Что такое равенство и неравенство чисел. Что такое равенство

РАВЕНСТВА С КОЛИЧЕСТВАМИ.

После того, как ребёнок познакомится с карточками-количествами от 1 до 20, Вы можете добавить к первому этапу обучения второй этап - равенства с количествами.

Что такое равенство? Это арифметическое действие и его результат.

Вы начинаете этот этап обучения с темы «Сложение».

Сложение.

К показу двух наборов карточек-количеств Вы добавляете равенства на сложение.

Научить этой операции очень легко. Фактически Ваш ребёнок уже несколько недель готов к этому. Ведь каждый раз, когда Вы показываете ему новую карточку, он видит, что на ней появилась одна дополнительная точка.

Малыш ещё не знает, как это называется, но уже имеет представление о том, что это такое и как оно действует.

Материал для примеров на сложение у Вас уже есть на обратной стороне каждой карточки.

Технология показа равенств выглядит примерно так: Вы хотите дать ребенку равенство: 1 +2 = 3. Как его можно показать?

Перед началом урока положите себе на колени лицевой стороной вниз, одна на другую, три карточки. Поднимая верхнюю карточку с одной спицей-костяшкой, говорите «один», затем откладываете её, говорите «плюс», показываете карточку с двумя костяшками, произносите «два», откладываете её и после слова «будет», показываете карточку с тремя костяшками, произнося «три».

В день Вы проводите три занятия с равенствами и на каждом занятии показываете по три разных равенства. Итого, в день малыш видит девять разных равенств.

Ребёнок без всяких объяснений понимает, что означает слово «плюс», его значение он сам выводит из контекста. Производя действия, Вы тем самым быстрее всяких объяснений демонстрируете подлинный смысл сложения. Рассказывая о равенствах, всегда придерживайтесь одной и той же манеры изложения, употребляя одни и те же термины. Сказав «Один плюс два будет три», не говорите потом «К одному прибавить два будет три». Когда Вы учите ребёнка фактам, он сам делает выводы и постигает правила. Если Вы меняете термины, то ребёнок имеет все основания думать, что и правила тоже изменились.

Заранее готовьте все карточки, необходимые для того или иного равенства. Не думайте, что Ваш ребёнок будет спокойно сидеть и смотреть, как Вы будете рыться в стопке карточек, подбирая нужные. Он просто удерёт и будет прав, поскольку его время стоит не меньше Вашего.

Старайтесь не составлять равенства, которые бы имели нечто общее и позволяли бы ребёнку предугадывать их заранее (такие равенства можно будет использовать позже). Вот пример таких равенств:

Гораздо лучше использовать такие:

1 +2 = 3 5+6=11 4 + 8 = 12

Ребенок должен увидеть математическую суть, у него вырабатываются математические навыки и представления. Примерно через две недели малыш делает открытие, что такое сложение: ведь за это время Вы показали ему 126 разных равенств на сложение.

Проверка.

Проверка на данном этапе представляет собой решение примеров.

Чем отличается пример от равенства?
Равенство - это действие с показанным ребёнку результатом.

Пример - это действие, которое надо выполнить. В нашем случае, Вы показываете ребёнку два ответа, а он выбирает правильный, т.е. решает пример.

Пример Вы можете выложить после обычного занятия с тремя равенствами на сложение. Пример Вы показываете так же, как до этого демонстрировали равенство. То есть перекладываете карточки в руках, проговаривая каждую вслух. Например, «двадцать плюс десять будет тридцать или сорок пять?» и показываете малышу две карточки, одна из которых с правильным ответом.

Карточки с ответами нужно держать на одинаковом расстоянии от глаз малыша и не допускать никаких подсказывающих действий.

При правильном выборе ребёнка Вы бурно выражаете свой восторг, целуете и хвалите его.

При ошибочном выборе ответа, не высказывая огорчения, Вы пододвигаете к малышу карточку с правильным ответом и задаёте вопрос: «Будет тридцать, не правда ли?». На подобный вопрос ребёнок обычно отвечает утвердительно. Обязательно похвалите ребёнка за этот правильный ответ.

Ну а если из десяти примеров Ваш малыш верно решает хотя бы шесть, значит, Вам точно пора переходить к равенствам на вычитание!

Если Вы не считаете нужным проверять ребёнка (и правильно!), то через 10-14 дней всё равно переходите к равенствам на вычитание!

Рассмотрим -Вычитание.

Вы перестаёте заниматься сложением и полностью переключаетесь на вычитание. Проводите по три ежедневных урока с тремя различными равенствами в каждом.

Озвучиваете равенства на вычитание так: «Двенадцать минус семь будет пять».

При этом Вы одновременно продолжаете показывать карточки-количества (два набора, по пять карточек в каждом) тоже три раза в день. Итого, у Вас будет девять ежедневных очень коротких уроков. Так Вы работаете не более двух недель.

Проверка

Проверка так же, как и в случае со сложением, может представлять собой решение примеров с выбором одного ответа из двух.

Рассмотрим-Умножение.

Умножение - это не что иное, как многократное сложение, так что это действие не станет большим открытием для Вашего ребёнка. Поскольку Вы продолжаете изучение карточек- количеств (два набора по пять карточек в каждом), у Вас есть возможность составления равенств на умножение.

Озвучиваете равенства на умножение так: «Два умножить на три будет шесть».

Ребёнок поймет слово «умножить» так же быстро, как он понял до этого слова «плюс» и «минус».

Вы по-прежнему проводите в день по три урока, в каждом из которых - по три разных равенства на умножение. Такая работа продолжается не более двух недель.

Продолжайте избегать предсказуемых равенств. Например таких, как:

Необходимо постоянно держать своего ребёнка в состоянии удивления и ожидания чего-то нового. Главным для него должен стать вопрос: «Что дальше?»- и на каждом занятии он должен получать на него новый ответ.

Проверка

Решение примеров Вы проводите так же, как в теме «Сложение» и «Вычитание». Если малышу понравились игры-проверя-лочки с карточками-количествами, Вы можете продолжать играть в них, повторяя таким образом новые, большие количества.

