о спокойной фазе расширения Вселенной следует из ее нынешнего однородного и изотропного состояния.

По мере расширения Вселенной фоновое излучение прошло через весь спектр, переходя из гамма-излучения в рентгеновское, затем в ультрафиолетовое, оптическое, инфракрасное. Наконец энергия фотонов упала до величины, соответствующей диапазону радиоволн. В любой заданный момент времени спектр излучения определялся температурой Вселенной. Характер излучения во Вселенной при этом не менялся, постепенно сдвигаясь в сторону более низкой температуры.

Важнейшим итогом этого периода стало то, что все электроны оказались связанными, а Вселенная стала прозрачной. С этого момента фотоны могли двигаться прямо без рассеяния.

После периода отделения вещества от излучения вещество остывает довольно быстро по сравнению с излучением. Согласно законам термодинамики при расширении газа темп снижения температуры в два раза превышает темп расширения. Температура излучения в свою очередь снижается с расширением системы лишь линейно. При этом фотоны теряют при расширении меньше энергии, чем медленно движущиеся частицы. В современной Вселенной оставшееся вещество практически потеряло всю температуру, которая составляет всего 3° К..

В тот период, когда температура достигла значений на уровне 3000°К, появилась возможность синтеза во Вселенной более тяжелых элементов.

В силу принципа неопределенности, в расширяющейся Вселенной возникают и развиваются случайные уплотнения вещества, так называемые флуктуации плотности. Современная физическая наука не может найти достаточно разумных объяснений факту появления таких флуктуаций. Все предположения носят предварительный характер, и нуждаются в уточнении. Одно из предположений основано на участии в этом процессе нейтрино.

Пока нейтрино двигались со скоростью, близкой к С, их флуктуации быстро рассеивались. Однако, через сотни тысяч лет, скорость их должна сильно замедлиться. Начиная с некоторого момента, крупные сгущения нейтрино уже не рассеиваются, и дают начало первым структурным образованием Вселенной. Эти образования состоят из вещества, а нейтрино играют роль центров притяжения для этих гигантских сгущений.

В расширяющейся Вселенной возникновение этих областей приводит к постепенному развитию медленно изменяющихся возмущений. Эти уплотнения возникли в период отделения вещества от излучения. Постепенно уплотнения увеличивались и внутри их развивались гравитационные взаимодействия. В итоге эти области престают расширяться и коллапсируют, в результате чего и образуются протогалактики. Появление таких уплотнений и стало началом рождения крупномасштабных структур во Вселенной. Согласно расчетам, из этих сгущений должны были возникнуть простые образования, напоминающие блины.

Сжатие водородно-гелиевой плазмы в «блины» неизбежно привело к значительному увеличению их температуры. По мере расширения Вселенной, сжатие большого «блина» также порождало его неустойчивость, и он распадался на более мелкие подсистемы, которые стали зародышами галактик. Критической массой, при которой происходили эти процессы, была величина в 100 млрд. масс Солнца, протяженность облака- 150000 световых лет.

После сжатия протогалактическое облако не могло более оставаться однородным и сферически симметричным. Гравитация в нем превалирует над силами давления. Скорость сжатия вещества в облаке значительно превышала скорость звука. При таком сжатии газового облака неизбежно порождаются турбулентные потоки. В составе большого облака нарастают малые неоднородности. Происходит случайным образом распределенный по всему объему процесс газовой фрагментации. Результатом этого процесса является формирование фрагментов размером с ныне существующие галактики. В галактики довольно близки по своему размеру, который составляет в среднем около 30 000 световых лет. Только неправильные галактики оказываются несколько меньше обычных.

В условиях формирования облака при высоких температурах излучение свободно уходит из него, и оно начинает охлаждаться. Быстрое охлаждение фрагмента способствует его дальнейшей фрагментации, при которой начинают образовываться первичные звезды. Наступает ФАЗА ОБРАЗОВАНИЯ ЗВЕЗД .

Образовавшиеся галактики распределены в пространстве Вселенной не случайным образом. Характер их распределения носит название корреляции галактик. Галактики сначала образуются из протогалактического облака, а потом постепенно скучиваются. Иерархия образования структур включает в себя группы галактик внутри бедных скоплений, которые потом входят в состав богатых скоплений. Вероятно, первоначальное их распространение было случайным, Затем вступили в действие гравитационные силы, которые привели к стягиванию галактик в большие скопления.

Интересным представляется проследить структуру видимой нами части Вселенной - Метагалактики . Метагалактика состоит из гигантских звездных систем, подобных нашей - галактик. Всего три таких объекта видны на небе невооруженным глазом, как слабосветящиеся размытые пятна - это Большое и Малое Магеллановы облака (в южном полушарии) и Туманность Андромеды. Многие миллионы других галактик можно видеть только в сильные телескопы. Несколько сотен галактик хорошо изучены. Для нескольких тысяч - получен спектр и определено рассеяние, для нескольких десятков тысяч даны оценки звездной величины и углового расстояния, описаны особенности внешнего вида. Все галактики классифицированы и помещены в каталоги под соответствующими обозначениями. Так, например Туманность Андромеды получила название М31 .

Проблемой изучения галактик и их классификации занимался Э.Хаббл. По внешнему виду и характеру распределения яркости он разделил все галактики на эллиптические, спиральные, линзовидные и неправильные.

Эллиптические - имеют в пространстве форму эллипсоидов с различной степенью сжатия. Некоторые из них обладают почти идеальной шарообразной формой (рис 1. Е0 –Е4), а некоторые сильно сплющены и похожи на линзу. Это линзовидные галактики (рис 1. Е5 – Е7). Они не имеют ядра, их яркость плавно возрастает от периферии к центру. Внутренняя структура отсутствует. Почти все они имеют в спектре преобладание красного цвета.

Спиральные галактики (S0 – Sс – Sвс) - наиболее часто встречаемы. Типичным представителем является наша галактика. В отличие от эллиптических, они имеют центральное ядро и структуру в виде спиральных рукавов. Вещество в них присутствует не только в спиральных ветвях, но и между ними. В рукавах сосредоточены наиболее яркие горячие звезды, молодые звездные скопления и светящиеся газовые туманности. Все они имеют центральный звездный диск, сфероидальную составляющую, похожую на небольшую линзовидную галактику и плоскую составляющую или рукава.

