Основные понятия механики деформируемого твердого тела.

ЛЕКЦИЯ 1. Введение. Основные понятия, гипотезы и принципы. Расчётная схема сооружения. Виды нагрузок.

Введение. Курс «Сопротивление материалов» является одним из разделов науки, которая носит название «Механика деформируемого твёрдого тела». В теоретической механике рассматривается равновесие и движение абсолютно твёрдого тела. Механика деформируемого твёрдого тела – наука, в которой изучаются законы движения и равновесия твёрдых тел в условиях их деформирования под действием различных нагрузок. Деформация твёрдого тела заключается в изменении его размеров и формы.

Например, стержень под действием растягивающих сил удлиняется, балка, нагруженная поперечной силой, изгибается, вал под действием скручивающих нагрузок претерпевает кручение. Эти примеры проиллюстрированы на рис. 1.1.

Рис. 1.1. Различные виды сопротивления стержня: а) растяжение; б) изгиб; в) кручение

При действии нагрузок в твёрдых телах возникают внутренние силы, которые характеризуют сопротивление тела деформации. Внутренние силы, отнесённые к единице площади, называются напряжениями .

Сопротивление материалов – наука о методах расчёта инженерных конструкций и их элементов на прочность, жёсткость и устойчивость. Правильное решение этих задач является основой при расчёте и проектировании конструкций, поскольку оно обеспечивает их надёжность в течение всего периода эксплуатации.

Прочность – способность конструкции и её элементов не разрушаясь нести приложенные к ним нагрузки в течение всего времени эксплуатации. Потеря прочности балки под действием силы показана на рис. 1.2.а на примере разрушения балки.

Жёсткость - способность конструкции и её элементов деформироваться в заданных пределах. Обычно жёсткость конструкций регламентируется нормами проектирования. Например, максимальные прогибы балок (рис. 1.2.б), применяемых в строительстве находятся в пределах v = (1/200÷1/1000) , углы закручивания валов обычно не должны превышать 2 0 на 1 метр длины вала и т.д.

Устойчивость - способность конструкции и её элементов сохранять первоначальную форму равновесия. Например, для стержня на рис. 1.2.в при F < F cr будет устойчивой первоначальная прямолинейная форма равновесия, а при F > F cr устойчивым будет изогнутое состояние стержня. При этом стержень будет работать не только на сжатие, но и на изгиб, что приведёт его к быстрому разрушению из-за потери устойчивости.

Рис. 1.2. Иллюстрации потери стержнем: а) прочности; б) жесткости;

в) устойчивости

Кроме того, что сооружение должно быть прочным, жёстким и устойчивым, оно должно быть ещё и экономичным.

Некоторые сведения из истории науки о сопротивлении материалов . Начало этой науки относят к 1638 году, когда Галилео Галилей опубликовал свой труд «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению».

В дальнейшем проблемами поведения конструкций под нагрузкой занимались Кулон, братья Бернулли, Эйлер, Лагранж, Гук. Их работы, в основном, относились к математической стороне задачи и не получили в то время практического применения.

В начале XIX века сопротивление материалов становится основой для расчётов сооружений и машин. Инженер и математик Навье в 1826 году во Франции издал первый курс сопротивления материалов, в котором суммировался весь накопленный в то время объём знаний по этой науке. В это время в России и за рубежом появляются механические лаборатории для испытания материалов с целью определения их механических свойств и проверки теоретических выводов.

В последнее время методы механики деформируемого твёрдого тела усиленно развиваются на базе использования ЭВМ и достижений в физике твёрдого тела.

Основные понятия, гипотезы и принципы . Одним из основных понятий механики деформируемого твёрдого тела является понятие о деформации тела при различных воздействиях. В процессе деформирования изменяется взаимное расположение частиц тела, которые получают перемещения .

Как правило, эти перемещения считаются малыми по сравнению с размерами тела.

Вводится ряд гипотез и допущений, касающихся характера процесса деформирования тела и свойств его материала.

Деформирование называют абсолютно упругим (гипотеза идеальной упругости тела) , если после снятия нагрузки деформации полностью исчезают и восстанавливаются первоначальные размеры и форма тел.

Наличие остаточных деформаций характеризует пластические свойства материала. Процесс деформирования тела с учётом пластических деформаций изучается в курсе теории пластичности.

При нагружении тела с фиксацией нагрузки на определённом уровне с течением времени деформации могут увеличиться, такое явление называют ползучестью. С другой стороны, если деформации тела в течение определённого периода времени остаются неизменными, то внутренние силы и напряжения в теле могут уменьшиться. Такое явление называется релаксацией напряжений .