Придерживаясь предложенной нами схемы, Вы к этому времени уже можете завершить первый этап обучения математике - изучите количества в пределах 100. Теперь настало время познакомиться с карточкой, которая больше всего нравится детям.

Рассмотрим-Понятие нуля.

Говорят, что математики уже пятьсот лет изучают идею нуля. Правда это или нет, но дети, едва познав идею количества, тут же понимают и смысл его полного отсутствия. Они просто обожают ноль, и Ваше путешествие в мир чисел будет неполным, если Вы не покажете малышу карточку, на которой вообще не будет никаких точек (т.е. это будет абсолютно пустая карточка).

Чтобы знакомство малыша с нулём прошло весело и интересно, можно сопроводить показ карточки загадкой:

Дома - семеро бельчат, На тарелке - семь опят. Все грибочки съели белки. Что осталось на тарелке?

Произнося последнюю фразу, показываем карточку «ноль».

Вы будете использовать её практически каждый день. Она пригодится Вам для операций сложения, вычитания и умножения.

Работать с карточкой «нуль» Вы можете одну неделю. Эту тему ребёнок осваивает быстро. Как и прежде, в течение дня, Вы проводите три занятия. На каждом занятии Вы показываете малышу по три различных равенства на сложение, вычитание и умножение с нулём. Итого у Вас получится девять равенств в день.

Проверка

Решение примеров с нулём проходит по знакомой Вам схеме.

Рассмотрим -Деление.

Когда Вы прошли все карточки-количества от 0 до 100, у Вас есть весь необходимый материал для примеров на деление с количествами.

Технология показа равенств данной темы прежняя. Каждый день Вы проводите три занятия. На каждом занятии Вы показываете малышу по три разных равенства. Хорошо, если прохождение этого материала не будет превышать двух недель.

Проверка

Проверка представляет собой решение примеров с выбором одного ответа из двух.

Когда Вы прошли все количества и знакомы с четырьмя правилами арифметики, то можете всячески разнообразить и усложнить свои занятия. Для начала покажите равенства, где ис- пользуется одно арифметическое действие: только сложение, вычитание, умножение или деление.

Затем - равенства, где сочетаются сложение и вычитание или умножение и деление:

20 + 8-10=18 9-2 + 26 = 33 47+11-50 = 8

Чтобы не запутаться в карточках, Вы можете сменить способ проведения занятий. Теперь не обязательно показывать каждую карточку спиц- костяшек, можно показывать только ответ, а сами действия лишь проговаривать. В результате Ваши занятия станут короче. Вы просто говорите ребёнку: «Двадцать два разделить на одиннадцать, разделить на два будет один», - и показываете ему карточку «один».

В этой теме можно использовать равенства, между которыми есть какая-либо закономерность.

Например:

2*2*3= 12 2*2*6=24 2*2*8=32

При сочетании в равенстве четырёх арифметических действий, помните, что умножение и деление должны быть вынесены в начало равенства:

Не бойтесь демонстрировать равенства, которых больше ста, например,

промежуточный результат в

42 * 3 - 36 = 90,

где промежуточный результат равен 126 (42 * 3 = 126)

Ваш малыш отлично с ними справится!

Проверка представляет собой решение примеров с выбором одного ответа из двух. Вы можете продемонстрировать пример, показав все карточки равенства и две карточки для выбора ответа или просто проговорить всё равенство, показав малышу лишь две карточки для ответа.

Помните! Чем дольше Вы занимаетесь, тем быстрее нужно вводить новые темы. Как только Вы заметили первые признаки невнимания ребёнка или скуки - переходите к новой теме. Спустя время Вы можете вернуться к прежней теме (но для знакомства с ещё не показанными равенствами).

Последовательности

Последовательности - это те же самые равенства. Опыт работы родителей с этой темой показал, что последовательности детям очень интересны.

Последовательности на плюс - это возрастающие последовательности. Последовательности на минус - убывающие.

Чем разнообразнее будут последовательности, тем они интереснее малышу.

Приведём несколько примеров последовательностей:

3,6,9,12,15,18,2 (+3)

4, 8, 12, 16, 20, 24, 28 (+4)

5,10,15,20,25,30,35 (+5)

100,90,80,70,60,50,40 (-10)

72, 70, 68, 66, 64, 62, 60 (-2)

95,80,65,50,35,20,5 (-15)

Технология показа последовательностей может быть такой. Вы подготовили три последовательности на плюс.

Объявляете малышу тему урока, на полу выкладываете одну за другой карточки первой последовательности, озвучивая их.

Перемещаетесь с ребёнком в другой угол комнаты и точно так же выкладываете вторую последовательность.

В третьем углу комнаты Вы выкладываете третью последовательность, при этом озвучивая её.

Выкладывать последовательности можно и друг под другом, оставляя между ними промежутки.

Старайтесь всегда идти вперёд, двигаясь от простого к сложному. Варьируйте занятия: иногда произнося вслух то, что Вы показываете, а иногда показывайте карточки молча. В любом случае ребёнок видит развёрнутую перед ним последовательность.

Для каждой последовательности нужно использовать не менее шести карточек, иногда больше, для того чтобы ребёнку легче было определить сам принцип последовательности.

Как только Вы увидели блеск в глазах ребёнка, попробуйте добавить к трём последовательностям пример (т.е. проверьте его знания).

Пример показываете так: сначала выкладываете всю последовательность, как Вы обычно это делаете, а в конце поднимаете две карточки (одна карточка - та, которая идёт следующей в последовательности, а другая - случайная) и спрашиваете ребёнка: «Какая следующая?»

На первых порах карточки в последовательностях выкладывайте друг за другом, затем формы выкладывания можно менять: кладите карточки по кругу, по периметру комнаты и т.д.

Когда будет получаться всё лучше и лучше, не бойтесь использовать в последовательностях умножение и деление.