Неправильные галактики имеют несимметричный вид, содержат горячие звезды, молодые звездные образования и большие количества межзвездного газа. Именно такими оказались ближайшие к нам галактики Магеллановы облака. Именно в галактиках такого типа обнаруживаются интересные небесные явления – вспышки сверхновых и т.д

Все галактики рассредоточены в Метагалактике не случайно, а находятся по узлам нерегулярной сети, напоминающей своим расположением соты пчелиного улья. Между этими узлами галактик практически нет.

Галактики - этот системы звезд и связанные с ними межзвездные среды - разреженный газ с небольшой примесью твердых пылинок . Диаметры галактик составляют 50- 70 и более килопарсек. Встречаются и карликовые системы, размеры которых на порядок меньше. Все галактики обладают довольно интенсивным радиоизлучением.

В космическом пространстве существуют галактики с аномальными свойствами.

Радиогалактики . Они относятся к числу массивных эллиптических галактик и отличаются аномально высоким радиоизлучением – в десятки тысяч раз выше, чем у нормальных. Механизм излучения связан с выбросом из них больших облаков частиц, движущихся в магнитном поле. Одна из таких галактик находится в созвездии Центавра. Всего обнаружено около 500 таких объектов.

Квазары . В 1963 году были открыты мощные источники радиоизлучения, которые назвали квазизвездными, или квазарами. Мощность выделения ими энергии в сотни и тысячи раз больше, чем у обычных галактик. Известно около 1500 таких объектов. Ряд особенностей квазаров связывают их с ядрами галактик- компактность, переменность излучения, нетепловой характер спектра. Характерная особенность спектров- в них красное смещение достигает максимальных размеров. Вероятно, это наиболее удаленные от нас объекты, разлетающиеся со скоростью, близкой к С.

Пояс квазаров расположен на расстоянии 600 мегапарсек от Млечного пути. Дальше и ближе они практически отсутствуют. Вероятно, их образование было приурочено к определенному периоду в развитии Вселенной. Это ядра галактик, находящиеся на каком–то этапе своей эволюции.

Современное состояние Вселенной еще очень плохо изучено. Однако, вероятно уже существует ответ на вопрос: Какова современная форма вселенной?

Многолетние наблюдения показали, что Вселенная обладает рядом физических свойств, которые резко сокращают число возможных претендентов на ее форму. И одно из главных таких свойств топологии Вселенной - ее кривизна. Согласно принятой на сегодняшний день концепции, примерно через 300 тысяч лет после Большого взрыва температура Вселенной упала до уровня, достаточного для объединения электронов и протонов в первые атомы Когда это произошло, излучение, которое вначале рассеивалось заряженными частицами, внезапно получило возможность беспрепятственно проходить через расширяющуюся Вселенную. Это известное ныне как космическое микроволновое фоновое, или реликтовое, излучение удивительно однородно и обнаруживает только очень слабые отклонения (флуктуации) интенсивности от среднего значения. Такая однородность может быть только во Вселенной, кривизна которой всюду постоянна .

Постоянство кривизны означает, что пространство Вселенной имеет одну из трех возможных геометрий: плоскую евклидову сферическую с положительной кривизной или гиперболическую с отрицательной.

Немецкий математик Карл Фридрих Гаусс еще в первой половине XIX задался целью ответить на вопрос: искривляются ли траектории световых лучей, проходящих над сферическим пространством Земли? Оказалось, что в малых (по астрономическим меркам) масштабах Вселенная предстает, как евклидова. Недавние исследования, проведенные с помощью высотных аэростатов, поднятых над Антарктидой, также подтверждают этот вывод. При измерении углового спектра мощности реликтового излучения был зарегистрирован пик, который, как полагают исследователи, может быть объяснен только существованием холодной черной материи - относительно больших, медленно движущихся объектов - именно в евклидовой Вселенной. То есть, ученые довольно уверенно говорят о том, что пространство нашей Вселенной должно удовлетворительно описываться геометрией Евклида, как трехмерное пространство очень малой кривизны

До недавнего времени теоретики рассматривали все возможные варианты дальнейшей эволюции Вселенной: бесконечный разлет, сжатие, стационарное состояние.

Вывод о том, что наша Вселенная будет расширяться вечно с все увеличивающейся скоростью, был признан самым важным научным открытием в астрономии за последние 3 года.

Две группы астрономов, тщательно исследуя свет, приходящий к нам от самых удаленных звезд, пришли к выводу, что вещество во Вселенной разлетается все быстрее и быстрее. Мало того, этот разлет будет продолжаться вечно. В работах принимали участие американские астрономы из университетов Вашингтона, Сиэтла и Берклиевской национальной лаборатории в Калифорнии. Позднее их результат был подтвержден и другими группами. Впервые за весь прошедший век сделано ясное утверждение о сценарии развития Вселенной на экспериментальной основе. Полученный результат возрождает очень популярную в начале века идею (активно опровергавшуюся Альбертом Эйнштейном) о том, что есть сила отталкивания между массами вещества, работающая против гравитационной силы притяжения. Наличие такой силы могло бы помочь объяснить открытый разлет Вселенной.

Что же будет ожидать такую Вселенную в будущем? По мере расширения пространства материя становится все более разреженной, галактики и их скопления удаляются друг от друга, а температура фонового излучения приближается к абсолютному нулю. Со временем все звезды завершат свой жизненный цикл и превратятся либо в белых карликов, либо в нейтронные звезды, либо в черные дыры. Эра светящегося вещества закончится и вселенная погаснет. Наступит тепловая смерть Вселенной , которую предсказали Клаузиус и Гельмгольц еще в середине XIX века.

Согласно теории, разработанной английским астрофизиком С. Хокингом , черные дыры поглотят оставшееся вещество вселенной. Сами они будут медленно испаряться, выделяя в пространство поток элементарных частиц. Через 10 66лет они начнут взрываться, выбрасывая в пространство поток частиц, античастиц и излучения. Частицы аннигилируют с античастицами, и излучение равномерно рассеется в пространстве. Это будет полностью неупорядоченное состояние с максимальным уровнем энтропии.

В классической науке существовала теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти такой же, как сейчас. Астрономия была статичной: изучалось движение планет и комет, описывались звезды, создавалась их классификация, что было, конечно очень важно. Но вопрос об эволюции Вселенной не ставился. Согласно классической космологии Ньютона, пространство и время однородны и изотропны, абсолютны и бесконечны. Вселенная стационарна, изменяться могут конкретные космические системы, но не мир в целом.

