Катетов равна квадрату гипотенузы. Как применять теорему пифагора

Теорема Пифагора : Сумма площадей квадратов, опирающихся на катеты (a и b ), равна площади квадрата, построенного на гипотенузе (c ).

Геометрическая формулировка:

Изначально теорема была сформулирована следующим образом:

Алгебраическая формулировка:

То есть, обозначив длину гипотенузы треугольника через c , а длины катетов через a и b :

a 2 + b 2 = c 2

Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади . То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.

Обратная теорема Пифагора:

Доказательства

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы . Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.

Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например с помощью дифференциальных уравнений).

Через подобные треугольники

Следующее доказательство алгебраической формулировки - наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры .

Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим её основание через H . Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC . Введя обозначения

получаем

Что эквивалентно

Сложив, получаем

Доказательства методом площадей

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

Доказательство через равнодополняемость

  1. Расположим четыре равных прямоугольных треугольника так, как показано на рисунке 1.
  2. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол - 180°.
  3. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и двух внутренних квадратов.

Что и требовалось доказать.

Доказательства через равносоставленность

Элегантное доказательство при помощи перестановки

Пример одного из таких доказательств указан на чертеже справа, где квадрат, построенный на гипотенузе, перестановкой преобразуется в два квадрата, построенных на катетах.

Доказательство Евклида

Чертеж к доказательству Евклида

Иллюстрация к доказательству Евклида

Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны.

Рассмотрим чертеж слева. На нём мы построили квадраты на сторонах прямоугольного треугольника и провели из вершины прямого угла С луч s перпендикулярно гипотенузе AB, он рассекает квадрат ABIK, построенный на гипотенузе, на два прямоугольника - BHJI и HAKJ соответственно. Оказывается, что площади данных прямоугольников в точности равны площадям квадратов, построенных на соответствующих катетах.

Попытаемся доказать, что площадь квадрата DECA равна площади прямоугольника AHJK Для этого воспользуемся вспомогательным наблюдением: Площадь треугольника с той же высотой и основанием, что и данный прямоугольник, равна половине площади заданного прямоугольника. Это следствие определения площади треугольника как половины произведения основания на высоту. Из этого наблюдения вытекает, что площадь треугольника ACK равна площади треугольника AHK (не изображённого на рисунке), которая, в свою очередь, равна половине площади прямоугольника AHJK.

Докажем теперь, что площадь треугольника ACK также равна половине площади квадрата DECA. Единственное, что необходимо для этого сделать, - это доказать равенство треугольников ACK и BDA (так как площадь треугольника BDA равна половине площади квадрата по указанному выше свойству). Равенство это очевидно, треугольники равны по двум сторонам и углу между ними. Именно - AB=AK,AD=AC - равенство углов CAK и BAD легко доказать методом движения: повернём треугольник CAK на 90° против часовой стрелки, тогда очевидно, что соответствующие стороны двух рассматриваемых треугольников совпадут (ввиду того, что угол при вершине квадрата - 90°).

Рассуждение о равенстве площадей квадрата BCFG и прямоугольника BHJI совершенно аналогично.

Тем самым мы доказали, что площадь квадрата, построенного на гипотенузе, слагается из площадей квадратов, построенных на катетах. Идея данного доказательства дополнительно проиллюстрирована с помощью анимации, расположенной выше.

Доказательство Леонардо да Винчи

Доказательство Леонардо да Винчи

Главные элементы доказательства - симметрия и движение.

Рассмотрим чертёж, как видно из симметрии, отрезок C I рассекает квадрат A B H J на две одинаковые части (так как треугольники A B C и J H I равны по построению). Пользуясь поворотом на 90 градусов против часовой стрелки, мы усматриваем равенство заштрихованных фигур C A J I и G D A B . Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей квадратов, построенных на катетах, и площади исходного треугольника. С другой стороны, она равна половине площади квадрата, построенного на гипотенузе, плюс площадь исходного треугольника. Последний шаг в доказательстве предоставляется читателю.

Доказательство методом бесконечно малых

Следующее доказательство при помощи дифференциальных уравнений часто приписывают известному английскому математику Харди , жившему в первой половине XX века.