Примеры последовательностей:

4; 6; 8; 10; 12; 14 - в данной последовательности каждое следующее число увеличивается на 2;

2; 4; 7; 14; 17; 34 - в данной последовательности чередуется умножение и сложение (х 2; + 3);

2; 4; 8; 16; 32; 64 - в данной последовательности каждое следующее число увеличивается в 2 раза;

22; 18; 14; 10; 6; 2 - в данной последовательности каждое следующее число уменьшается на 4;

84; 42; 40; 20; 18; 9 - в данной последовательности чередуется деление и вычитание (: 2; - 2);

Знаки «больше», «меньше»

Эти карточки находятся в составе 110 карточек цифр и знаков (вторая составляющая часть методики АНАСТА).

Уроки знакомства малыша с понятиями «больше-меньше» будут очень короткими. Всё, что Вам нужно, - это показать три карточки.

Технология показа

Садитесь на пол и выкладываете каждую карточку перед ребёнком так, чтобы он мог видеть сразу все три карточки. Каждую карточку называете.

Озвучить можно так: «шесть больше трёх» или «шесть больше, чем три».

На каждом занятии Вы показываете ребёнку по три разных варианта неравенств с

карточками «больше» - «меньше». неравенств в день.

Таким образом, Вы демонстрируете девять разных

Как и прежде, Вы показываете каждое неравенство только один раз.

Через несколько дней к трём показам можно добавить пример. Это уже проверка, и проводится она так:

Положите на пол приготовленные заранее карточки, например, карточку с количеством «68» и карточку со знаком «больше». Спросите малыша: «Шестьдесят восемь больше какого числа?» или «Шестьдесят восемь больше пятидесяти или девяносто пяти?». Предложите ребёнку выбрать из двух карточек нужную. Верно указанную малышом карточку, Вы (или он сам) кладёте после знака «больше».

Можно положить перед ребёнком две карточки с количествами и дать ему возможность выбрать знак, который подходит, то есть > или <.

Равенства и неравенства

Обучить равенствам и неравенствам так же просто, как и понятиям «больше» и «меньше».

Вам понадобятся шесть карточек с арифметическими знаками. Их Вы тоже найдёте в составе 110 карточек цифр и знаков (вторая составляющая часть методики АНАСТА).

Технология показа

Вы решили показать ребёнку такие два неравенства и одно равенство:

8-6<10 −7 11-3= 9 −1 55-12^50 −13

Вы выкладываете их на полу последовательно так, чтобы ребёнок мог видеть сразу каждое из них. При этом Вы всё проговариваете, например: «Восемь минус шесть не равно десять минус семь».

Точно так же Вы проговариваете во время выкладывания оставшиеся равенство и неравенство.

На начальном этапе обучения этой теме выкладываются все карточки.

Затем можно будет показывать только карточки «равно» и «не равно».

В один прекрасный день Вы даёте возможность малышу показать свои знания. Выкладываете карточки с количествами, а ему предлагаете выбрать, карточку с каким знаком надо положить: «равно» или «не равно».

Прежде, чем начать изучать алгебру с малышом,надо познакомить его с понятием переменной величины, представленной буквой.

Обычно в математике используется буква x, но поскольку ее легко спутать со знаком умножения, рекомендуется использовать y.

Вы кладете сначала карточку с пятью бусинками — костяшек, затем знак +плюс (+), после него со знаком y, потом знак равенства и, наконец, карточку с семью бусинками- костяшками. Затем вы ставите вопрос: «Что означает здесь у?»

И сами отвечаете на него: «В этом уравнении означает два»

Проверка:

Примерно через одну - полторы недели занятий на данном этапе, Вы можете дать возможность малышу выбрать ответ.

ЧЕТВЁРТЫЙ ЭТАП РАВЕНСТВА С ЦИФРАМИ И КОЛИЧЕСТВАМИ

Когда Вы прошли цифры от 1 до 20, настало время для «наведения мостов» между цифрами и количествами. Для этого есть множество способов. Одним из самых простых является использование равенств и неравенств, отношений «больше» и «меньше», демонстрируемых с помощью карточек с цифрами и костяшками.

Технология показа.

Возьмите карточку с цифрой 12, положите её на пол, затем положите рядом с ней знак «больше», а затем карточку-количество 10, проговаривая при этом: «Двенадцать больше десяти».

Неравенства (равенства) могут выглядеть следующим образом:

Каждый (равенств) день состоит из трёх занятий, а каждое занятие - из трёх неравенств количествами и цифрами. Общее количество ежедневных равенств будет равно девяти. При этом Вы одновременно продолжаете изучать цифры с помощью двух наборов по пять карточек в каждом, тоже три раза в день.

Проверка.

Можно предоставлять ребёнку возможность выбора карточек «больше», «меньше», «равно» или составлять пример таким образом, чтобы малыш сам мог его закончить. Например, кладём карточку-количество 7, затем знак «больше» и предоставляем ребёнку возможность закончить пример, то есть выбрать карточку-количество, например, 9 или карточку-цифру, например, 5.

После того, как малыш понял связь между количествами и цифрами, можно приступать к решению равенств, используя карточки как с цифрами, так и с количествами.

Равенства с цифрами и количествами.

Используя карточки с цифрами и количествами, Вы проходите уже знакомые темы: сложение, вычитание, умножение, деление, последовательности, равенства и неравенства, дроби, уравнения, равенства в два и более действий.

Если Вы внимательно посмотрите примерную схему обучения математике, (стр. 20) то увидите, что конца занятиям нет. Придумывайте свои примеры для развития устного счёта ребёнка, соотносите количества с реальными предметами (орехи, ложки для гостей, кусочки порезанного банана, хлеба и т.д.) - словом, дерзайте, творите, выдумывайте, пробуйте! И у Вас всё получится!

социальное, один из основных, наряду со свободой, идеалов справедливого обществ. устройства. Понятие Р. имело различное содержание в разные историч. эпохи и у разных классов.

Проблема Р. возникла на заре истории человеч. об­щества вместе с делением на классы, появлением рабо­владения. Для рабовладельч. системы было характерно глубокое неравенство, полное бесправие рабов, к-рые считались «говорящим орудием». Обществ. неравенст­во в антич. эпоху распространялось также на бедные слои господствующего класса. В эпоху феодализма обществ. неравенство приняло иной вид, выступая в форме сословного. Наиболее бесправным классом было крестьянство, зависевшее от феодалов не только эко­номически, но и политически. Наряду с этим сущест­вовала иерархия в самом господствующем классе - от мелких до крупных феодалов и стоявшего над ними монарха.