Однако признание бесконечности Вселенной приводило к двум парадоксам: гравитационным и фотометрическим. Суть гравитационного парадокса заключается в том, что если Вселенная бесконечна и в ней существует бесконечное количество небесных тел, то сила тяготения будет бесконечно большая, и Вселенная должна сколлапсировать, а не существовать вечно. Фотометрический парадокс: если существует бесконечное количество звезд, и они распределены в пространстве равномерно, то должна быть бесконечная светимость неба. На этом фоне даже Солнце, казалось бы, черным пятном, но этого нет.

Эти космологические парадоксы оставались неразрешимыми до двадцатых годов ХХ века, когда на смену классической космологии пришла релятивистская. До этого времени наука не располагала теоретически осмысленными астрономическими данными, свидетельствующими о крупномасштабной эволюции вещества. После открытия явления естественной радиоактивности стала неизбежной мысль о нестабильности космической материи вообще, изменчивости химического состава Вселенной в особенности.

Первая релятивистская космологическая модель Вселенной была разработана А. Эйнштейном в 1917 году. Она основывалась на уравнении тяготения, введенного Эйнштейном в общей теории относительности. В соответствии с представлениями классической астрономии о стационарности Вселенной, он исходил из предположения о неизменности свойств Вселенной, как целого во времени (радиус кривизны пространства он считал постоянным). Эйнштейн даже видоизменил общую теорию относительности, чтобы она удовлетворяла этому требованию, и ввел дополнительную космическую силу отталкивания, которая должна уравновесить взаимное притяжение звезд. Модель Эйнштейна носила стационарный характер, поскольку метрика пространства рассматривалась как независимая от времени. Время существования Вселенной бесконечно, т.е. оно не имело ни начала, ни конца, а пространство было безгранично, но конечно.

В 1922 году российский математик и геофизик А.А. Фридман предположил нестационарное решение уравнением тяготения Эйнштейна, где метрика рассматривалась как меняющаяся со временем. Он доказывал, что Вселенная не может быть стационарной, она должна либо расширяться, либо сжиматься. А. Эйнштейн сначала отрицательно отнесся к работам Фридмана, однако вскоре признал ошибочность своей критики.

Модели Вселенной А.А. Фридмана вскоре получили подтверждение в наблюдениях движений далеких галактик – в эффекте «красного смещения», открытом в 1929 году американским астрономом Э. Хабблом. Хаббл обнаружил, что в спектрах далеких галактик спектральные линии смещены к красному концу. Обнаруженный ранее эффект Доплера гласил, что при удалении от нас какого-либо источника колебаний, воспринимаемая нами частота колебаний уменьшается, а длина волны соответственно увеличивается. При излучении света происходит «покраснение», т.е. линии спектра сдвигаются в сторону более длинных красных волн. Если обнаруженное Хабблом красное смещение понимать как результат эффекта Доплера, то это означает, что галактики «удаляются» от нас со скоростью, линейно зависящей от расстояния. В настоящее время, уже зарегистрированы скорости удаления, порядка 100000 км/сек для наиболее далеких из наблюдаемых галактик.

Разбегание галактик не следует представлять себе как некое обычное движение в не изменяющемся со временем пространстве. Это не движение объектов в неизмененном пространстве, а эффект, обусловленный новыми свойствами самого пространства – нестабильностью его материи. Итак, ни галактики расходятся в остающемся постоянном пространстве, а само пространство расширяется (меняется его метрика) с течением времени. Для большей ясности можно привести двухмерную модель, наглядно иллюстрирующую фридмановское расширение. Возьмем резиновую сферу и будем ее надувать. Тогда все точки на поверхности будут удаляться друг от друга, причем из любой точки все остальные будут выглядеть разбегающимися. Таким образом, то обстоятельство, что от данной точки все остальные удаляются, отнюдь, не свидетельствует о каком-то центральном, привилегированном положении этой точки.

Подавляющее большинство современных космологических теорий представляет собой модели эволюционирующей Вселенной. Наиболее обоснованной среди них, считается опирающаяся на идеи Фридмана модель горячего Большого взрыва, которую еще называют стандартной, по причине ее практически всеобщего признания в научной среде. Согласно этой гипотезе наша Вселенная (Метагалактика) 15-20 млрд лет назад возникла в результате космического Большого взрыва, которому предшествовало так называемое «сингулярное» (особое) состояние, когда материя видимой Вселенной была «стянута в точку», находясь в сверхплотном состоянии. Теоретические расчеты показывают, что в первоначальном, сингулярном, т.е. сверхплотном, состоянии плотность вещества Вселенной составила 10 91 г/см 3 , а радиус был 10 -12 см, что близко к классическому радиусу электрона. Но представление о сингулярном состоянии как «стянутой в точку» материи с бесконечными значениями физических величин является, конечно, идеализацией, поскольку наука не располагает средствами установить размеры (радиус) видимой Вселенной в ее исходном сверхплотном состоянии.

От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва, заполнившего все пространство. В итоге каждая частица материи устремилась прочь от любой другой. Всего лишь через одну сотую секунды после взрыва Вселенная имела температуру 100000 млн. градусов по Кельвину. При такой температуре (выше температуры центра самой горячей звезды) молекулы, атома и даже ядра атомов существовать не могут. Вещество Вселенной пребывало в виде элементарных частиц, среди которых преобладали электроны, позитроны, нейтрино, фотоны, а также в относительно малом количестве протоны и нейтроны. Плотность вещества Вселенной спустя 0,01 с после взрыва была огромной – в 4000 млн раз больше, чем у воды. В конце первых трех минут после взрыва температура вещества Вселенной, непрерывно снижаясь, достигла 1 млрд градусов. При этой температуре начали образовываться ядра атомов, в частности, ядра тяжелого водорода и гелия. Однако вещество Вселенной в конце первых трех минут состояло в основном из фотонов, нейтрино и антинейтрино. Только по истечении нескольких сотен тысяч лет начали образовываться атомы, главным образом водорода и гелия, образовавшие водородно-гелиевую плазму.

Существование Вселенной в качестве водородно-гелиевой плазмы подтверждается данными астрономии. В 1965 году было обнаружено так называемое «реликтовое» радиоизлучение Вселенной, представляющее собой излучение горячей плазмы, сохранившееся с того времени, когда звезд и галактик не было.