На основе гипотезы о сплошности тела материал считается сплошным и полностью заполняющим объём, ограниченный поверхностью тела. При этом не учитывается молекулярное состояние вещества.

Строение и состав материала могут быть неодинаковыми в различных точках. В природе все тела более или менее неоднородны. Для многих строительных конструкционных материалов вводится гипотеза об однородности тела , что соответствует осреднению свойств материала по всему объёму.

Материал тела имеет определённые физико-механические характеристики. Если эти характеристики одинаковы по всем направлениям, то материал называется изотропным , а при их различии – анизотропным . Свойством анизотропии в той или иной степени обладают все материалы, но если она незначительна, то её можно пренебречь и считать материал изотропным.

Большое значение в механике деформируемого твёрдого тела имеетпринцип суперпозиции или принцип независимости действия сил . Он справедлив при выполнении закона Гука. Согласно этому принципу какой-либо результат действия нагрузки (деформации, опорные реакции) можно представить в виде суммы аналогичных результатов действия по отдельности всех составляющих нагрузки. Например, удлинение стержня на рис.1.3.а от сил F 1 и F 2 равно сумме его удлинений от раздельного действия этих сил (рис. 1.3.б и 1.3.в)

Рис. 1.3. Иллюстрация принципа независимости действия сил

Использование принципа Сен-Венана позволяет вносить упрощения в расчётные схемы. Этот принцип в середине XIX века сформулировал французский математик и механик. Согласно принципу Сен-Венана напряжённое состояние тела на достаточном удалении от области действия локальных нагрузок мало зависит от детального способа приложения этих нагрузок (рис. 1.4).

Рис. 1.4. Иллюстрация принципа Сен-Венана

Расчётная схема сооружения. Расчёт любой конструкции начинается с построения её расчётной схемы. При этом вводятся схематизации и упрощения, касающиеся характера действия нагрузок, условий опирания, типов конструктивных элементов и т.п. Расчётная схема отображает всё существенное для работы данной конструкции и не содержит второстепенных факторов, мало влияющих на результаты её расчёта.

По геометрическим признакам выделяют три типа расчётных схем.

1. Стержни или брусья (рис. 1.5.а), у которых длина значительно больше размеров поперечного сечения (стойка, вал, балка). Они могут иметь различную форму поперечного сечения (круг, прямоугольник, двутавр, и т.п.), они бывают сплошными и полыми (например, труба), криволинейными и прямолинейными, с постоянными или переменными по длине размерами сечения.

Рис. 1.5. Схемы расчётных элементов: а) стержень; б) пластина;

в) массивное тело

2. Пластины и оболочки (рис 1.5.б) имеют один размер – толщину - намного меньше двух других размеров (плиты перекрытий, панели зданий,).

3. Массивное тело (рис 1.5.в) имеет размер во всех трёх направлениях одного порядка (блоки фундаментов, гидротехнических сооружений).

В инженерных конструкциях широко применяются стержневые системы (рис. 1.6), состоящие из стержней, например рамы и фермы.

Рис. 1.6. Стержневые системы: а) рамы; б) фермы

Виды нагрузок . Нагрузки, действующие на конструкции, классифицируют по ряду признаков.

    Поверхностные и объёмные нагрузки . Поверхностные нагрузки можно рассматривать как результат взаимодействия различных конструктивных элементов друг с другом или с различными физическими объектами (грунт, вода, снег). Объёмные нагрузки действуют на каждую частицу внутри тела (собственный вес конструкции, силы инерции).

    Активные и реактивные нагрузки. Активные нагрузки, как правило, известны. Реактивные нагрузки – реакции связей, возникают в местах закрепления конструктивного элемента и подлежат определению.

    Распределённые и сосредоточенные нагрузки. Все поверхностные нагрузки являются распределёнными по некоторой поверхности конструкции (снег, ветер). Эти нагрузки характеризуются интенсивностью q , которая может быть переменной или постоянной. В последнем случае нагрузка называется равномерно распределённой . При расчёте стержней распределённая по площади нагрузка приводится к линейной, распределённой по длине стержня. При малой площади распределения нагрузку можно считать сосредоточенной .

    Статические и динамические нагрузки. При статическом нагружении пренебрегают силами инерции, такое нагружение характеризуется постепенным нарастанием нагрузки до её конечного значения. При динамическом нагружении нагрузки прикладываются внезапно или ударно. В этом случае учёт сил инерции и частоты колебаний является обязательным.

