Вынесение общего множителя за скобки. Приведение дробей к общему знаменателю

Для решения примеров с дробями необходимо уметь находить наименьший общий знаменатель. Ниже приведена подробная инструкция.

Как найти наименьший общий знаменатель – понятие

Наименьший общий знаменатель (НОЗ) простыми словами – это минимальное число, которое делится на знаменатели всех дробей данного примера. Другими словами его называют Наименьшим Общим Кратным (НОК). НОЗ используют только в том случае, если знаменатели у дробей различны.

Как найти наименьший общий знаменатель – примеры

Рассмотрим примеры нахождения НОЗ.

Вычислить: 3/5 + 2/15.

Решение (Последовательность действий):

  • Смотрим на знаменатели дробей, убеждаемся, что они разные и выражения максимально сокращены.
  • Находим наименьшее число, которое делится и на 5, и на 15. Таким числом будет 15. Таким образом, 3/5 + 2/15 = ?/15.
  • Со знаменателем разобрались. Что будет в числителе? Помочь выяснить это нам поможет дополнительный множитель. Дополнительный множитель – это число, получившееся при делении НОЗ на знаменатель конкретной дроби. Для 3/5 дополнительный множитель равен 3, так как 15/5 = 3. Для второй дроби дополнительным множителем будет 1, так как 15/15 = 1.
  • Выяснив дополнительный множитель, умножаем его на числители дробей и складываем получившиеся значения. 3/5 + 2/15 = (3*3+2*1)/15 = (9+2)/15 = 11/15.


Ответ: 3/5 + 2/15 = 11/15.

Если в примере складываются или вычитаются не 2, а 3 или больше дробей, то НОЗ нужно искать уже для стольких дробей, сколько дано.

Вычислить: 1/2 – 5/12 + 3/6

Решение (последовательность действий):

  • Находим наименьший общий знаменатель. Минимальным числом, делящимся на 2, 12 и 6 будет 12.
  • Получим: 1/2 – 5/12 + 3/6 = ?/12.
  • Ищем дополнительные множители. Для 1/2 – 6; для 5/12 – 1; для 3/6 – 2.
  • Умножаем на числители и приписываем соответствующие знаки: 1/2 – 5/12 + 3/6 = (1*6 – 5*1 + 2*3)/12 = 7/12.

Ответ: 1/2 – 5/12 + 3/6 = 7/12.

Изначально я хотел включить методы приведения к общему знаменателю в параграф «Сложение и вычитание дробей». Но информации оказалось так много, а важность ее столь велика (ведь общие знаменатели бывают не только у числовых дробей), что лучше изучить этот вопрос отдельно.

Итак, пусть у нас есть две дроби с разными знаменателями. А мы хотим сделать так, чтобы знаменатели стали одинаковыми. На помощь приходит основное свойство дроби, которое, напомню, звучит следующим образом:

Дробь не изменится, если ее числитель и знаменатель умножить на одно и то же число, отличное от нуля.

Таким образом, если правильно подобрать множители, знаменатели у дробей сравняются - этот процесс называется приведением к общему знаменателю. А искомые числа, «выравнивающие» знаменатели, называются дополнительными множителями.

Для чего вообще надо приводить дроби к общему знаменателю? Вот лишь несколько причин:

  1. Сложение и вычитание дробей с разными знаменателями. По-другому эту операцию никак не выполнить;
  2. Сравнение дробей. Иногда приведение к общему знаменателю значительно упрощает эту задачу;
  3. Решение задач на доли и проценты. Процентные соотношения являются, по сути, обыкновенными выражениями, которые содержат дроби.

Есть много способов найти числа, при умножении на которые знаменатели дробей станут равными. Мы рассмотрим лишь три из них - в порядке возрастания сложности и, в некотором смысле, эффективности.

Умножение «крест-накрест»

Самый простой и надежный способ, который гарантированно выравнивает знаменатели. Будем действовать «напролом»: умножаем первую дробь на знаменатель второй дроби, а вторую - на знаменатель первой. В результате знаменатели обеих дробей станут равными произведению исходных знаменателей. Взгляните:

В качестве дополнительных множителей рассмотрим знаменатели соседних дробей. Получим:

Да, вот так все просто. Если вы только начинаете изучать дроби, лучше работайте именно этим методом - так вы застрахуете себя от множества ошибок и гарантированно получите результат.