В рамках модели Фридмана вопросы о конечности и бесконечности пространства и времени в определенном смысле становятся эмпирически верифицируемыми. Нестационарный мир Фридмана, вообще говоря, может иметь положительную кривизну (закрытая модель) и отрицательную кривизну (открытая модель), он может иметь одну особую временную точку - начало времени (расширяющаяся Вселенная). Но он может иметь и бесконечно много особых точек. В этом случае ни одна из них не может считаться за начало времени, а их наличие просто означает, что во Вселенной периоды расширения сменяются периодами сжатия, когда галактики «сжимаются» (красное смещение сменяется фиолетовым), плотность вновь принимает бесконечное значение, а затем вновь начинает расширяться (пульсирующая Вселенная).

Выбор между перечисленными возможностями зависит от величины средней плотности вещества и полей во Вселенной. Будущее нашего мира зависит от соотношения между скоростью разбиения галактик и силы, с которой они друг друга притягивают. Сила притяжения определяется средней плотностью вещества во Вселенной, а она известна приблизительно. В релятивистской космологии принято, что существует критическая величина средней плотности, равная приблизительно 10 -29 г/см 3 , т.е. 10 атомов водорода в одном м 3 . Если реальная средняя плотность материи меньше критической, пространство видимой Вселенной обладает отрицательной кривизной, а расширение Вселенной будет продолжаться бесконечно. Согласно этой модели во Вселенной через 10 33 и более лет вещество превратится в разряженный газ электронов, позитронов, фотонов, а интервале 10 60 до 10 100 лет испаряться и так называемые «черные дыры». Если средняя плотность материи оказывается больше критической, расширение Вселенной в будущем сменится сжатием, коллапсом, в результате которого возникнет новое сингулярное состояние. Итак, единственная альтернатива человечеству во Вселенной - «либо быть сожженным в закрытой Вселенной, либо быть замороженным - в открытой».

Стандартная модель расширяющейся Вселенной имеет ряд теоретических проблем и трудностей, которые побуждают космологов к поиску новых концепций. Одна из новейших концепций, получила название теории раздувающейся Вселенной, чтобы подчеркнуть огромную скорость её расширения, несравненно более высокую по отношению к скорости расширения, характерной для стандартной модели. Создателем данной теории (называемой иначе инфляционной моделью) является американский космолог А.Г. Гус. Первый вариант этой теории был представлен им в 1981 году. Теория Гуса была создана на основе приложения теории «Великого объединения» (т.е. теории, описывающей единым образом сильные, слабые и электромагнитные взаимодействия) к описаниям самых первых мгновений эволюции Вселенной. Эта теория позволяет разрешить некоторые проблемы, возникающие в рамках стандартной модели, но порождает новые. В настоящее время существуют уже три варианта модели раздувающейся Вселенной, различающиеся различными подходами и взглядами на природу исходного состояния, с которой началась эволюция Вселенной. Но все эти гипотезы нельзя считать достаточно обоснованными, поскольку ещё не найден ответ на вопрос о первоначальной причине расширения Вселенной. Однако, два экспериментально установленных положения - расширение Вселенной и реликтовое излучение – являются весьма убедительными доводами в пользу теории Большого взрыва, ставшей теперь общепризнанной.

Космология - раздел современной астрономии, изучающий происхожде­ние, свойства и эволюцию Вселенной как единого целого. Физическая кос­мология занимается наблюдениями, которые дают информацию о Вселенной в целом, а теоретическая космология - разработкой моделей, которые долж­ны описывать наблюдаемые свойства Вселенной в математических терминах. Космология в самом широком смысле охватывает физику, астрономию, фи­лософию и теологию. Действительно, она стремится представить картину мира, объясняющую, почему Вселенная имеет именно те свойства, которые она имеет. Уже греческая космология стремилась построить математическую модель движения планет. Современная космология целиком базируется на законах физики и математических конструкциях.

Только в XX веке было выработано понимание Вселенной как единого целого. Первый важный шаг был сделан в 1920-х годах, когда ученые при­шли к выводу, что наша Галактика - одна из многих галактик, а Солнце - од­на из миллионов звезд Млечного Пути. Последующее изучение галактик по­казало, что они удаляются от Млечного Пути, причем чем дальше они нахо­дятся, тем больше скорость их удаления. Ученые осознали, что мы живем в расширяющейся Вселенной. Разбегание галактик происходит в соответствии с законом Хаббла, согласно которому красное смещение галактики пропор­ционально расстоянию до нее. Постоянная пропорциональности, называемая постоянной Хаббла, имеет значение в пределах 60-80 км/с на один Мегапар-сек (1 пк - 3,26 световых года) с погрешностью 20%. Согласно закону Хабб­ла, скорости разбегания удаленных галактик прямо пропорциональны их рас­стояниям от нас - наблюдателей. Темнота ночного неба обусловлена расши­рением Вселенной. Объяснение этого факта является очень важным космоло­гическим наблюдением. Появление в 1950-х годах радиоастрономии позво­лило установить, что большинство радиоисточников (например, квазары и радиогалактики) являются удаленными объектами. Поскольку вычисленные по красному смещению расстояния составляют значительную долю размеров Вселенной, радиоволнам и свету требуется сравнимый с возрастом Вселен­ной промежуток времени, чтобы достичь Земли. В силу этого, наблюдая сла­бые радиоисточники, исследователь видит ранние стадии эволюции Вселен­ной.

Все космологические теории (модели) включают постулат, согласно ко­торому во Вселенной нет выделенных точек и направлений, т. е. все точки и направления равноправны для любого наблюдателя. Обычно, также предпо­лагается, что законы физики и фундаментальные постоянные, в частности постоянная гравитации G, не меняются со временем. Пока нет фактов, указы­вающих на обратное. Общая теория относительности Эйнштейна - отправная точка для большинства космологических моделей. Космологические модели отличаются выбором двух значений - космологической постоянной Эйштейна и плотности, зависящей от количества вещества во Вселенной и от постоянной Хаббла.