Будучи самым ясным, простым и понятным массам, лозунг борьбы против неравенства служил вдохнов­ляющим стимулом восстаний рабов и крест. войн. Од­новременно развивалось теоретич. осмысление причин обществ. неравенства и путей его преодоления. В чис­ле первых, кто прямо связал его с частной собствен­ностью на средства произ-ва, были Мор и Кампанелла. Особенно четко эта связь была показана Руссо в его работе «Об общественном договоре». Взгляды утопис­тов и просветителей оказали огромное воздействие на обществ. практику; в Английской бурж. революции 17 в. и Великой франц. революции действовали радикальные течения, провозгласившие своей целью утверждение всеобщего социального Р. - левеллеры, т. е. уравни­тели, в Англии, бабувисты (последователи Бабефа) во Франции.

Бурж. революция и утверждение капиталистич. строя привели к значит. изменениям в обществ. отно­шениях. Впервые были отменены сословия и сослов­ные привилегии, провозглашен принцип Р. граждан перед законом. Вместе с тем обществ. практика обнару­жила ограниченный и иллюзорный характер Р. в ус­ловиях капитализма. Бурж. равноправие действитель­но лишь постольку, поскольку условием существова­ния частного предпринимательства является наличие на рынке свободной рабочей силы и право продавать и покупать ей. Не может быть и речи о социальном Р. в обществе, разделенном на антагонистич. классы эксплу­ататоров и эксплуатируемых.

В эпоху гос.-монополистич. капитализма, когда благодаря борьбе рабочего класса и достижениям науч.-технич. революции повысился уровень жизни в развитых капиталиотич. странах, бурж. пропаганда использует это в спекулятивных целях, утверждая, будто проблема Р. успешно решается в т. н. государст­ве благоденствия. Практика опровергает эти утвержде­ния. В странах капитала продолжает увеличиваться неравенство между осн. массой трудового населения и узким верхушечным слоем монополистов. Острота этой проблемы постоянно дает о себе знать в классовых столк­новениях, усиливающих общее кризисное состояние совр. капитализма. Растет разрыв между экономически развитыми капиталистич. странами и развивающимися странами, к-рые являются жертвами неоколониального грабежа.

Марксизм-ленинизм указал практич. пути преодо­ления обществ. неравенства, утверждения справедли­вых отношений между людьми в условиях социализма, а затем и коммунизма. Социалистич. революция совер­шает коренной переворот в системе обществ. отношений. Все члены общества становятся в одинаковые условия в главном - в отношении к средствам произ-ва. С лик­видацией эксплуататорских классов, построением со­циализма решается ряд др. кардинальных задач, свя­занных с проблемой обществ. Р.: утверждается полное и подлинное политич. равноправие граждан независи­мо от их происхождения, социального положения, религ. верований и т. д.; на основе ленинского решения национального вопроса устраняются вражда и недоверие между нациями, устанавливается полное равноправие в сфере нац. отношений; ликвидация дискриминации женщин и женского труда, целенаправленная работа об­щества по охране материнства, вовлечение женщин в активную трудовую деятельность способствуют преодо­лению их неравноправного положения. При социализ­ме обеспечивается равное право всех трудиться и по­лучать оплату по труду, широкий комплекс социальных и политич. прав, гарантируемых гос-вом, создаются обществ. фонды потребления, распределяемые, как правило, вне зависимости от трудового вклада челове­ка. Принципиальное значение имеет ликвидация про­тивоположности между городом и деревней, умствен­ным и физич. трудом.

Означая крупнейший прогресс в деле утверждения подлинного Р., социализм в то же время не решает проблемы полностью.В силу сохранившихся социальных различий (в т. ч. между городом и деревней, трудом умственным и физи­ческим, более и менее квалифицированным) остает­ся и определ. имущественное неравенство (хотя, ко­нечно, оно не идет ни в какое сравнение с гигантским разрывом в материальном положении людей, сущест­вующим в эксплуататорском обществе). Полностью эта проблема может быть решена только при коммунизме, когда будет введен принцип распределения по потреб­ности.

Коммунистич. Р. не имеет ничего общего с вульгар­ными представлениями об уравнении способностей, вкусов и потребностей людей. Именно в условиях изобилия и высокой сознательности людей возможно полное развитие их индивидуальности, раскрытие все­го разнообразия их творч. способностей. В конечном счете марксизм-ленинизм понимает под Р. полное унич­тожение классов, создание условий для всестороннего развития всех членов общества.

Марксистско-ленинская теория решительно отрицает уравниловку - лозунг, с к-рым, как правило, высту­пают последователи различных направлений мелкобурж. социализма. Равное распределение продукта независимо от трудового вклада и квалификации людей в совр. условиях неизбежно оборачивается пре­пятствием для роста производит. сил, ведет не к накоп­лению обществ. богатства (и, следовательно, не к рос­ту благосостояния масс), а к его оскудению. Иначе го­воря, уравниловка в конечном счете означает Р. в ни­щете. Попытки введения уравнит. распределения неиз­менно заканчивались крахом.

Наиболее адекватной религиозной формой выражения фундаментального этического Р. стала иудео-христианская монотеистическая концепция Р. людей как творений единого Создателя. Вместе с тем в христианской религиозно-этической доктрине наряду с положительным Р. духовных способностей, позволяющих стремиться к спасению, присутствует всеобщее отрицательное Р., порожденное последствиями первородного греха. В антич. традиции идея этического Р. впервые появляется в стоической философии в связи с признанием равной природной причастности всех индивидов к Божественному Логосу. В дальнейшей истории философско-этической мысли к указанным основаниям концепции равного достоинства человеческих личностей (Р. душ и потенциально равной природной рациональной способности) добавились вне-рациональное природное Р. (Р. в стремлении к счастью, в объеме потребностей и т.д.), а также Р. с т.зр. сверхприродной (трансцендентальной) рациональности.