    Постоянные и временные нагрузки. К постоянным нагрузкам относят те, которые должны действовать в течение всего периода эксплуатации конструкции (собственный вес). Временные носят периодический характер (давление людей и оборудования на перекрытия здания).

Даётся краткое изложение всех разделов механики деформируемого тела: теории упругости, вязкоупругости, пластичности и ползучести. Рассмотрены модели тонких тел, теория устойчивости и механика разрушения. Представлен необходимый математический аппарат.
Книга адресована научным работникам, инженерам, аспирантам и студентам университетов.

Линеаризация уравнений.
Термин «деформируемое твёрдое тело» содержит противоречие. Поэтому введено понятие абсолютно твёрдого тела. Но нельзя понять, как тело держит нагрузку, не рассматривая деформацию - от неё возникают внутренние силы.

Конструкционные материалы «справляются с нагрузкой» уже при малых деформациях. Энергию упругой деформации при этом можно считать квадратичной формой. Однако для линейности задачи необходима ещё малость поворотов. В тонких телах (стержни, пластины, оболочки) при малых локальных деформациях изменение формы может быть очень значительным, задача нелинейна из-за больших поворотов.

ОГЛАВЛЕНИЕ
Предисловие
1 Математические средства
1.1 Векторы и тензоры
1.2 Линии, поверхности и поля
1.3 О простейших задачах математической физики
1.4 Функции комплексного переменного
1.5 Элементы вариационного исчисления
1.6 Асимптотические методы
2 Общие законы механики
2.1 Система материальных точек
2.2 Абсолютно твёрдое тело
2.3 Относительное движение
2.4 Принцип виртуальной работы
2.5 Уравнения Лагранжа
2.6 Гамильтонова механика
2.7 Статика
2.8 Колебания
2.9 Неголономные системы
3 Основы механики деформируемого тела
3.1 Модель сплошной среды. Дифференцирование
3.2 Деформация и поворот
3.3 Поле скоростей
3.4 Объёмное расширение и баланс массы
3.5 Напряжения и баланс импульса
3.6 Баланс моментов и его следствия
3.7 Виртуальная работа
3.8 Законы термодинамики
3.9 Определяющие уравнения
3.10 Переход к отсчётной конфигурации
3.11 Линеаризация уравнений
4 Классическая линейная упругость
4.1 Полная система уравнений
4.2 Общие теоремы статики
4.3 Уравнения в перемещениях
4.4 Определение перемещений по деформациям. Уравнения совместности
4.5 Сосредоточенная сила в неограниченной среде
4.6 Вариационные принципы
4.7 Антиплоская деформация
4.8 Кручение стержней
4.9 Плоская задача
4.10 Контактные задачи
4.11 Температурные деформации и напряжения
4.12 Моментная среда Коссера
5 Тонкие тела
5.1 Особенности механики тонких тел
5.2 Нелинейная теория стержней
5.3 Линейная теория стержней
5.4 Задача Сен-Венана
5.5 Асимптотическое расщепление трёхмерной задачи
5.6 Изгиб пластин
5.7 Линейная теория оболочек
5.8 Нелинейно-упругие оболочки
5.9 Тонкостенные стержни
6 Динамика упругих тел
6.1 Колебания упругих тел
6.2 Волны в упругой среде
6.3 Динамика стержней
6.4 Метод возмущений для линейных систем
6.5 Нелинейные колебания
6.6 Критические скорости роторов
7 Устойчивость равновесия
7.1 Основы теории устойчивости
7.2 Устойчивость стержней
7.3 Неконсервативные задачи
7.4 Уравнения в вариациях для нелинейных оболочек
7.5 Устойчивость пластин
7.6 Вращение гибкого вала в трубке-оболочке
8 Малые пластические деформации
8.1 Экспериментальные данные
8.2 Определяющие уравнения
8.3 Полый шар под действием внутреннего давления
8.4 Балки и диски
8.5 Кручение
8.6 Плоская деформация
8.7 Изгиб жёстко-пластических пластин
8.8 Вариационные принципы для жёстко-пластического тела
8.9 Теоремы о предельной нагрузке
9 Разрушение
9.1 О критериях прочности
9.2 Напряжённое состояние у фронта трещины
9.3 Силы, действующие на фронт трещины
9.4 Учёт сил сцепления
9.5 J-интеграл и определение КИН
9.6 Рост трещин
9.7 Длительная прочность и накопление повреждений
10 Реология
10.1 Реологические модели
10.2 Линейная вязкоупругость
10.3 Пластические материалы
10.4 Идеальная жидкость
10.5 Вязкая жидкость
10.6 Ползучесть металлов
Список литературы
Предметный указатель.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Механика деформируемого твёрдого тела, Елисеев В.В., 2006 - fileskachat.com, быстрое и бесплатное скачивание.