В модели стационарной Вселенной, созданной английскими астронома­ми Ф. Хойлом и Г. Бонди и американским астрономом Т. Голдом, утвержда­ется, что Вселенная одинакова повсюду и в любое время для всех наблюда­телей. Для того чтобы привести эту модель в соответствие с наблюдаемым расширением Вселенной, Ф. Хойл постулировал непрерывное порождение нового вещества С-полем («творящим полем»), которое заполняет пустоты, остающиеся после разбегания уже существующих галактик. Однако модель Хойла-Бонди-Голда не согласовывалась с другими эмпирическими данны­ми, например с реликтовым излучением. Тем не менее эта модель дала суще­ственный толчок развитию теории ядерного синтеза в звездах, поскольку, ес­ли бы не было Большого Взрыва, тяжелые элементы могли образовываться только во взрывающихся звездах. Это положение теории, не связанное с вы­бором космологической модели, полностью осталось в силе.

Вселенная Фридмана - модель, в которой плотность и радиус Вселенной могут изменяться со временем, т. е. Вселенная находится в состоянии непре­рывного расширения или сжатия. Вселенная Фридмана может быть замкну­той, если плотность вещества в ней достаточно велика, чтобы остановить расширение. Этот факт привел к поиску так называемой недостающей массы, т. е. «темной» материи, заполняющей неизлучающие области Метагалактики. Еще в 1922-1924 годах российский математик А. А. Фридман на основе тео­рии относительности Эйнштейна доказал, что из-за действия сил тяготения материя во Вселенной не может находиться в покое - она нестационарна. Наиболее важным аргументом в пользу этой теории является открытие в 1965 году американскими физиками А. Пензиасом и Р. Уилсоном микровол­нового фонового излучения, эквивалентного излучению абсолютно черного тела с температурой 2,7 К (по Кельвину).

Пульсирующая Вселенная ~ модель Вселенной, в которой она периоди­чески проходит циклы расширения и сжатия до так называемого Большого Хлопка (сдавливания). Каждый цикл сжатия сменяется следующим за ним очередным Большим Взрывом, открывающим новой цикл расширения, и так далее до бесконечности. Если такое происходит, то Вселенная является замк­нутой.

Перемешивающаяся Вселенная - хаотическая модель ранней Вселенной, в которой в результате гигантских конвульсий и колебаний свет «плавает» вокруг нее и способствует превращению неоднородной Вселенной в одно­родную. Установлено, что эта модель нежизнеспособна.

Открытая Вселенная - космологическая модель, в которой Вселенная представляется бесконечной в пространстве. Чтобы эта модель была спра­ведлива, расширение Вселенной должно продолжаться или замедляться, но не сменяться сжатием, как в моделях пульсирующей Вселенной. Для этого она должна содержать меньше вещества, чем необходимо для создания дос-таточно сильного гравитационного поля, способного прекратить ее расшире­ние. В настоящее время средняя плотность материи во Вселенной точно не определена, поэтому делать вывод в пользу той или иной модели рано.

Модель расширяющейся Вселенной - модель эволюции Вселенной, со­гласно которой она возникла в бесконечно плотном горячем состоянии и с тех пор расширяется. Это событие произошло от 13 до 20 млрд. лет назад и известно как Большой Взрыв. Теория Большого Взрыва теперь общепринята, так как она объясняет оба наиболее значительных факта космологии: расширяющуюся Вселенную и существование космического фонового излу­чения. Это реликтовое излучение первичного расширяющегося раскаленного шара было предсказано американским физиком русского происхождения Дж. Гамовым в 1948 году. Фоновое излучение было изучено на всех длинах волн от радио- до гамма-диапазона. В последние десятилетия большое вни­мание уделялось изотропии реликтового излучения, дающей информацию о самых ранних стадиях эволюции.

Можно воспользоваться известными законами физики и просчитать в обратном направлении все состояния, в которых находилась Вселенная, на­чиная с 10" 43 с (квант времени) после Большого Взрыва. В течение первого миллиона лет вещество и энергия во Вселенной сформировали непрозрачную плазму, иногда называемую первичным огненным шаром. К концу этого пе­риода расширение Вселенной заставило температуру опуститься ниже 3000 К: наступила эпоха рекомбинации, т. е. вещество отделилось от излучения, так что протоны и электроны смогли объединяться, образуя атомы водорода. На этой стадии Вселенная стала прозрачной для излучения. Плотность веще­ства достигла значения выше, чем значение плотности излучения, хотя рань­ше ситуация была обратной, что и определяло скорость расширения Вселен­ной. Фоновое микроволновое излучение - все, что осталось от сильно охлаж­денного излучения ранней Вселенной. Первые галактики начали формиро­ваться из первичных облаков водорода и гелия только через один или два миллиарда лет. Термин «Большой Взрыв» может применяться к любой моде­ли расширяющейся Вселенной, которая в прошлом была горячей и плотной.

Особый класс моделей Большого Взрыва составляют инфляционные мо­дели, или модели раздувающейся Вселенной. В этих моделях на ранней ста­дии эволюции Вселенной присутствует конечный период ускоренного рас­ширения. При таких условиях высвободилось бы огромное количество энер­гии, содержащейся до этого в исходном физическом вакууме пространства-времени. В течение некоторого времени горизонт Вселенной расширялся бы со скоростью, намного превышающей скорость света. Эта теория способна удовлетворительно объяснить существующее расширение Вселенной и ее однородность, однако большинство физиков и космологов высказывают со­мнения в возможности осуществления движения со скоростью, превышаю­щей скорость света.

Исходя из представлений о единой природе четырех фундаментальных физических взаимодействий (гравитационного, электромагнитного, сильного и слабого ядерных), определяющей их взаимоотношения на всех стадиях эволюции Вселенной, начиная с! 970-х годов космологи и физики пытаются построить теорию великого объединения. Создание «Теории Всего», как ина­че называет этот грандиозный проект современной науки С. Хокинг 1 , в зна­чительной степени расширило бы наше понимание Вселенной и ее эволюции.

В настоящее время космология бурно развивается благодаря открытиям физики элементарных частиц и астрономическим наблюдениям различных объектов во Вселенной.

Происхождение, эволюция и устройство Вселенной как целого изучаются космологией. Слово «космология» происходит от греч. kosmos – вселенная и logos – закон. Уже древние мудрецы задались вопросом о происхождении и устройстве Вселенной, поэтому космология – учение о строении мира – и космогония – учение о происхождении мира – были неотъемлемым компонентом философских систем древности.