Наиболее строгим выражением идеи этического Р. в новоевропейской философии следует считать второй практический принцип воли И. Канта, согласно которому к человечеству (в своем лице и в лице др.) следует относиться как к цели и никогда - только как к средству. При этом утверждение разного (неравного) достоинства существ, обладающих рациональной способностью, понимается Кантом как явная логическая ошибка.

Современные теоретики стремятся точнее обозначить тот комплекс общих свойств, которые в достаточной мере закрепляли бы признание Р. В него входят: специфически человеческие эмоции и желания, способность к мышлению и использованию языка, способность вести счастливую жизнь, способность к составлению жизненных планов и моральной автономии, способность к вынесению справедливых суждений и т.д. (Б. Уильяме, Г. Властос, В. Франкена и др.). Однако некоторые исследователи считают, что, избавляя общество от «сексизма», «расизма» и «национализма», указанный список порождает др. вид неравноправия - «видизм» («speciesism») по отношению к иным живым существам (П. Сингер).

Идея общественного Р. может быть представлена как попытка распространить абстрактный идеал равного достоинства, глубоко укорененный фактически во всех современных духовных традициях, на различные сферы общественной жизни. В их формировании задействована т.н. презумпция Р., высказанная еще Аристотелем и состоящая в том, что именно социальное неравенство, а не Р. нуждается в оправдании перед лицом справедливости (Л. Стефен, И. Берлин, Р. Хэар и др.). Др. словами, для признания неравенства легитимным следует привести основательные аргументы, отталкивающиеся от самой морали, религии, метафизики или беспристрастного анализа действительных условий существования. В легально-политической области процедура, конституирующая эгалитарные и антиэгалитарные концепции, создает следующие полярные т.зр.: идея Р. политических гражданских прав, Р. перед законом и идея естественной иерархии. В социально-экономической области возникают иные два полюса: идея волюнтаристски-уравнительного распределения благ и идея полного санкционирования любого вида автоматически сложившегося неравного их распределения. Промежуточную позицию занимают проекты уравнивания граждан (подданных) через ограничение автоматических распределительных процессов (теории Р.стартовых возможностей, контроля над Р. условий соревнования и, наконец, уравнительной коррекции его результатов).

Существует ряд интеллектуальных традиций, со времен античности специфически использующих понятие Р. Первая традиция восходит к представлению об общине, где отсутствуют институционализированная власть и собственность, царствуют семейные (братские) отношения и гарантировано всеобщее одинаковое изобилие (подчас за счет невзыскательности и простоты). Эта традиция достигает своего пика в разработке социалистической идеи.

Вторая традиция исходит из приватного потребления благ и состязательного Р. при их достижении, неизбежного из-за невозможности найти априорную процедуру выделения достойнейших. Такая (либеральная) модель присутствует уже в некоторых рассуждениях Аристотеля и стоиков. В ее рамках ведущей проблемой оказывается вопрос о совместимости понятий Р. и свободы. Классическая либеральная концепция Р., созданная Дж. Локком, исходит из их бесконфликтного совмещения. Это вызвано тем, что исторически проблематичность отношений свободы и Р. выявляется только тогда, когда освобождение от конкретных форм иерархического порядка не является основной тенденцией политической жизни. Однако уже с кон. 18 в. формируется противоположное мнение о том, что Р. есть результат зависти, эгоизма, омассовления культуры и управления обществом, а значит, оно явно противостоит свободе (Э. Берк, А. Токвиль и др.).

Неполное определение ↓

На бумаге написано следующее:

Три и два - это пять.

К трем прибавить два будет пять.

Складываем три и два, в результате получаем пять.

Три увеличить на два станет пять.

Сумма чисел три и два равна пяти.

Кстати, «роли», которые играют числа в этой записи, имеют такие названия:

первое слагаемое + второе слагаемое = сумма

Подобным же образом,

это не только «пять минус два равно три», но и:

Пять без двух - это три.

От пяти отнять два будет три.

Из пяти вычесть два получится три.

Пять уменьшить на два составит три.

Разность чисел пять и два равна трем.

Если уменьшаемое равно 5, а вычитаемое равно 2, то разность равна 3.

«Роли» чисел в примерах на вычитание называются так:

уменьшаемое − вычитаемое = разность

Семь - это столько же, сколько четыре плюс три.

Рассмотрим такую ситуацию. У Дениса есть 5 конфет. Его младший брат Матвей просит:

Денис раскладывает конфеты на две кучки. Одну кучку оставляет себе, другую дает Матвею. Спрашивается: как 5 конфет можно поделить на две кучки? Возможные ответы:

5 = 1 + 4 (Денис оставляет одну конфету себе, а четыре дает Матвею);
5 = 2 + 3;
5 = 3 + 2;
5 = 4 + 1.

Но это еще не все возможные варианты. Может оказаться так, что Денису эти конфеты вообще не нравятся, и он все их отдает Матвею:

А, может быть, Денис вовсе не захочет делиться конфетами, и тогда следует написать так:

Все эти ответы можно объединить в одну строчку:

Допустим, что какой-нибудь взрослый дядя - непрошеный экзаменатор - спросит у Дениса:

Денис теперь смело может ответить:

Это равно три плюс два.

И Денис будет совершенно прав. Действительно,

Но как же тогда грамотно попросить вычислить «два плюс три», чтобы ответом было одно-единственное число?

Грамотный вопрос звучит так:

Чему равно значение выражения 2 + 3?

Математическим выражением называется всё, про что можно спросить: «Это сколько? Какому числу это равно?» Мы уже встречались с такими выражениями, как «2 + 3», «5 − 2». Числа сами по себе тоже являются выражениями. Ведь не будет ошибкой утверждать, что

Значит, «2» - это выражение.

Ответ на вопрос: «Это сколько? Какому числу это равно?» - называется значением выражения. Например, значением выражения «2 + 3» является «5». Записывается это уже знакомым нам способом:

Если два выражения имеют одно и то же значение, то между ними ставится знак «=» и полученная запись называется равенством , например:

1 + 4 = 2 + 3;
7 = 2 + 5.