Рассматривая чертёж, показанный на рисунке, и наблюдая изменение стороны a , мы можем записать следующее соотношение для бесконечно малых приращений сторон с и a (используя подобие треугольников):

Доказательство методом бесконечно малых

Пользуясь методом разделения переменных, находим

Более общее выражение для изменения гипотенузы в случае приращений обоих катетов

Интегрируя данное уравнение и используя начальные условия, получаем

c 2 = a 2 + b 2 + constant.

Таким образом, мы приходим к желаемому ответу

c 2 = a 2 + b 2 .

Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми вкладами от приращения разных катетов.

Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения (в данном случае катет b ). Тогда для константы интегрирования получим

Вариации и обобщения

  • Если вместо квадратов построить на катетах другие подобные фигуры, то верно следующее обобщение теоремы Пифагора: В прямоугольном треугольнике сумма площадей подобных фигур, построенных на катетах, равна площади фигуры, построенной на гипотенузе. В частности:
    • Сумма площадей правильных треугольников, построенных на катетах, равна площади правильного треугольника, построенного на гипотенузе.
    • Сумма площадей полукругов, построенных на катетах (как на диаметре), равна площади полукруга, построенного на гипотенузе. Этот пример используется при доказательстве свойств фигур, ограниченных дугами двух окружностей и носящих имя гиппократовых луночек .

История

Чу-пей 500–200 до нашей эры. Слева надпись: сумма квадратов длин высоты и основания есть квадрат длины гипотенузы.

В древнекитайской книге Чу-пей говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. Гарпедонаптам можно было бы возразить, что их способ построения становиться излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, например рисунки, изображающие столярную мастерскую.

Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника . Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой-на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал следующий вывод:

Литература

На русском языке

  • Скопец З. А. Геометрические миниатюры. М., 1990
  • Еленьский Щ. По следам Пифагора. М., 1961
  • Ван-дер-Варден Б. Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 1959
  • Глейзер Г. И. История математики в школе. М., 1982
  • В.Литцман, «Теорема Пифагора» М., 1960.
    • Сайт о теореме Пифагора с большим числом доказательств материал взят из книги В.Литцмана, большое число чертежей представлено в виде отдельных графических файлов.
  • Теорема Пифагора и пифагоровы тройки глава из книги Д. В. Аносова «Взгляд на математику и нечто из нее»
  • О теореме Пифагора и способах ее доказательства Г. Глейзер, академик РАО, Москва

На английском

  • Теорема Пифагора на WolframMathWorld (англ.)
  • Cut-The-Knot, секция посвящённая теореме пифагора, около 70 доказательств и обширная дополнительная информация (англ.)

Wikimedia Foundation . 2010 .

Геометрия – наука не простая. Она может пригодиться как для школьной программы, так и в реальной жизни. Знание многих формул и теорем упростит геометрические вычисления. Одна из наиболее простых фигур в геометрии – это треугольник. Один из разновидностей треугольников, равносторонний, имеет свои особенности.

Особенности равностороннего треугольника

Согласно определению, треугольник – это многогранник, который имеет три угла и три стороны. Это плоская двумерная фигура, ее свойства изучаются в средней школе. По типу угла различают остроугольные, тупоугольные и прямоугольные треугольники. Прямоугольный треугольник – такая геометрическая фигура, где один из углов равен 90º. Такой треугольник имеет два катета (они создают прямой угол), и одну гипотенузу (она находится напротив прямого угла). В зависимости от того, какие величины известны, существует три простых способа вычислить гипотенузу прямоугольного треугольника.

Первый способ найти гипотенузу прямоугольного треугольника. Теорема Пифагора

Теорема Пифагора – древнейший способ вычислить любую из сторон прямоугольного треугольника. Звучит она так: “В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов”. Таким образом, чтобы вычислить гипотенузу, следует вывести квадратный корень из сумы двух катетов в квадрате. Для наглядности приведены формулы и схема.