Современная космология – это раздел астрономии, в котором аккумулированы частнонаучные данные физики и математики и универсальные философские принципы, космология представляет собой синтез научных и философских знаний. Именно этим определяется ее специфика. Выводы космологии почти полностью обусловлены теми философскими принципами, на которые опирается исследователь. Дело в том, что размышления о происхождении и устройстве Вселенной эмпирически труднопроверяемы и существуют в виде теоретических гипотез или математических моделей (4.1). Космолог движется от теории к практике, от модели к эксперименту, в этом случае роль исходных философских и общенаучных оснований существенно возрастает. Именно поэтому космологические модели радикально различаются между собой – в их основе лежат разные, порой конфликтующие мировоззренческие принципы. Понятно, что религиозная космология будет серьезно отличаться от космологии, построенной на материалистических мировоззренческих основаниях. В свою очередь любые космологические выводы также влияют на общефилософские представления об устройстве Вселенной, т. е. изменяют фундаментальные представления человека о мире и самом себе. Таким образом, можно сказать, что современная космология – это не только «физика», но и «философия», а иногда и «религия».

Классические космологические представления, сутью которых было утверждение абсолютности и бесконечности пространства и времени, а также неизменности и вечности Вселенной, сталкивались с двумя неразрешимыми парадоксами – гравитационным и фотометрическим. Гравитационный парадокс заключался в противоречии между исходными постулатами о бесконечности Вселенной и ее вечности. Так, если предположить бесконечность мира, то необходимо также признать и бесконечность действующих в нем сил тяготения. Бесконечность сил тяготения между небесными телами должна была бы привести к коллапсу, т. е. Вселенная не могла бы существовать вечно, а это противоречит постулату о ее вечности. Фотометрический парадокс также вытекает из постулата бесконечности Вселенной. Если Вселенная бесконечна, то в ней должно существовать бесконечное число небесных тел, а значит, светимость неба также должна быть бесконечной, однако этого не происходит.

Парадоксы классической науки разрешаются в современной релятивистской космологии.

Началом революции в астрономии считается создание в 1917 г. А. Эйнштейном стационарной релятивистской космологической модели. В ее основу положена релятивистская теория тяготения, обоснованием которой служит общая теория относительности (3.2). А. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и времени, однако сохранил принцип стационарности, неизменности Вселенной во времени и ее конечности в пространстве. Свойства Вселенной, по мнению А. Эйнштейна, зависят от распределения в ней гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве. Сигнал, пущенный наблюдателем во Вселенной, вернется к нему с противоположной стороны. Согласно стационарной релятивистской модели пространство однородно и изотропно (3.2), материя распределена в нем равномерно, время бесконечно, а его течение не влияет на свойства Вселенной. Таким образом, несмотря на новизну и даже революционность идей, А. Эйнштейн в своей космологической теории ориентировался на привычную классическую мировоззренческую установку статичности мира: А. Эйнштейна более привлекал гармоничный и устойчивый мир, нежели мир противоречивый и неустойчивый. В конце жизни великий ученый с сожалением говорил о том, что теория статичной Вселенной не имеет эмпирического подтверждения.

В 1922 г. российский математик и физик А. Фридман выступил с критикой теории А. Эйнштейна. Его идеи стали началом нестационарной релятивисткой космологии. Космологическая концепция А. Фридмана основывается на нескольких принципах.

1. Космологический принцип однородности и изотропности пространства. Изотропность означает, что во Вселенной не существует выделенных точек и направлений. Однородность характеризует распределение вещества во Вселенной. Космологический постулат имеет сильный и слабый варианты. Слабый вариант предполагает независимость процессов, протекающих во Вселенной, от направления (изотропность) и места (однородность). Сильный вариант космологического принципа предполагает независимость (инвариантность преобразований) процессов не только от направления и места, но и от времени. Это значит, что Вселенная выглядит одинаково из любого места, в любом направлении и в любой момент времени. Этот принцип получил название совершенного космологического принципа.

2. Релятивистский принцип взаимосвязи пространства и времени и их зависимости от материи. Пространственно-временная метрика Вселенной задается гравитационными полями, признаются также искривленность пространства и замедление времени во всех частях Метагалактики. Пространственно-временная метрика описывается уравнениями общей теории относительности.

3. Принцип конечной скорости протекания любыгх физических процессов.

4. Принцип нестационарности Вселенной, поначалу основанный только на математических расчетах, согласно которым искривленное пространство не может быть стационарным, его кривизна должна меняться во времени.

Все эти принципы дают основание переносить данные, полученные в одной части Вселенной, на все остальные ее части.

А. фридман предложил три модели Вселенной. В первой рассматривается случай средней плотности вещества и неискривленности пространства. В такой ситуации Вселенная должна бесконечно расширяться из некоторой исходной точки. Во второй модели предполагалась плотность вещества меньше критической. В этом случае пространство обладает отрицательной кривизной, а Вселенная также должна неограниченно расширяться из начальной точки. В третьей модели рассматривался случай плотности вещества выше критической. В этой ситуации пространство должно иметь положительную кривизну, а Вселенная периодически расширяться и сжиматься.

Концепция А. фридмана некоторое время не имела эмпирического подтверждения. Однако в 1929 г. физик Э. Хаббл обнаружил эффект «красного смещения» в спектрах удаленных галактик. «Красное смещение» означает понижение частот электромагнитного излучения при удалении источника света от наблюдателя. Т. е. если источник света удаляется от нас, то воспринимаемая частота излучений уменьшается, а длины волн увеличиваются, линии видимого спектра смещаются в сторону более длинных красных волн. Оказалось, что «красное смещение» пропорционально расстоянию до источника света. Исследования Э. Хаб-бла подтвердили, что удаленные от нас галактики разбегаются, т. е. Вселенная находится в состоянии расширения, а значит, нестационарна. Другим важным экспериментальным свидетельством в пользу гипотезы расширяющейся Вселенной стало открытие реликтового излучения – слабого радиоизлучения, свойства которого являются в точности такими, какими они должны были быть на этапе горячей, взрывной Вселенной.

В 1927 г. бельгийский ученый Ж. Леметр предложил понятие сингулярности как исходное состояние Вселенной. Ж. Леметр предположил, что первоначальный радиус Вселенной равнялся 10-12см, а ее плотность– 1096г/см3, т. е. в начальном состоянии Вселенная должна представлять собой микрообьект, по размерам близкий к электрону. В 1965 г. С. Хокинг математически обосновал необходимость состояния сингулярности в любой модели расширяющейся Вселенной.