Мы уже знаем, что равенства могут образовывать цепочки:

5 = 0 + 5 = 1 + 4 = 2 + 3 = 3 + 2 = 4 + 1 = 5 + 0.

Если два выражения имеют разные значения, то ставить знак «=» между ними было бы неверно, но можно поставить другой знак, а именно «≠». Например,

1 ≠ 2 (читается: один не равен двум);
3 + 2 ≠ 4 (три плюс два не равно четырем);
10 ≠ 7 − 3 (десять не равно семи минус три).

Такие записи называются неравенствами . Однако такого рода неравенства часто оставляют некоторую неудовлетворенность. Вряд ли Денис скажет:

Мой возраст неравен возрасту Матвея.

Скорее всего, он выразится так:

Я старше Матвея. Мне больше лет, чем ему. Матвей младше меня. Ему меньше лет, чем мне.

Мы знаем, что Денису 7 лет, а Матвею 5. Мы можем записать так:

7 > 5 (читается: семь больше пяти; или: семь больше, чем пять)

5 < 7 (пять меньше семи; пять меньше, чем семь).

Через три года оба будут взрослее, но Денис так и останется старше Матвея:

7 + 3 > 5 + 3 (семь плюс три больше, чем пять плюс три);
5 + 3 < 7 + 3 (пять плюс три меньше, чем семь плюс три).

Записи, в которых присутствует символ «>» («больше») или «<» («меньше») тоже называются неравенствами . Неравенства могут образовывать цепочки:

0 < 1 < 2 < 3;
3 > 2 > 1 > 0.

Допустимы также смешанные цепочки, в которых присутствуют как равенства, так и неравенства. Пусть, например, спрашивается: что больше:

7 + 3 или 5 + 3?

Ответ на этот вопрос удобно представить в следующем виде:

7 + 3 = 10 > 8 = 5 + 3.

Вероятно, иногда Денису захочется сказать так:

Я старше Матвея на два года. Мне на два года больше, чем ему. Матвей младше меня на два года. Ему на два года меньше, чем мне.

Чтобы это записать с помощью чисел, снова понадобятся равенства. Такую запись можно сделать разными способами:

7 = 5 + 2;
5 = 7 − 2;
2 = 7 − 5.

Теперь поговорим о словах, которые принято употреблять, когда мы говорим об умножении и делении нацело. Пусть дано равенство

3 умножить на 5 равно 15;
произведение чисел 3 и 5 равно 15;
число 3 увеличили в 5 раз и получили 15;
число 5 увеличили в 3 раза и получили 15;
число 15 в 5 раз больше числа 3;
число 3 в 5 раз меньше числа 15;

«Роли» распределяются таким образом:

первый сомножитель ∙ второй сомножитель = произведение

В школе произведения всех чисел, которые меньше или равны десяти, записывают в виде большой скучной таблицы, называемой таблицей умножения. Эту таблицу заставляют учить наизусть. Для облегчения зубрежки, в русском языке для произведений из таблицы умножения имеются специальные названия, например,

2 ∙ 2 - дважды два;
3 ∙ 6 - трижды шесть;
4 ∙ 5 - четырежды пять;
5 ∙ 8 - пятью восемь
и тому подобное.

Рассмотрим теперь равенство

Прочесть эту запись можно так:

15 поделить на 3 равно 5;
15 разделить на 3 равно 5;
частное от деления числа 15 на число 3 равно 5;
отношение чисел 15 и 3 равно 5;
число 15 в 3 раза больше числа 5;
число 5 в 3 раза меньше числа 15.

«Роли» распределяются так:

делимое / делитель = частное

Задачи

2.1.1. Какие два числа надо сложить, чтобы результат был равен четырем? Выписать все возможные ответы.

2.1.2. Какое число надо вычесть из какого, чтобы результат был равен двум? Написать один из возможных ответов.

2.1.3. Указать, что из следующих записей является выражением, что равенством, что неравенством, что бессмыслицей. Какие из равенств и неравенств являются верными, а какие нет?

1
10
10 +
10 + 8
10 + 8 =
10 + 8 = 1
10 + 8 = 18
2
25
25 −
25 − 5
25 − 5 >
25 − 5 > 1
25 − 5 > 10
25 − 5 > 10 +
25 − 5 > 10 + 2
25 − 5 > 10 + 20

2.1.4. Найти значение выражений

37 + 54
98 − 73
и т.п.

2.1.5. Сравнить выражения (поставить между ними знак «=», «>» или «<»):

45 + 18 __ 71 − 16
78 − 14 __ 13 + 56
и т.п.

Пример записи решения:

63 = 45 + 18 > 71 − 16 = 55.

2.1.6. У Дениса 25 конфет, а у Матвея на 3 конфеты меньше. Сколько конфет у Матвея?

2.1.7. У Дениса 25 конфет, а у Матвея на 3 конфеты больше. Сколько конфет у Матвея?

2.1.8. У Дениса 25 конфет, а у Матвея 23 конфеты. У кого конфет больше и насколько?

2.1.9. У Дениса 33 конфеты, а у Матвея 35 конфет. У кого конфет меньше и насколько?

2.1.10. У Дениса было 25 конфет, а у Матвея было 23 конфеты. Денис съел 4 конфеты. У кого конфет теперь больше и насколько?

2.1.11. (Маленькая провокация) У Дениса было 25 конфет, а у Матвея было 23 конфеты. Денис съел 2 конфеты. У кого конфет теперь меньше и насколько?

2.1.12. У Дениса было 25 конфет, а у Матвея 23 конфеты. Денис съел 14 конфет, а Матвей съел 10 конфет. У кого конфет стало больше и насколько?

2.1.14. Денису 7 лет, а Матвею 5 лет. Сколько лет будет Матвею, когда Денису будет 10 лет? Сколько лет будет Денису, когда Матвею будет 10 лет?

2.1.15. У Дениса 20 конфет, а у Матвея в два раза меньше. Сколько конфет у Матвея?

2.1.16. У Дениса 5 конфет, а у Матвея в 3 раза больше. Сколько конфет у Матвея?