Второй способ. Вычисление гипотенузы с помощью 2-х известных величин: катета и прилегающего угла

Одно из свойств прямоугольного треугольника гласит, что отношение длины катета к длине гипотенузы, равносильно косинусу угла между этиv катетом и гипотенузой. Назовем известный нам угол α. Теперь, благодаря известному определению, можно легко сформулировать формулу для вычисления гипотенузы: Гипотенуза = катет/cos(α)


Третий способ. Вычисление гипотенузы с помощью 2х известных величин: катета и противолежащего угла

Если известен противолежащий угол, возможно снова воспользоваться свойствами прямоугольного треугольника. Отношение длины катета и гипотенузы равносильно синусу противолежащего угла. Снова назовем известный угол α. Теперь для вычислений применим немного другую формулу:
Гипотенуза = катет/sin (α)


Примеры, которые помогут разобраться с формулами

Для более глубокого понимания каждой из формул, следует рассмотреть наглядные примеры. Итак, предположим, дан прямоугольный треугольник, где есть такие данные:

  • Катет – 8 см.
  • Прилегающий угол cosα1 – 0.8.
  • Противолежащий угол sinα2 – 0.8.

По теореме Пифагора: Гипотенуза = корень квадратный из (36+64) = 10 см.
По величине катета и прилежащего угла: 8/0.8 = 10 см.
По величине катета и противолежащего угла: 8/0.8 = 10 см.

Разобравшись в формуле, можно с легкостью вычислить гипотенузу с любыми данными.

Видео: Теорема Пифагора

Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение

между сторонами прямоугольного треугольника .

Считается, что доказана греческим математиком Пифагором, в честь которого и названа.

Геометрическая формулировка теоремы Пифагора.

Изначально теорема была сформулирована следующим образом:

В прямоугольном треугольнике площадь квадрата , построенного на гипотенузе , равна сумме площадей квадратов ,

построенных на катетах.

Алгебраическая формулировка теоремы Пифагора.

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

То есть, обозначив длину гипотенузы треугольника через c , а длины катетов через a и b :

Обе формулировки теоремы Пифагора эквивалентны, но вторая формулировка более элементарна, она не

требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и

измерив только длины сторон прямоугольного треугольника .

Обратная теорема Пифагора.

Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то

треугольник прямоугольный.

Или, иными словами:

Для всякой тройки положительных чисел a , b и c , такой, что

существует прямоугольный треугольник с катетами a и b и гипотенузой c .

Теорема Пифагора для равнобедренного треугольника.

Теорема Пифагора для равностороннего треугольника.

Доказательства теоремы Пифагора.

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема

Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие

можно объяснить лишь фундаментальным значением теоремы для геометрии.

Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них:

доказательства методом площадей , аксиоматические и экзотические доказательства (например,

с помощью дифференциальных уравнений ).

1. Доказательство теоремы Пифагора через подобные треугольники.

Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся

напрямую из аксиом. В частности, оно не использует понятие площади фигуры.

Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим

её основание через H .

Треугольник ACH подобен треугольнику AB C по двум углам. Аналогично, треугольник CBH подобен ABC .

Введя обозначения:

получаем:

,

что соответствует -

Сложив a 2 и b 2 , получаем:

или , что и требовалось доказать.

2. Доказательство теоремы Пифагора методом площадей.

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они

используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

  • Доказательство через равнодополняемость.

Расположим четыре равных прямоугольных

треугольника так, как показано на рисунке

справа.

Четырёхугольник со сторонами c - квадратом,

так как сумма двух острых углов 90°, а

развёрнутый угол — 180°.

Площадь всей фигуры равна, с одной стороны,

площади квадрата со стороной (a+b ), а с другой стороны, сумме площадей четырёх треугольников и

Что и требовалось доказать.

3. Доказательство теоремы Пифагора методом бесконечно малых.


Рассматривая чертёж, показанный на рисунке, и

наблюдая изменение стороны a , мы можем

записать следующее соотношение для бесконечно

малых приращений сторон с и a (используя подобие

треугольников):

Используя метод разделения переменных, находим:

Более общее выражение для изменения гипотенузы в случае приращений обоих катетов:

Интегрируя данное уравнение и используя начальные условия, получаем:

Таким образом, мы приходим к желаемому ответу:

Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной

пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми

вкладами от приращения разных катетов.

Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения

(в данном случае катет b ). Тогда для константы интегрирования получим:

ИЗМЕРЕНИЕ ПЛОЩАДЕЙ ГЕОМЕТРИЧЕСКИХ ФИГУР.

§ 58. ТЕОРЕМА ПИФАГОРА 1 .

__________
1 Пифагор - греческий учёный, живший около 2500 лет назад (564-473 гг. до нашей эры).
_________

Пусть дан прямоугольный треугольник, стороны которого а , b и с (черт. 267).

Построим на его сторонах квадраты. Площади этих квадратов соответственно равны а 2 , b 2 и с 2 . Докажем, что с 2 = а 2 + b 2 .

Построим два квадрата МКОР и М"К"О"Р" (черт. 268, 269), приняв за сторону каждого из них отрезок, равный сумме катетов прямоугольного треугольника АBС.

Выполнив в этих квадратах построения, показанные на чертежах 268 и 269, мы увидим, что квадрат МКОР разбился на два квадрата с площадями а 2 и b 2 и четыре равных прямоугольных треугольника, каждый из которых равен прямоугольному треугольнику АВС. Квадрат М"К"О"Р" разбился на четырёхугольник (он на чертеже 269 заштрихован) и четыре прямоугольных треугольника, каждый из которых также равен треугольнику АBС. Заштрихованный четырёхугольник - квадрат, так как стороны его равны (каждая равна гипотенузе треугольника АBС, т. е. с ), а углы - прямые / 1 + / 2 = 90°, откуда / 3 = 90°).

Таким образом, сумма площадей квадратов, построенных на катетах (на чертеже 268 эти квадраты заштрихованы), равна площади квадрата МКОР без суммы площадей четырёх равных треугольников, а площадь квадрата, построенного на гипотенузе (на чертеже 269 этот квадрат тоже заштрихован), равна площади квадрата М"К"О"Р", равного квадрату МКОР, без суммы площадей четырёх таких же треугольников. Следовательно, площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах.

Получаем формулу с 2 = а 2 + b 2 , где с - гипотенуза, а и b - катеты прямоугольного треугольника.

Теорему Пифагора кратко принято формулировать так:

Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

Из формулы с 2 = а 2 + b 2 можно получить такие формулы:

а 2 = с 2 - b 2 ;
b
2 = с 2 - а 2 .

Этими формулами можно пользоваться для нахождения неизвестной стороны прямоугольного треугольника по двум данным его сторонам.
Например:

а) если даны катеты а = 4 см, b =3 см, то можно найти гипотенузу (с ):
с 2 = а 2 + b 2 , т. е. с 2 = 4 2 + 3 2 ; с 2 = 25, откуда с = √25 =5 (см);

б) если даны гипотенуза с = 17 см и катет а = 8 см, то можно найти другой катет (b ):

b 2 = с 2 - а 2 , т. е. b 2 = 17 2 - 8 2 ; b 2 = 225, откуда b = √225 = 15 (см).

Следствие: Если в двух прямоугольных треугольниках АВС и А 1 В 1 С 1 гипотенузы с и с 1 равны, а катет b треугольника АBС больше катета b 1 треугольника А 1 В 1 C 1 ,
то катет а треугольника АВС меньше катета а 1 треугольника А 1 В 1 C 1 . (Сделать чертёж, иллюстрирующий это следствие.)

В самом деле, на основании теоремы Пифагора получим:

а 2 = с 2 - b 2 ,
а 1 2 = с 1 2 - b 1 2

В записанных формулах уменьшаемые равны, а вычитаемое в первой формуле больше вычитаемого во второй формуле, следовательно, первая разность меньше второй,
т. е. а 2 < а 1 2 . Откуда а < а 1 .

Упражнения.

1. Пользуясь чертежом 270, доказать теорему Пифагора для равнобедренного прямоугольного треугольника.

2. Один катет прямоугольного треугольника равен 12 см, другой - 5 см. Вычислить длину гипотенузы этого треугольника.

3. Гипотенуза прямоугольного треугольника равна 10 см, один из катетов равен 8 см. Вычислить длину другого катета этого треугольника.

4. Гипотенуза прямоугольного треугольника равна 37 см, один из его катетов равен 35 см. Вычислить длину другого катета этого треугольника.