Cтраница 1


Механика деформируемых тел в зависимости от дополнительных экспериментальных законов распадается на разделы, основные из которых следующие: теория упругости, теория пластичности, механика сыпучих тел.  

Механика деформируемых тел отражена в IV части книги.  

Механика деформируемых тел состоит из следующих основных разделов: а) теория упругости, б) теория пластичности, в) теория ползучести, г) механика сыпучих тел, к которым непосредственно примыкают теория прочности и механика разрушения.  

Механикой пластически деформируемых тел и с 1951 г. регулярно печатал статьи на эту тему в сборниках МВТУ. Ведя исследования по данной проблеме с целью разработки материалов для расширения и углубления учебного курса Теория пластических деформаций и продолжая другие исследования в этой области, А. И. Зимин заложил основы вихревой теории пластически деформируемых тел, доказав, что частицы металла при пластическом течении обязаны совершать вращательные движения. Для общего случая пластического деформирования, - писал А. И. Зимин, - его интенсивность должна определяться совокупностью линейной и угловой интенсивностей.  

Методы механики деформируемого тела, в частности механики контактного взаимодействия и механики разрушения, являются мощным средством аналитического исследования проблем трибологии.  

В механике деформируемых тел (иначе называемой механикой сплошной среды) при макрофизическом изучении свойств тел отвлекаются от молекулярного строения вещества и предполагают, что материя, составляющая тело, непрерывно заполняет некоторую часть пространства.  

К механике деформируемых тел относятся и другие дисциплины, такие, как математическая теория упругости, где рассматриваются, по существу, те же вопросы, что и в сопротивлении материалов. Различие между сопротивлением материалов и математической теорией упругости заключается в первую очередь в подходе к решению задач.  

В механике деформируемых тел среда рассматривается как сплошная с непрерывным распределением вещества. Поэтому напряжения, деформации и перемещения считаются непрерывными и дифференцируемыми функциями координат точек тела. Предполагается, что любые сколь угодно малые частицы твердого тела обладают одинаковыми свойствами. Такое толкование строения и свойств тел, строго говоря, противоречит действительности, так как все существующие в природе тела в микроскопическом смысле являются неоднородными. Под дефектами структуры (неоднородностью) следует понимать поликристаллическое строение материала, местные нарушения постоянства химического состава, наличие инородных примесей, микротрещины и другие дефекты, приводящие к локальным возмущениям поля напряжений. Однако в силу статистических законов относительные перемещения точек реального тела можно считать практически совпадающими с перемещениями соответствующих точек однородной модели.  

В механике деформируемого тела рассматривают физические величины (векторы и тензоры), не зависящие от выбора системы координат, но иногда их удобнее изучать в некоторых специально выбранных системах координат. Векторы и тензоры в каждой из систем координат задаются совокупностью величин, называемых компонентами вектора или тензора. Если эти компоненты заданы в одной системе координат, то они определены и в любой другой системе, ибо определение вектора и тензора включает и закон преобразования их компонент при переходе от одной системы координат (базиса) к другой. Одним из важнейших достоинств векторного исчисления является.  

В механике деформируемого тела рассматривают физические величины (векторы и тензоры), не зависящие от выбора системы координат, но иногда их удобнее изучать в некоторых специально выбранных системах координат. Векторы и тензоры в каждой из систем координат задаются совокупностью Величин, называемых компонентами вектора или тензора. Если эти компоненты заданы в одной системе координат, то они определены и в любой другой системе, ибо определение вектора и тензора включает и закон преобразования их компонент при переходе от одной системы координат (базиса) к другой. Одним из важнейших достоинств векторного исчисления является то, что уравнения, характеризующие состояние механической системы (уравнения равновесия или движения) можно формулировать в инвариантной форме по отношению к координатным системам.  

В механике деформируемого тела под деформацией понимают движение тела, сопровождающееся изменением расстояний между его материальными точками.  

К механике деформируемых тел относятся и другие дисциплины, такие, как математическая теория упругости, рассматривающая, по существу, те же вопросы, что и сопротивление материалов. Различие между сопротивлением материалов и математической теорией упругости заключается в первую очередь в подходе к решению задач.  

В механике деформируемого тела под деформацией понимают движение тела, сопровождаемое изменением расстояний между его материальными точками.  