Единственный недостаток данного метода - приходится много считать, ведь знаменатели умножаются «напролом», и в результате могут получиться очень большие числа. Такова расплата за надежность.

Метод общих делителей

Этот прием помогает намного сократить вычисления, но, к сожалению, применяется он достаточно редко. Метод заключается в следующем:

  1. Прежде, чем действовать «напролом» (т.е. методом «крест-накрест»), взгляните на знаменатели. Возможно, один из них (тот, который больше), делится на другой.
  2. Число, полученное в результате такого деления, будет дополнительным множителем для дроби с меньшим знаменателем.
  3. При этом дробь с большим знаменателем вообще не надо ни на что умножать - в этом и заключается экономия. Заодно резко снижается вероятность ошибки.

Задача. Найдите значения выражений:

Заметим, что 84: 21 = 4; 72: 12 = 6 . Поскольку в обоих случаях один знаменатель делится без остатка на другой, применяем метод общих множителей. Имеем:

Заметим, что вторая дробь вообще нигде ни на что не умножалась. Фактически, мы сократили объем вычислений в два раза!

Кстати, дроби в этом примере я взял не случайно. Если интересно, попробуйте сосчитать их методом «крест-накрест». После сокращения ответы получатся такими же, но работы будет намного больше.

В этом и состоит сила метода общих делителей, но, повторюсь, применять его можно лишь в том случае, когда один из знаменателей делится на другой без остатка. Что бывает достаточно редко.

Метод наименьшего общего кратного

Когда мы приводим дроби к общему знаменателю, мы по сути пытаемся найти такое число, которое делится на каждый из знаменателей. Затем приводим к этому числу знаменатели обеих дробей.

Таких чисел очень много, и наименьшее из них совсем не обязательно будет равняться прямому произведению знаменателей исходных дробей, как это предполагается в методе «крест-накрест».

Например, для знаменателей 8 и 12 вполне подойдет число 24, поскольку 24: 8 = 3; 24: 12 = 2 . Это число намного меньше произведения 8 · 12 = 96 .

Наименьшее число, которое делится на каждый из знаменателей, называется их наименьшим общим кратным (НОК).

Обозначение: наименьшее общее кратное чисел a и b обозначается НОК(a ; b ) . Например, НОК(16; 24) = 48 ; НОК(8; 12) = 24 .

Если вам удастся найти такое число, итоговый объем вычислений будет минимальным. Посмотрите на примеры:

Задача. Найдите значения выражений:

Заметим, что 234 = 117 · 2; 351 = 117 · 3 . Множители 2 и 3 взаимно просты (не имеют общих делителей, кроме 1), а множитель 117 - общий. Поэтому НОК(234; 351) = 117 · 2 · 3 = 702.

Аналогично, 15 = 5 · 3; 20 = 5 · 4 . Множители 3 и 4 взаимно просты, а множитель 5 - общий. Поэтому НОК(15; 20) = 5 · 3 · 4 = 60.

Теперь приведем дроби к общим знаменателям:

Обратите внимание, насколько полезным оказалось разложение исходных знаменателей на множители:

  1. Обнаружив одинаковые множители, мы сразу вышли на наименьшее общее кратное, что, вообще говоря, является нетривиальной задачей;
  2. Из полученного разложения можно узнать, каких множителей «не хватает» каждой из дробей. Например, 234 · 3 = 702 , следовательно, для первой дроби дополнительный множитель равен 3.

Чтобы оценить, насколько колоссальный выигрыш дает метод наименьшего общего кратного, попробуйте вычислить эти же примеры методом «крест-накрест». Разумеется, без калькулятора. Думаю, после этого комментарии будут излишними.

Не думайте, что таких сложных дробей в настоящих примерах не будет. Они встречаются постоянно, и приведенные выше задачи - не предел!