5. Построить квадрат, по площади вдвое больший данного.

6. Построить квадрат, по площади вдвое меньший данного. Указание. Провести в данном квадрате диагонали. Квадраты, построенные на половинах этих диагоналей, будут искомыми.

7. Катеты прямоугольного треугольника соответственно равны 12 см и 15 см. Вычислить длину гипотенузы этого треугольника с точностью до 0,1 см.

8. Гипотенуза прямоугольного треугольника равна 20 см, один из его катетов равен 15 см. Вычислить длину другого катета с точностью до 0,1 см.

9. Какой длины должна быть лестница, чтобы её можно было приставить к окну, находящемуся на высоте 6 м, если нижний конец лестницы должен отстоять от здания на 2,5 м? (Черт. 271.)

    Никак не забываемая теорема Пифагора. Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов. Другими словами в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на его катетах.

    Обозначив длину гипотенузы треугольника через c, а длины катетов через a и b:

    Гипотенуза - это одна из сторон прямоугольного треугольника. Также в этом треугольнике имеются два катета .

    При этом, гипотенуза - это сторона, которая находится напротив прямого угла. А катеты - это стороны, которые образуют данный угол.

    В соответствие с теоремой Пифагора, квадрат гипотенузы будет равен сумме квадратов катетов .

    То есть, AB = AC + BC.

    Также верно и обратное утверждение - если выполняется это равенство в треугольнике, то этот треугольник является прямоугольным.

    Это свойство помогает решать немало геометрических задач.

    Существует и несколько другая формулировка этой теоремы: площадь квадрата, который построен на гипотенузе, равна сумме площадей квадратов, построенных на катетах.

    Квадрат гипотенузы равен сумме квадратов катетов...со школы наизусть. Это одно из тех правил, которые запомнились навсегда.)))

    Квадрат гипотенузы равен сумме квадратов катетов

    Это точно, квадрат гипотенузы равен сумме квадратов катетов. Безусловно это нам преподавали и что это теорема Пифагора не оставляет сомнения, так приятно среди обычной рутины вспомнить то что учили совсем давно.

    Это зависит от длины этой гИпотенузы. Если она равна одному метру, то е квадрат - один квадратный метр. А если она, к примеру, равна 39,37 дюйма, то е квадрат равен 1550 квадратных дюймов, тут уж ничего не поделаешь.

    Квадрат гипотенузы равен сумме квадратов катетов - теорема Пифагора (кстати, самый легкий параграф в учебнике геометрии)

    Да, квадрат гипотенузы равен сумме квадратов катетов. Вроде так нас учили в школе. Сколько лет прошло, а мы до сих пор помним эту, любимую нами, теорему. Наверное, напрячься и доказать смогу, как по школьной программе.

    Еще говорили считалочку Пифагоровы штаны, во все стороны равны

    Нам учительница говорила, что если вы спите и вдруг пожар - Вы должны знать теорему Пифагора))) Равен сумме квадратов катетов

    Квадрат гипотенузы равен сумме квадратов двух других сторон треугольника (катетов).

    Это можно запомнить, а можно раз и навсегда понять, почему это так.

    для начала рассмотрим прямоугольный треугольник с одинаковыми катетами и расположим его внутри квадрата со стороной, равной гипотенузе.

    Площадь большого квадрата будет равна площади четырех одинаковых треугольников внутри него.

    Быстро все посчитаем и получим нужный нам результат.

    В случае, если катеты не одинаковые, тоже все довольно просто:

    площадь большого квадрата равна сумме площадей четырех одинаковых треугольников плюс площадь квадрата посредине.

    Как ни крути - всегда получаем равенство

    сумма квадратов катетов равна квадрату гипотенузы.

    Одна из самых известных в геометрии, теорема Пифагора гласит:

    Эта теорема касается прямоугольного треугольника, то есть такого, один из углов которого равен 90 градусам. Стороны прямого угла называются катетами, а косой - гипотенузой. Так вот, если нарисовать три квадрата с основанием у каждой из сторон треугольника, то площади двух квадратов возле катета равняется площади квадрату возле гипотенузы.