2.1.17. Начиная с этого этапа, задачи можно брать из пособий и задачников, официально рекомендованных для школьников и продающихся в книжных магазинах. Однако такие задачи часто сформулированы весьма заумно и требуют дополнительного редактирования. Например, имеется следующая задача (О. В. Узорова. 3000 задач и примеров по математике: 3-4 кл. Москва, 2001):

«Камни, которые врезаются в атмосферу Земли и полностью в ней сгорают, называются метеорами. Они загораются на высоте 100 км, и, горя, летят еще 30 км. Сколько километров до Земли остается пролететь пыли и пеплу от этого метеора?»

Если предложить ребенку задачу именно в таком виде, то есть риск погрязнуть в объяснениях относительно того, откуда берутся метеоры, чем они отличаются от метеоритов, что такое атмосфера, почему тела нагреваются при трении о воздух, и, вообще, как устроена Вселенная. Это всё вещи, конечно, интересные, но, раз уж мы решили заниматься математикой, то лучше ту же самую задачу перевести на более привычный язык. Вот один из возможных вариантов:

«От подъезда дома до магазина, где продается мороженое, 100 шагов. Папа отправился в магазин, чтобы купить Денису мороженое. Он прошел уже 30 шагов. Сколько шагов ему осталось пройти?»

После получения общих сведений о равенствах в математике переходим к более узким темам. Материал этой статьи даст представление о свойствах числовых равенств.

Yandex.RTB R-A-339285-1

Что такое числовое равенство

Первый раз мы сталкиваемся с числовыми равенствами еще в начальной школе, когда происходит знакомство с числами и понятием «столько же». Т.е. самые примитивные числовые равенства это: 2 = 2 , 5 = 5 и т.д. И на том уровне изучения мы называли их просто равенствами, без уточнения «числовые», и закладывали в них количественный или порядковый смысл (который несут натуральные числа). Например, равенство 2 = 2 будет соответствовать изображению, на котором – два цветка и на каждом сидит по две шмеля. Или, к примеру, две очереди, где вторыми по порядку стоят Вася и Ваня.

По мере появления знаний об арифметических действиях числовые равенства становятся сложнее: 5 + 7 = 12 ; 6 - 1 = 5 ; 2 · 1 = 2 ; 21: 7 = 3 и т.п. Затем начинают встречаться равенства, в записи которых участвуют числовые выражения разного рода. Например, (2 + 2) + 5 = 2 + (5 + 2) ; 4 · (4 − (1 + 2)) + 12: 4 − 1 = 4 · 1 + 3 − 1 и т.п. Дальше мы знакомимся с прочими видами чисел, и числовые равенства приобретают все более и более интересный и разнообразный вид.

Определение 1

Числовое равенство – это равенство, обе части которого состоят из чисел и/или числовых выражений.

Свойства числовых равенств

Сложно переоценить значимость свойств числовых равенств в математике: они являются опорой многому, определяют принцип работы с числовыми равенствами, методы решений, правила работы с формулами и многое другое.Очевидно, что существует необходимость детального изучения свойств числовых равенств.

Свойства числовых равенств абсолютно согласованы с тем, как определяются действия с числами, а также с определением равных чисел через разность: число a равно числу b только в тех случаях, когда разность a − b есть нуль. Далее в описании каждого свойства мы проследим эту связь.

Основные свойства числовых равенств

Изучать свойства числовых равенств начнем с трех базовых свойств, которые присущи всем равенствам. Перечислим основные свойства числовых равенств:

  • свойство рефлексивности: a = a ;
  • свойство симметричности: если a = b , то b = a ;
  • свойство транзитивности: если a = b и b = c , то a = c ,где a , b и c – произвольные числа.
Определение 2

Свойство рефлексивности обозначает факт равенства числа самому себе: к примеру, 6 = 6 , − 3 = − 3 , 4 3 7 = 4 3 7 и т.п.

Доказательство 1

Нетрудно продемонстрировать справедливость равенства a − a = 0 для любого числа a: разность a − a можно записать как сумму a + (− a) , а свойство сложения чисел дает нам возможность утверждать, что любому числу a соответствует единственное противоположное число − a , и сумма их есть нуль.

Определение 3

Согласно свойству симметричности числовых равенств: если число a равно числу b ,
то число b равно числу a . К примеру, 4 3 = 64 , тогда 64 = 4 3 .

Доказательство 2

Обосновать данное свойство можно через разность чисел. Условию a = b соответствует равенство a − b = 0 . Докажем, что b − a = 0 .

Запишем разность b − a в виде − (a − b) , опираясь на правило раскрытия скобок, перед которыми стоит знак минус. Новая запись выражения равна - 0 , а число, противоположное нулю, это нуль. Таким образом, b − a = 0 , следовательно: b = a .

Определение 4

Свойство транзитивности числовых равенств гласит, что два числа равны друг другу в случае их одновременного равенства третьему числу. К примеру, если 81 = 9 и 9 = 3 2 , то 81 = 3 2 .

Свойству транзитивности также отвечает определение равных чисел через разность и свойства действий с числами. Равенствам a = b и b = c соответствуют равенства a − b = 0 и b − c = 0 .

Доказательство 3

Докажем справедливость равенства a − c = 0 , из чего последует равенство чисел a и c . Посколькусложение числа с нулем не меняет само число, то a − c запишем в виде a + 0 − c . Вместо нуля подставим сумму противоположных чисел − b и b , тогда крайнее выражение станет таким: a + (− b + b) − c . Выполним группировку слагаемых: (a − b) + (b − c) . Разности в скобках равны нулю, тогда и сумма (a − b) + (b − c) есть нуль. Это доказывает, что, когда a − b = 0 и b − c = 0 , верно равенство a − c = 0 , откуда a = c .

Прочие важные свойства числовых равенств

Основные свойства числовых равенств, рассмотренные выше, являются базисом для ряда дополнительных свойств, довольно ценных в разрезе практики. Перечислим их:

Определение 5

Прибавив к (или убавив от) обеим частям числового равенства, являющегося верным, одно и то же число, получим верное числовое равенство. Запишем буквенно: если a = b , где a и b – некоторые числа, то a + c = b + c при любом c .