Решение задач механики деформируемого тела для областей с разрезами (трещинами) связано с известными математическими трудностями вследствие наличия особых (сингулярных) точек. Большинство этих задач эффективно может быть решено только с применением ЭВМ.  

В основе механики деформируемых тел лежит понятие среды, которая сплошь заполняет тот или иной объем. За частицу такой среды можно принимать (в пределах макроскопического рассмотрения) некоторый элемент, заключенный в весьма малом ее объеме.  

Задачи науки

Это наука о прочности и податливости (жесткости) элементов инженерных конструкций. Методами механики деформируемого тела ведутся практические расчеты и определяются надежные (прочные, устойчивые) размеры деталей машин и различ­ных строительных сооружений. Вводной, начальной частью механи­ки деформируемого тела является курс, получивший название сопротивление материалов . Основные положения сопротивления материалов опираются на законы общей механики твердого тела и прежде всего на законы статики, знание которых для изучения механики деформируемого тела является совершенно необходимым. К механике деформируемых тел относятся и другие разделы, такие, как теория упругости, теория пластичности, теория ползучести, где рассматриваются те же вопросы, что и в сопротивлении материалов, но в более полной и строгой постановке.

Сопротивление же материалов ставит своей задачей создание практически приемлемых и простых приемов расчета на прочность и жесткость типичных, наиболее часто встречающихся элементов конструкций. При этом широко используются различные приближенные методы. Необходимость довести решение каждой практической задачи до числового результата заставляет прибегать в ряде слу­чаев к упрощающим гипотезам-предположениям, которые оправдыва­ются в дальнейшем путем сопоставления расчетных данных с экспе­риментом.

Общий подход

Многие физические явления удобно рассмат­ривать при помощи схемы, изображенной на рисунке 13:

Через X здесь обозначено некоторое воздействие (управление), подаваемое на вход системы А (машина, испытуемый образец материала и т. п.), а через Y – реакция (отклик) системы на это воздействие. Будем считать, что реакции Y снимаются с вы­хода системы А .

Под управляемой системой А условимся понимать любой объект, способный детерминированно реагировать на некоторое воздействие. Это значит, что все копии системы А при одинаковых условиях, т.е. при одинаковых воздействиях x(t) , ведут себя строго оди­наково, т.е. выдают одинаковые y(t) . Такой подход, конечно, явля­ется лишь некоторым приближением, так как практически невозможно получить ни две совершенно одинаковые системы, ни два одинаковых воздействия. Поэтому, строго говоря, следовало бы рассматривать не детерминированные, а вероятностные системы. Тем не менее, для ряда явлений удобно игнорировать этот очевидный факт и систему считать детерминированной, понимая все количественные соотношения между рассматриваемыми величинами в смысле соотношений между их математическими ожиданиями.

Поведение всякой детерминированной управляемой системы может быть определено некоторым соотношением, связывающим выход с входом, т.е. х с у . Это соотношение будем называть уравнением состояния системы. Символически это записывается так

где буква А , использованная ранее для обозначения системы может быть истолкована как некоторый оператор, позволяющий определить у(t) , если задается х(t) .

Введенное понятие о детерминированной системе с входом и выходом является весьма общим. Вот некоторые примеры таких сис­тем: идеальный газ, характеристики которого связаны уравнением Менделеева-Клапейрона, электрическая схема, подчиняющаяся тому или иному дифференциальному уравнению, лопатка паровой или газовой турбины, деформирующаяся во времени, действующими на нее силами и т. д. Нашей целью не является изучение произвольной управляемой системы, и поэтому в процессе изложения мы будем вводить необходимые дополнительные предположения, которые, ограничивая общность, позволят рассмотреть систему частного ви­да, наиболее подходящую для моделирования поведения деформируемого под нагрузкой тела.

Анализ всякой управляемой системы может быть в принципе осуществлен двумя способами. Первый из них микроскопический , основан на детальном изучении устройства системы и функционирова­ния всех образующих ее элементов. Если все это удается выполнить, то появляется возможность написать уравнение состояния всей системы, так как известно поведение каждого ее элемента и способы их взаимодействия. Так, например, кинетическая теория газов позволяет написать уравнение Менделеева-Клапейрона; знание устройства электрической цепи и всех ее характеристик дает возможность написать ее уравнения на основе законов электротех­ники (закона Ома, Кирхгофа и т. п.). Таким образом, микроскопи­ческий подход к анализу управляемой системы основан на рас­смотрении элементарных процессов, из которых складывается дан­ное явление, и в принципе способен дать прямое исчерпывающее описание рассматриваемой системы.