Представление о развитии Вселенной привело к постановке проблемы начала эволюции (рождения) Вселенной и ее конца (смерти). Вселенная развивается из исходного сингулярного состояния, радиус которого бесконечно мал, а плотность материи бесконечно велика, проходит различные этапы своего развития, а затем умирает. Состояние сингулярности можно трактовать как обрыв времени в прошлом. По-видимому, такой обрыв времени следует предположить и в будущем. В моделях пульсирующей Вселенной та точка, в которой расширение сменится сжатием, рассматривается как обрыв времени в будущем. Момент «начала» времени называется Большим Взрывом. Момент «конца» времени был назван Ф. Типлером Великим Стоком.

Если есть рождение и смерть, то можно говорить о возрасте Вселенной. Ученые рассчитали, что если бы скорость расширения была постоянной на протяжении всего существования Вселенной, то можно было бы говорить о возрасте в 18 млрд лет. Однако современная космология утверждает, что расширение Вселенной постепенно замедляется. Поэтому время, прошедшее с момента Большого Взрыва, может составить 12 млрд лет. Если же предположить существование космических сил отталкивания – такое допущение делается в инфляционных моделях, – то возраст Вселенной будет значительно больше. Современные космологи оценивают возраст Вселенной в 12–20 млрд лет.

С представлением о возрасте Вселенной связано понятие космологического горизонта, отделяющего доступную для наблюдений область пространства от недоступной. За время, прошедшее с момента возникновения Вселенной, свет мог пройти конечное расстояние, которое оценивается величиной в 6000 Мпк. Мы можем наблюдать только ту часть мира, которая находится в пределах этого радиуса, поскольку от более удаленных областей пространства свет еще не успел до нас дойти. Кроме того, удаленные области пространства мы видим такими, какими они были миллиарды лет назад. Космологический горизонт растет пропорционально времени, с каждым днем область доступной для наблюдения Вселенной увеличивается.

В 40-е гг. XX в. наступил новый этап развития космологии: для объяснения происхождения Вселенной американским физиком Дж. Гамов^хм б^1 ла предложена гипотеза Большого Взрыва. Согласно этой гипотезе, Вселенная возникла в результате взрыва из первоначального состояния сингулярности. Дальнейшая эволюция происходила поэтапно и сопровождалась, с одной стороны, дифференциацией, а с другой – усложнением структур. Этапы эволюции Вселенной называются эрами.

Адронная эра: длительность 10-7с, температура Вселенной составляет 1032К. Главными действующими лицами являются элементарные частицы, между которыми осуществляется сильное взаимодействие. Вселенная представляет собой разогретую плазму.

Лептонная эра: длительность 10 с, температура Вселенной 1015К. Главные действующие лица – лептоны (электроны, позитроны и др.).

Эра излучения:: длительность 1 млн лет, температура Вселенной 10 000 К. В это время во Вселенной преобладало излучение, а вещество было ионизированным.

Эра вещества:: длится и сейчас. Вселенная остывает, становится нейтральной и темной, образуется вещество. В начале этой эры возникают первые протозвезды и протогалак-тики. Излучение перестает взаимодействовать с веществом и начинает свободно перемещаться по Вселенной. Именно эти фотоны и нейтрино, остывшие до 3 К, наблюдаются сейчас в виде реликтового излучения.

Гипотезу Большого Взрыва называют также моделью горячей Вселенной, или стандартной моделью. Эта гипотеза стала общепринятой после открытия в 1965 г. реликтового излучения. Несмотря на стандартность и общепринятость, концепция Большого Взрыва не дает ответа на некоторые вопросы. Например, каковы причины образования галактик из ионизированного газа? Почему наблюдается асимметрия вещества и антивещества? Самой большой проблемой остается состояние сингулярности, введение которого требуется уравнениями общей теории относительности А. Эйнштейна.

Для моделирования первых мгновений существования Вселенной, прояснения причин Большого Взрыва и обьяс-нения сингулярности физиком А. Гутом была предложена инфляционная гипотеза, или модель инфляционной Вселенной. На данном этапе развития науки инфляционная концепция не может получить прямого эмпирического подтверждения, однако она предсказывает новые факты, которые в принципе могут быть проверены. Инфляционная теория описывает эволюцию Вселенной начиная с 10-45с после начала расширения. Модель раздувающейся (инфляционной) Вселенной не противоречит гипотезе Большого Взрыва, включая ее в качестве своего частного случая. Различие между концепцией Большого Взрыва и концепцией инфляционной Вселенной касается только первых мгновений существования мира– до 10-30с, принципиальных мировоззренческих расхождений между этими гипотезами нет.

Согласно инфляционной модели первоначальное состояние Вселенной – состояние квантовой супергравитации. Радиус Вселенной в этот момент составляет 10-50см. Это значительно меньше радиуса атомного ядра, который оценивается величиной 10-13см. Первоначальное состояние Вселенной – вакуум, особая форма материи, характеризующаяся высокой активностью. Вакуум как бы «кипит», в нем постоянно рождаются и уничтожаются виртуальные частицы. Возникновение частиц из вакуума описывается понятием флуктуации. Вакуум может находиться в состояниях, характеризующихся разными давлениями и энергиями. Если вакуум возбужден (так называемый ложный вакуум), то в процессе порождения и уничтожения виртуальных частиц возникает огромная сила космического отталкивания, которая и приводит к раздуванию «пузырей» – зародышей вселенных. Исходное состояние ложного вакуума можно сравнить с кипением воды в котле. Каждый из «пузырей» – домен, отдельная Вселенная, характеризующаяся собственными значениями фундаментальных физических констант. Считается, что наша Вселенная – один из «пузырей», возникших из вакуумной пены.

Раздувание, или быстрое расширение, было названо инфляцией. На фазе инфляции примерно в промежутке с 10-43с до 10-34с формируются пространственно-временные характеристики Вселенной. Таким образом, в рамках инфляционной модели предполагается существование мира без пространства и времени, поскольку в первой стадии раздувания Вселенной такие характеристики отсутствуют.