Единственная проблема - как найти этот самый НОК. Иногда все находится за несколько секунд, буквально «на глаз», но в целом это сложная вычислительная задача, требующая отдельного рассмотрения. Здесь мы не будем этого касаться.

На этом уроке мы познакомимся с правилами вынесения за скобки общего множителя, научимся находить его в различных примерах и выражениях. Поговорим о том, как простая операция, вынесение общего множителя за скобки, позволяет упростить вычисления. Полученные знания и навыки закрепим, рассмотрев примеры разных сложностей.

Что такое общий множитель, зачем его искать и с какой целью выносить за скобки? Ответим на эти вопросы, разобрав простейший пример.

Решим уравнение . Левая часть уравнения является многочленом, состоящим из подобных членов. Буквенная часть является общей для данных членов, значит, она и будет общим множителем. Вынесем за скобки:

В данном случае вынесение за скобки общего множителя помогло нам преобразовать многочлен в одночлен. Таким образом, мы смогли упростить многочлен и его преобразование помогло нам решить уравнение.

В рассмотренном примере общий множитель был очевиден, но будет ли так просто найти его в произвольном многочлене?

Найдём значение выражения: .

В данном примере вынесение общего множителя за скобки значительно упростило вычисление.

Решим еще один пример. Докажем делимость на выражения .

Полученное выражение делится на , что и требовалось доказать. И снова вынесение общего множителя позволило нам решить задачу.

Решим еще один пример. Докажем, что выражение делится на при любом натуральном : .

Выражение является произведением двух соседних чисел натурального ряда. Одно из двух чисел обязательно будет четным, значит, выражение будет делиться на .

Мы разобрали разные примеры, но применяли один и тот же метод решения: выносили общий множитель за скобки. Мы видим, что эта простая операция значительно упрощает вычисления. Было легко найти общий множитель для этих частных случаев, а что делать в общем случае, для произвольного многочлена?

Вспомним, что многочлен - сумма одночленов.

Рассмотрим многочлен . Данный многочлен является суммой двух одночленов. Одночлен - произведение числа, коэффициента, и буквенной части. Таким образом, в нашем многочлене каждый одночлен представлен произведением числа и степеней, произведение множителей. Множители могут быть одинаковыми для всех одночленов. Именно эти множители нужно определить и вынести за скобку. Сначала находим общий множитель для коэффициентов, причем целочисленных.

Было легко найти общий множитель, но давайте определим НОД коэффициентов: .

Рассмотрим ещё один пример: .

Найдем , что позволит нам определить общий множитель для данного выражения: .

Мы вывели правило для целых коэффициентов. Нужно найти их НОД и вынести за скобку. Закрепим это правило, решив ещё один пример.

Мы рассмотрели правило вынесения общего множителя для целочисленных коэффициентов, перейдем к буквенной части. Сначала ищем те буквы, которые входят во все одночлены, а потом определяем наибольшую степень буквы, которая входит во все одночлены: .

В этом примере была всего одна общая буквенная переменная, но их может быть несколько, как в следующем примере:

Усложним пример, увеличив количество одночленов:

После вынесения общего множителя мы преобразовали алгебраическую сумму в произведение.

Мы рассмотрели правила вынесения для целых коэффициентов и буквенных переменных отдельно, но чаще всего для решения примера нужно применять их вместе. Рассмотрим пример:

Иногда бывает сложно определить, какое выражение остается в скобках, рассмотрим легкий прием, который позволит вам быстро решить эту проблему.

Общим множителем также может быть искомое значение :

Общим множителем может быть не только число или одночлен, но и любое выражение, как, например, в следующем уравнении.

При сложении и вычитании алгебраический дробей с разными знаменателями сначала дроби приводят к общему знаменателю . Это значит, находят такой один знаменатель, который делится на исходный знаменатель каждой алгебраической дроби, входящей в состав данного выражения.

Как известно, если числитель и знаменатель дроби умножить (или разделить) на одно и то же число, отличное от нуля, то значение дроби не изменится. Это является основным свойством дроби. Поэтому, когда дроби приводят к общему знаменателю, по-сути умножают исходный знаменатель каждой дроби на недостающий множитель до общего знаменателя. При этом надо умножить на этот множитель и числитель дроби (для каждой дроби он свой).