Однако микроподход не всегда может быть осуществлен ввиду сложного или еще не исследованного строения системы. Например, в настоящее время не представляется возможным написать урав­нение состояния деформируемого тела, как бы тщательно оно не было изучено. То же относится и к более сложным явлениям, протекающим в живом организме. В подобных случаях применяется так называемый макроскопический феноменологический (функциональный) подход, при котором не интересуются детальным устройством системы (например, микроскопическим строением деформиру­емого тела) и ее элементов, а изучают функционирование системы в целом, которое рассматривается как связь между входом и выходом. Вообще говоря, эта связь может быть произвольной. Одна­ко для каждого конкретного класса систем на эту связь наклады­ваются ограничения общего характера, а проведение некоторого минимума экспериментов может оказаться достаточным, чтобы выяснить эту связь с необходимыми подробностями.

Использование макроскопического подхода является, как уже отмечалось, во многих случаях вынужденным. Тем не менее, даже создание последовательной микротеории явления не может полностью обесценить соответствующую макротеорию, так как последняя основана на эксперименте и потому более надежна. Микротеория же при построении модели системы всегда вынуждена идти на некоторые упрощающие предположения, приводящие к различного рода неточностям. Например, все «микроскопические» уравнения состоя­ния идеального газа (уравнения Менделеева-Клапейрона, Ван-дер-Ваальса и др.) имеют неустранимые расхождения с эксперимен­тальными данными о реальных газах. Соответствующие же «макро­скопические» уравнения, основанные на этих экспериментальных данных, могут описать поведение реального газа как угодно точ­но. Более того, микроподход является таковым лишь на опреде­ленном уровне – уровне рассматриваемой системы. На уровне же элементарных частей системы он все же является макроподходом, так что микроанализ системы может рассматриваться как синтез ее составных частей, проанализированных макроскопически.

Поскольку в настоящее время микроподход еще не в силах привести к уравнению состояния деформируемого тела, естест­венно решать эту задачу макроскопически. Такой точки зрения и будем придерживаться в дальнейшем.

Перемещения и деформации

Реальное твердое тело, лишен­ное всех степеней свободы (возможности перемещаться в прост­ранстве) и находящееся под действием внешних сил, деформируется . Под деформацией понимаем изменение формы и размеров те­ла, связанное с перемещением отдельных точек и элементов тела. В сопротивлении материалов рассматриваются только такие пере­мещения.

Различают линейные и угловые перемещения отдельных точек и элементов тела. Этим перемещениям соответствуют линейные и уг­ловые деформации (относительное удлинение и относительный сдвиг).

Деформации делятся на упругие , исчезающие после снятия нагрузки, и остаточные .

Гипотезы о деформируемом теле. Упругие деформации обыч­но (во всяком случае, в конструкционных материалах, таких, как металлы, бетон, дерево и др.) незначительны, поэтому принимаются следующие упрощающие положения:

1. Принцип начальных размеров. В соответствии с ним принима­ется, что уравнения равновесия для деформируемого тела могут быть составлены без учета изменения формы и размеров тела, т.е. как для абсолютно твердого тела.

2. Принцип независимости действия сил. В соответствии с ним, если к телу приложена система сил (несколько сил), то действие каждой из них можно рассматривать независимо от действия остальных сил.

Напряжения

Под действием внешних сил в теле возникают внутренние силы, являющиеся распределенными по сечениям тела. Для определения меры внутренних сил в каждой точке вводится понятие напряжения . Напряжение определяется как внутренняя сила, приходящаяся на единицу площади сечения тела. Пусть упруго-деформированное тело находится в состоянии равновесия под действием некоторой системы внешних сил (рис.1). Через точку (например, k ), в которой хотим определить напряжение, мыс­ленно проводится произвольное сечение и отбрасывается часть тела (II) .Чтобы оставшаяся часть тела находилась в равновесии, взамен отброшенной части должны быть приложены внутренние силы. Взаимодействие двух частей тела происходит во всех точ­ках проведенного сечения, а потому внутренние силы действуют по всей площади сечения. В окрестности исследуемой точки выде­лим площадку . Равнодействующую внутренних сил на этой пло­щадке обозначим dF . Тогда напряжение в окрестности точки будет (по определению)

Н/м 2 .

Напряжение имеет размерность силы, деленной на площадь, Н/м 2 .

В данной точке тела напряжение имеет множество значений, в зависимости от направления сечений, которых через точку можно провести множество. Следовательно, говоря о напряжении, необходимо указать сечение.