Во время фазы инфляции Вселенная «раздулась» до размера 101000000см, что намного превосходит размер наблюдаемой сейчас Метагалактики (1028см). Примерно через 10-34с после начала расширения неустойчивый вакуум распадается, а силы космического отталкивания иссякают. Как показали эксперименты, при падении температуры ниже 1027К наблюдаются процессы распада. Однако в силу того что распад частиц и античастиц идет по-разному, во Вселенной образуется незначительное преобладание вещества над антивеществом: на миллиард античастиц образуется миллиард плюс одна частица. Удовлетворительных объяснений этой асимметрии пока не найдено. Именно это избыточное вещество и стало «материалом» для Вселенной. Нарушение симметрии между веществом – антивеществом привело к нарушению равновесности системы, и она перешла в новое состояние, изменив свою структуру.

В это время во Вселенной начинает действовать известная нам сила гравитационного притяжения. Но поскольку начальный импульс расширения был очень сильным, Вселенная продолжает расширяться, однако значительно медленнее. Расширение сопровождается понижением температуры. На этом этапе Вселенная пуста, в ней нет ни излучения, ни вещества. Однако энергия, которая выделилась при распаде ложного вакуума, идет на мгновенный нагрев Вселенной до температуры примерно 1027К. Происходит своеобразная вспышка света. Энергия, мгновенно разогревшая Вселенную, сейчас понимается как суперсила, которая объединяла все известные четыре типа фундаментальных взаимодействий: гравитационное, сильное, слабое и электромагнитное (3.5).

На этом заканчивается стадия инфляции и начинается эволюция горячей Вселенной, описываемая моделью Большого Взрыва. Первый этап эволюции Вселенной был назван эрой Великого объединения.

Через 10-12с после Большого Взрыва температура Вселенной составляла около 1015К. В это время начинается образование известных нам частиц и античастиц. Однако в силу того что температура очень высока, свойства этих частиц сильно отличались от тех, которые наблюдаются сейчас. При падении температуры ниже 1015К возникают современные частицы, которые теперь становятся вполне различимыми.

При температуре 1013К кварки начинают объединяться в группы и образуются адроны – протоны и нейтроны. На этом этапе единая суперсила распадается на гравитационное, сильное и электрослабое взаимодействия. В конце первой секунды после Большого Взрыва температура Вселенной составляет 1010К.

В начале следующего этапа, длительность которого от 1 с до 1 млн лет, происходит разделение электрослабого взаимодействия на электромагнитное и слабое. Через минуту температура Вселенной падает до 108К, а еще через несколько минут складываются условия, при которых стали возможны ядерные реакции синтеза сложных элементов. В это время материя представляет собой плазму, на 10 % состоящую из ядер гелия и на 90 % – из ядер водорода. В момент, когда возникли атомы водорода и гелия, космическое вещество стало «прозрачным», проницаемым для фотонов, которые начинают излучаться в пространство. Сейчас мы можем наблюдать остаточные явления этого процесса в виде реликтового излучения. Из атомов водорода и гелия образовался газ, и сложились условия для формирования других химических элементов – бериллия и лития.

Через 1 млн лет после начала расширения Вселенной наступил этап образования звезд и галактик. В недрах звезд в результате термоядерных реакций стали синтезироваться тяжелые элементы, которые в результате взрывов звезд разбрасывались по Вселенной и становились строительным материалом для других космических объектов. Дальнейшая эволюция Вселенной пошла в направлении создания все более сложных структур, что в свое время привело к возникновению жизни и разума. Таким образом, микроэволюция выступила предпосылкой макроэволюции, а космоге-нез получил продолжение в гео– и химогенезе.

Несмотря на то что гипотезы Большого Взрыва и инфляционной Вселенной являются общепринятыми в научной среде, они порождают серьезные теоретические проблемы и подвергаются критике. Так, например, американский ученый К. Болдинг считает, что проблемы возникают уже на уровне общепринятых постулатов, лежащих в основе космологического моделирования, и нет никаких оснований заранее отвергать альтернативные подходы к пониманию Вселенной.

Самые большие проблемы современной космологии связаны с описанием ненаблюдаемого и труднообъяснимого состояния сингулярности, которое даже иногда называют аномальным фактом. Введение состояния сингулярности требуется математическими расчетами, но при этом само не поддается математическому описанию и представляет серьезную концептуальную проблему. Некоторые ученые вообще заявляют, что физическая теория, предсказывающая сингулярность, является несостоятельной, поскольку проблема сингулярности оставляет открытым фундаментальный вопрос космологии – о начальных параметрах Вселенной. Проблема сингулярности имеет важное мировоззренческое значение, поскольку разрушает представление о вечном и бесконечном мире и подталкивает к выработке новой картины мира.

Вторая проблема современной космологии связана с принципом экстраполяции на всю Вселенную законов, открытых в земных условиях. Возникает серьезный вопрос: правомочна ли такая экстраполяция? Причем речь идет не только о переносе «земных^> законов на „неземную“ область, но и об экстраполяции законов и свойств наблюдаемой Вселенной на принципиально ненаблюдаемую. Нет никаких доказательств того, что физические законы, открытые на Земле, действуют во всей Вселенной и на всех этапах ее эволюции. Как считают математики С. Хокинг и Г. Эллис, предположение о том, что законы физики, открытые и изученные в лаборатории, будут справедливы в других точках пространственно-временного континуума, безусловно, является очень смелым.

Трудности, с которыми сталкивается современная научная космология, используются как аргумент в пользу существования высшего разума, который и создает Вселенную. В этом случае научная картина мира подменяется теологической. В такого рода космологических концепциях состояния сингулярности и ложного вакуума рассматриваются как то самое «ничто», о котором говорится в религиозных текстах. Из этого «ничто» божественная сила творит мир. Точная «подогнанность» фундаментальных физических параметров нашей Вселенной, приведшая в конце концов к возникновению жизни и разума, также переинтерпретируется в телеологическом и теологическом духе и рассматривается как свидетельство высшего замысла, согласно которому и происходит эволюция мира (7.3).

Религиозные и мистические версии происхождения и развития Вселенной, маскирующиеся под научные объяснения, представляют собой различные варианты квазинаучного знания (1.1), которое на очередной волне ремифоло-гизации стремится завоевать прочные позиции в культуре. Следует все же сказать, что, несмотря на все трудности нынешних космологических моделей, наиболее приемлемым по-прежнему остается поиск естественных причин возникновения и эволюции Вселенной без апелляции к сверхъестественным силам и сущностям.


| |