Доказательство 4

В качестве обоснования запишем разность (a + c) − (b + c) .
Это выражение легко преобразуется в вид (a − b) + (c − c) .
Из a = b по условию следует, что a − b = 0 и c − c = 0 , тогда (a − b) + (c − c) = 0 + 0 = 0 . Это доказывает, что (a + c) − (b + c) = 0 , следовательно, a + c = b + c ;

Определение 6

Если обе части верного числового равенства перемножить с любым числом или разделить на число, не равное нулю, тогда получим верное числовое равенство.
Запишем буквенно: когда a = b , то a · c = b · c при любом числе c . Если c ≠ 0 , тогда и a: c = b: c .

Доказательство 5

Равенство верно: a · c − b · c = (a − b) · c = 0 · c = 0 , и из него следует равенство произведений a · c и b · c . А деление на отличное от нуля число c возможно записать как умножение на обратное число 1 c ;

Определение 7

При a и b , отличных от нуля и равных между собой, обратные им числа также равны.
Запишем: когда a ≠ 0 , b ≠ 0 и a = b , то 1 a = 1 b . Крайнее равенство нетрудно доказать: с этой целью разделим обе части равенства a = b на число, равное произведению a · b и не равное нулю.

Укажем еще на пару свойств, которые позволяют осуществлять сложение и умножение соответствующих частей верных числовых равенств:

Определение 8

При почленном сложении верных числовых равенств получается верное равенство. Запись этого свойства такова: если a = b и c = d , то a + c = b + d для любых чисел a , b , c и d .

Доказательство 6

Обосновать это полезное свойство возможно, опираясь на указанные ранее свойства. Мы знаем, что к обеим частям верного равенства возможно прибавить любое число.
К равенству a = b прибавим число c , а к равенству c = d - число b , итогом станут верные числовые равенства: a + c = b + c и c + b = d + b . Крайнее запишем в виде: b + c = b + d . Из равенств a + c = b + c и b + c = b + d согласно свойству транзитивности следует равенство a + c = b + d . Что и нужно было доказать.

Необходимо уточнить, что почленно можно сложить не только два верных числовых равенства, но и три, и более;

Определение 7

Наконец, опишем такое свойство: почленное перемножение двух верных числовых равенств дает верное равенство. Запишем при помощи букв: если a = b и c = d , то a · c = b · d .

Доказательство 7

Доказательство этого свойства подобно доказательству предыдущего. Умножим обе части равенства на любое число, умножим a = b на c , а c = d на b , получим верные числовые равенства a · c = b · c и c · b = d · b . Крайнее запишем как b · c = b · d . Свойство транзитивности дает возможность из равенства a · c = b · c и b · c = b · d вывести равенство a · c = b · d , которое нам необходимо было доказать.

И вновь уточним, что данное свойство применимо для двух, трех и более числовых равенств.
Так, можно записать: если a = b , то a n = b n для любых чисел a и b , и любого натурального числа n .

Завершим данную статью, собрав для наглядности все рассмотренные свойства:

Если a = b , то b = a .

Если a = b и b = c , то a = c .

Если a = b , то a + c = b + c .

Если a = b , то a · c = b · c .

Если a = b и с ≠ 0 , то a: c = b: c .

Если a = b , a = b , a ≠ 0 и b ≠ 0 , то 1 a = 1 b .

Если a = b и c = d , то a · c = b · d.

Если a = b , то a n = b n .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

- (равенство устар.), равенства, ср. (книжн.). 1. только ед. отвлеч. сущ. к равный, одинаковость, полное сходство (по величине, качеству, достоинству и т.п.). «Без колхозов неравенство, в колхозах равенство прав.» Сталин. Равенство сил. Равенство… … Толковый словарь Ушакова

- (equality) Фактическое и/или нормативное утверждение равной компетенции или равного положения лиц, порождающее право на справедливое распределение (distributive justice). Квазиэмпирическое равенство индивидов относится к сугубо физическим… … Политология. Словарь.

Все люди рождаются свободными и равными в своем достоинстве и правах. Всеобщая декларация прав человека (1948 г.) Все люди рождаются равными и до самой смерти против этого борются. Лешек Кумор Люди рождаются свободными и неравными. Грант Аллен… … Сводная энциклопедия афоризмов

Одно из основных понятий социальной философии и самой социальной жизни. Основанием для всех видов Р. является формальное Р., которое в зависимости от сферы применения и выбора ценностной основы уравнивания формирует различные содержательные… … Философская энциклопедия

Социальное, характеристика определенного общественного состояния, составная часть многих социальных идеалов. Требования политического и социального равенства играли активную, часто революционную роль в историческом процессе. Стоицизм выработал… … Современная энциклопедия

Социальное характеристика определенного общественного состояния, составная часть многих социальных идеалов. Требования политического и социального равенства играли активную, часто революционную роль в историческом процессе. Стоицизм выработал… …

- (equality) Обладание одинаковым значением. Обозначается знаком равенства (=) и применимо к числам или алгебраическим выражениям. Если х и у являются действительными числами, выражение х=у означает, что х и у одинаковы. Если х и у – комплексные… … Экономический словарь

Равенство - Равенство ♦ Égalité Два существа равны, когда они одной величины или обладают одним и тем же количеством чего либо. Таким образом, понятие обретает смысл только относительно и предполагает наличие некой эталонной величины. Так, мы говорим … Философский словарь Спонвиля

См … Словарь синонимов

равенство - 1. Полное сходство, подобие (по величине, качеству, достоинству). 2. Качественное понятие, используемое в экономической науке в смысле "равенство доходов", "имущественное равенство", "равенство возможностей", чтобы… … Справочник технического переводчика

В логике и математике отношение взаимной заменяемости объектов, которые именно в силу этой заменяемости и считаются равными (а = b). Отношение равенства обладает свойствами рефлексивности (каждый объект равен самому себе), симметричности (если а … Большой Энциклопедический словарь

Книги

  • Равенство , Дэнни Дорлинг. Книга Дэнни Дорлинга `Равенство` богата очень интересными идеями. Большая степень равенства улучшает реальное качество жизни для подавляющего большинства населения. Она улучшает ка чество…