В общем случае напряжение направлено под некоторым углом к сечению. Это полное напряжение можно разложить на две составляющие:

1. Перпендикулярную плоскости сечения – нормальное напряжение s .

2. Лежащую в плоскости сечения – касательное напряжение t .

Определение напряжений. Задача решается в три этапа.

1. Через рассматриваемую точку проводится сечение, в котором хотят определить напряжение. Одна часть тела отбрасывается и ее действие заменяется внутренними силами. Если все тело находится в равновесии, то и оставшаяся часть также должна нахо­диться в равновесии. Поэтому для сил, действующих на рассматриваемую часть тела, можно составить уравнения равновесия. В эти уравнения войдут как внешние, так и неизвестные внутренние си­лы (напряжения). Поэтому запишем их в виде

Первые слагаемые есть суммы проекций и суммы моментов всех внешних сил, действующих на оставшуюся после сечения часть те­ла, а вторые – суммы проекций и моментов всех внутренних сил, дейст­вующих в проведенном сечении. Как уже отмечено, в эти уравне­ния входят неизвестные внутренние силы (напряжения). Однако для их определения уравнений статики недостаточно , так как в противном случае пропадает разница между абсолютно твердым и деформируемым телом. Таким образом, задача определения напряжений является статически неопределимой .

2. Для составления дополнительных уравнений рассматриваются перемещения и деформации тела, в результате чего получают закон распределения напряжений по сечению.

3. Решая совместно уравнения статики и уравнения деформа­ций можно определить напряжения.

Силовые факторы. Условимся суммы проекций и суммы моментов внешних или внутренних сил называть силовыми факторами . Следовательно, силовые факторы в рассматриваемом сечении определяются как суммы проекций и суммы моментов всех внешних сил, расположенных по одну сторону этого сечения. Точно так же силовые факторы можно определить и по внутренним силам, действующим в рассматриваемом сечении. Силовые факторы, определенные по внешним и внутренним силам равны по величине и противоположны по знаку. Обычно в задачах бывают известны внешние силы, через которые и определяются силовые факторы, а по ним уже определяются напряжения.

Модель деформируемого тела

В сопротивлении материалов рассматривается модель деформируемого тела. Предполагается, что тело является деформируемым, сплошным и изотропным. В соп­ротивлении материалов рассматриваются преимущественно тела, имеющие форму стержней (иногда пластин и оболочек). Это объясняется тем, что во многих практических задачах схема конст­рукции приводится к прямолинейному стержню или к системе та­ких стержней (фермы, рамы).

Основные виды деформированного состояния стержней. Стержень (брус) – тело, у которого два размера малы по срав­нению с третьим (рис.15).

Рассмотрим стержень, находящийся в равновесии под действием приложенных к нему сил, как угодно расположенных в пространстве (рис.16).

Проводим сечение 1-1 и отбрасываем одну часть стержня. Рассмотрим равновесие оставшейся части. Воспользуемся пря­моугольной системой координат, за начало которой примем центр тяжести поперечного сечения. Ось X направим вдоль стержня в сторону внешней нормали к сечению, оси Y и Z – главные центральные оси сечения. Используя уравнения статики найдем силовые факторы

три силы

три момента или три пары сил

Таким образом, в общем случае в поперечном сечении стержня возникают шесть силовых факторов. В зависимости от характера внешних сил, действующих на стержень, возможны различные виды деформации стержня. Основными видами деформаций стержня яв­ляются растяжение , сжатие , сдвиг , кручение , изгиб . Соответственно им простейшие схемы нагружения выглядят следующим образом.

Растяжение-сжатие. Силы приложены вдоль оси стержня. Отбросив правую часть стержня, выделим силовые факторы по левым внешним силам (рис.17)

Имеем один ненулевой фактор – продольную силу F .

Строим диаграмму силовых факторов (эпюру).

Кручение стержня. В плоскостях торцевых сечений стерж­ня приложены две равные и противоположные пары сил с моментом М кр , называемым крутящим моментом (рис.18).

Как видно, в поперечном сечении скручиваемого стержня действует только один силовой фактор – момент Т = F h .

Поперечный изгиб. Он вызывается силами (сосредоточен­ными и распределенными), перпендикулярными оси балки и расположенными в плоскости, проходящей через ось балки, а также парами сил, действующими в одной из главных плоскостей стержня.

Балки имеют опоры, т.е. являются несвободными телами, типичной опорой является шарнирно-подвижная опора (рис.19).

Иногда используется балка с одним заделанным и другим свободным концом – консольная балка (рис.20).

Рассмотрим определение силовых факторов на примере рис.21a. Сначала необходимо найти реакции опор R A и .