Например, дана такая сумма алгебраических дробей:

Требуется упростить выражение, т. е. сложить две алгебраические дроби. Для этого в первую очередь надо привести слагаемые-дроби к общему знаменателю. Первым делом следует найти одночлен, который делится и на 3x и на 2y. При этом желательно, чтобы он был наименьший, т. е. найти наименьшее общее кратное (НОК) для 3x и 2y.

Для числовых коэффициентов и переменных НОК ищется отдельно. НОК(3, 2) = 6, а НОК(x, y) = xy. Далее найденные значения перемножаются: 6xy.

Теперь надо определить, на какой множитель надо умножить 3x, чтобы получить 6xy:
6xy ÷ 3x = 2y

Значит, при приведении первой алгебраической дроби к общему знаменателю ее числитель надо умножить на 2y (знаменатель уже был умножен при приведении к общему знаменателю). Аналогично ищется множитель для числителя второй дроби. Он будет равен 3x.

Таким образом, получаем:

Далее уже можно действовать как с дробями с одинаковыми знаменателями: складываются числители, а в знаменателе пишется один общий:

После преобразований получается упрощенное выражение, представляющее собой одну алгебраическую дробь, являющуюся суммой двух исходных:

Алгебраические дроби в исходном выражении могут содержать знаменатели, представляющие собой многочлены, а не одночлены (как в приведенном выше примере). В таком случае, перед поиском общего знаменателя следует разложить знаменатели на множители (если это возможно). Далее общий знаменатель собирается из разных множителей. Если множитель есть в нескольких исходных знаменателях, то его берут единожды. Если множитель имеет разные степени в исходных знаменателях, то его берут с большей. Например:

Здесь многочлен a 2 – b 2 можно представить как произведение (a – b)(a + b). Множитель 2a – 2b раскладывается как 2(a – b). Таким образом, общий знаменатель будет равен 2(a – b)(a + b).

Продолжаем разбираться с основами алгебры. Сегодня мы поработаем с , а именно рассмотрим такое действие, как вынесение общего множителя за скобки .

Содержание урока

Основной принцип

Распределительный закон умножения позволяет умножить число на сумму (или сумму на число). Например, чтобы найти значение выражения 3 × (4 + 5) можно умножить число 3 на каждое слагаемое в скобках и сложить полученные результаты:

3 × (4 + 5) = 3 × 4 + 3 × 5 = 12 + 15

Число 3 и выражение в скобках можно поменять местами (это следует из переместительного закона умножения). Тогда каждое слагаемое, которое в скобках, будет умножено на число 3

(4 + 5) × 3 = 4 × 3 + 5 × 3 = 12 + 15

Пока не будем вычислять конструкцию 3 × 4 + 3 × 5 и складывать полученные результаты 12 и 15 . Оставим выражение в виде 3 (4 + 5) = 3 × 4 + 3 × 5 . Ниже оно нам потребуется именно в таком виде, чтобы понять суть вынесения общего множителя за скобки.

Распределительный закон умножения иногда называют внесением множителя во внутрь скобок. В выражении 3 × (4 + 5) множитель 3 был за скобками. Умножив его на каждое слагаемое в скобках, мы по сути внесли его во внутрь скобок. Для наглядности можно так и записать, хоть и не принято так записывать:

3 (4 + 5) = (3 × 4 + 3 × 5)

Поскольку в выражении 3 × (4 + 5) число 3 умножается на каждое слагаемое в скобках, это число является общим множителем для слагаемых 4 и 5

Как говорилось ранее, умножив этот общий множитель на каждое слагаемое в скобках, мы вносим его во внутрь скобок. Но возможен и обратный процесс — общий множитель можно обратно вынести за скобки. В данном случае в выражении 3 × 4 + 3 × 5 общий множитель виден, как на ладони — это множитель 3 . Его и нужно вынести за скобки. Для этого сначала записывается сам множитель 3