ОСНОВНЫЕ ПОНЯТИЯ МЕХАНИКИ

ДЕФОРМИРУЕМОГО ТВЕРДОГО ТЕЛА

В настоящей главе приведены основные понятия, которые ранее изучались в курсах физики, теоретической механики и сопротивления материалов.

1.1. Предмет механики деформируемого твердого тела

Механика деформируемого твердого тела – это наука о равновесии и движении твердых тел и отдельных их частиц, учитывающая изменения расстояний между отдельными точками тела, которые возникают в результате внешних воздействий на твердое тело. В основу механики деформируемого твердого тела положены законы движения, открытые Ньютоном, поскольку скорости движения реальных твердых тел и отдельных их частиц относительно друг друга существенно меньше скорости света. В отличие от теоретической механики здесь рассматриваются изменения расстояний между отдельными частицами тела. Последнее обстоятельство налагает определенные ограничения на принципы теоретической механики. В частности в механике деформируемого твердого тела недопустим перенос точек приложения внешних сил и моментов.

Анализ поведения деформируемых твердых тел под воздействием внешних сил производится на базе математических моделей, отражающих наиболее существенные свойства деформируемых тел и материалов, из которых они выполнены. При этом для описания свойств материала используются результаты экспериментальных исследований, которые послужили основой для создания моделей материала. В зависимости от модели материала механика деформируемого твердого тела делится на разделы: теорию упругости, теорию пластичности, теорию ползучести, теорию вязкоупругости. В свою очередь механика деформируемого твердого тела входит в состав более общей части механики – механики сплошных сред. Механика сплошных сред, являясь разделом теоретической физики, изучает законы движения твердых, жидких и газообразных сред, а также плазмы и непрерывных физических полей.

Развитие механики деформируемого твердого тела в значительной мере связано с задачами создания надежных сооружений и машин. Надежность сооружения и машины, так же как и надежность всех их элементов обеспечиваются прочностью, жесткостью, устойчивостью и выносливостью в течение всего срока эксплуатации. Под прочностью понимается способность сооружения (машины) и всех его (ее) элементов сохранять свою целостность при внешних воздействиях без разделения на заранее не предусмотренные части. При недостаточной прочности сооружение или отдельные его элементы разрушаются путем разделения единого целого на части. Жесткость сооружения определяется мерой изменения формы и размеров сооружения и его элементов при внешних воздействиях. Если изменения формы и размеров сооружения и его элементов не велики и не мешают нормальной эксплуатации, то такое сооружение считается достаточно жестким. В противном случае жесткость считается недостаточной. Устойчивость сооружения характеризуется способностью сооружения и его элементов сохранять свою форму равновесия при действии случайных не предусмотренных условиями эксплуатации сил (возмущающих сил). Сооружение находится в устойчивом состоянии, если после устранения возмущающих сил оно возвращается к исходной форме равновесия. В противном случае происходит потеря устойчивости исходной формы равновесия, которая, как правило, сопровождается разрушением сооружения. Под выносливостью понимается способность сооружения сопротивляться воздействию переменных во времени сил. Переменные силы вызывают рост микроскопических трещин внутри материала сооружения, которые могут привести к разрушению элементов конструкции и сооружения в целом. Поэтому для предотвращения разрушения приходится ограничивать величины переменных во времени сил. Кроме того, низшие частоты собственных колебаний сооружения и его элементов не должны совпадать (или находиться вблизи) с частотами колебаний внешних сил. В противном случае сооружение или его отдельные элементы входят в резонанс, что может явиться причиной разрушения и вывода из строя сооружения.

Подавляющее большинство исследований в области механики деформируемого твердого тела направлено на создание надежных сооружений и машин. Сюда входят вопросы проектирования сооружений и машин и проблемы технологических процессов обработки материалов. Но сфера применения механики деформируемого твердого тела не ограничивается одними техническими науками. Ее методы широко используются в естественных науках, таких как геофизика, физика твердого тела, геология, биология. Так в геофизике с помощью механики деформируемого твердого тела изучаются процессы распространения сейсмических волн и процессы формирования земной коры, изучаются фундаментальные вопросы строения земной коры и т.д.

1.2. Общие свойства твердых тел

Все твердые тела состоят из реальных материалов, обладающих огромным количеством разнообразных свойств. Из них лишь только некоторые имеют существенное значение для механики деформируемого твердого тела. Поэтому материал наделяется лишь теми свойствами, которые позволяют с наименьшими затратами изучить поведение твердых тел в рамках рассматриваемой науки.