и рядом в скобках записывается выражение 3 × 4 + 3 × 5 но уже без общего множителя 3 , поскольку он вынесен за скобки

3 (4 + 5)

В результате вынесения общего множителя за скобки получается выражение 3 (4 + 5) . Это выражение тождественно равно предыдущему выражению 3 × 4 + 3 × 5

3(4 + 5) = 3 × 4 + 3 × 5

Если вычислить обе части полученного равенства, то получим тождество:

3(4 + 5) = 3 × 4 + 3 × 5

27 = 27

Как происходит вынесение общего множителя за скобки

Вынесение общего множителя за скобки по сути является обратной операцией внесению общего множителя во внутрь скобок.

Если при внесении общего множителя внутрь скобок, мы умножаем этот множитель на каждое слагаемое в скобках, то при вынесении этого множителя обратно за скобки, мы должны разделить каждое слагаемое в скобках на этот множитель.

В выражении 3 × 4 + 3 × 5 , которое было рассмотрено выше, так и происходило. Каждое слагаемое было разделено на общий множитель 3 . Произведения 3 × 4 и 3 × 5 и являются слагаемыми, поскольку если их вычислить, мы получим сумму 12 + 15

Теперь мы можем детально увидеть, как происходит вынесение общего множителя за скобки:

Видно, что общий множитель 3 сначала вынесен за скобки, затем в скобках происходит деление каждого слагаемого на этот общий множитель.

Деление каждого слагаемого на общий множитель можно выполнять не только разделяя числитель на знаменатель, как это было показано выше, но и сокращая эти дроби. В обоих случаях получится один и тот же результат:

Мы рассмотрели простейший пример вынесения общего множителя за скобки, чтобы понять основной принцип.

Но не всё так просто, как кажется на первый взгляд. После того, как число умножено на каждое слагаемое в скобках, полученные результаты складывают, и общий множитель пропадает из виду.

Вернёмся к нашему примеру 3 (4 + 5) . Применим распределительный закон умножения, то есть умножим число 3 на каждое слагаемое в скобках и сложим полученные результаты:

3 × (4 + 5) = 3 × 4 + 3 × 5 = 12 + 15

После того, как вычислена конструкция 3 × 4 + 3 × 5 , мы получаем новое выражение 12 + 15 . Видим, что общий множитель 3 пропал из виду. Теперь в полученном выражении 12 + 15 попробуем обратно вынести общий множитель за скобки, но чтобы вынести этот общий множитель его сначала нужно найти.

Обычно при решении задач встречаются именно такие выражения, в которых общий множитель сначала нужно найти, прежде чем его выносить.

Чтобы в выражении 12 + 15 вынести общий множитель за скобки, нужно найти наибольший общий делитель (НОД) слагаемых 12 и 15. Найденный НОД и будет общим множителем.

Итак, найдём НОД для чисел 12 и 15. Напомним, что для нахождения НОД необходимо разложить исходные числа на простые множители, затем выписать первое разложение и убрать из него множители, которые не входят в разложение второго числа. Оставшиеся множители нужно перемножить и получить искомый НОД. Если испытываете затруднения на этом моменте, обязательно повторите .

НОД для 12 и 15 это число 3. Данное число является общим множителем для слагаемых 12 и 15. Его и нужно выносить за скобки. Для этого сначала записываем сам множитель 3 и рядом в скобках записываем новое выражение, в котором каждое слагаемое выражения 12 + 15 разделено на общий множитель 3

Ну и дальнейшее вычисление не составляет особого труда. Выражение в скобках легко вычисляется — двенадцать разделить на три будет четыре , а пятнадцать разделить на три будет пять :

Таким образом, при вынесении общего множителя за скобки в выражении 12 + 15 получается выражение 3(4 + 5) . Подробное решение выглядит следующим образом:

В коротком решении пропускают запись в которой показано, как каждое слагаемое разделено на общий множитель:

Пример 2. 15 + 20

Найдём НОД для слагаемых 15 и 20

НОД для 15 и 20 это число 5. Данное число является общим множителем для слагаемых 15 и 20. Его и вынесем за скобки:

Получили выражение 5(3 + 4). Получившееся выражение можно проверить. Для этого достаточно умножить пятёрку на каждое слагаемое в скобках. Если мы всё сделали правильно, то должны получить выражение 15 + 20

Пример 3. Вынести общий множитель за скобки в выражении 18+24+36

Найдём НОД для слагаемых 18, 24 и 36. Чтобы найти , нужно разложить эти числа на простые множители, затем найти произведение общих множителей:

НОД для 18, 24 и 36 это число 6. Данное число является общим множителем для слагаемых 18, 24 и 36. Его и вынесем за скобки:

Проверим получившееся выражение. Для этого умножим число 6 на каждое слагаемое в скобках. Если мы всё сделали правильно, то должны получить выражение 18+24+36

Пример 4. Вынести общий множитель за скобки в выражении 13 + 5

Слагаемые 13 и 5 являются простыми числами. Они раскладываются только на единицу и самих себя:

Это значит, что у слагаемых 13 и 5 нет общих множителей, кроме единицы. Соответственно, нет смысла выносить эту единицу за скобки, поскольку это ничего не даст. Покажем это:

Пример 5. Вынести общий множитель за скобки в выражении 195+156+260

Найдём НОД для слагаемых 195, 156 и 260

НОД для 195, 156 и 260 это число 13. Данное число является общим множителем для слагаемых 195, 156 и 260. Его и вынесем за скобки:

Проверим получившееся выражение. Для этого умножим 13 на каждое слагаемое в скобках. Если мы всё сделали правильно, то должны получить выражение 195+156+260

Выражение в котором требуется вынести общий множитель за скобки может быть не только суммой чисел, но и разностью. Например, вынесем общий множитель за скобки в выражении 16 − 12 − 4. Наибольшим общим делителем для чисел 16, 12 и 4 это число 4. Данное число и вынесем за скобки:

Проверим получившееся выражение. Для этого умножим четвёрку на каждое число в скобках. Если мы всё сделали правильно, то должны получить выражение 16 − 12 − 4

Пример 6. Вынести общий множитель за скобки в выражении 72+96−120

Найдём НОД для чисел 72, 96 и 120

НОД для 72, 96 и 120 это число 24. Данное число является общим множителем для слагаемых 195, 156 и 260. Его и вынесем за скобки:

Проверим получившееся выражение. Для этого умножим 24 на каждое число в скобках. Если мы всё сделали правильно, то должны получить выражение 72+96−120

Общий множитель, выносимый за скобки, может быть и отрицательным. Например, вынесем общий множитель за скобки в выражении −6−3. Вынести общий множитель за скобки в таком выражении можно двумя способами. Рассмотрим каждый из них.

Способ 1.

Заменим вычитание сложением:

−6 + (−3)

Теперь находим общий множитель. Общим множителем данного выражения будет наибольший общий делитель слагаемых −6 и −3.

Модуль первого слагаемого это 6. А модуль второго слагаемого это 3. НОД(6 и 3) равен 3. Данное число является общим множителем для слагаемых 6 и 3. Его и вынесем за скобки:

Выражение полученное таким способом получилось не очень аккуратным. Много скобок и отрицательных чисел не придают выражению простоту. Поэтому можно воспользоваться вторым способом, суть которого заключается в том, чтобы вынести за скобки не 3, а −3.

Способ 2.

Как и в прошлый раз заменяем вычитание сложением

−6 + (−3)

В этот раз мы вынесем за скобки не 3, а −3

Выражение полученное в этот раз выглядит намного проще. Запишем решение покороче, чтобы сделать его ещё проще:

Разрешать выносить отрицательный множитель за скобки связано с тем, что разложение чисел −6 и (−3) можно записать двумя видами: сначала сделать множимое отрицательным, а множитель положительным:

−2 × 3 = −6

−1 × 3 = −3

во втором случае множимое можно сделать положительным, а множитель отрицательным:

2 × (−3) = −6

1 × (−3) = −3

А значит мы вольны выносить за скобки тот сомножитель, который захотим.

Пример 8. Вынести общий множитель за скобки в выражении −20−16−2

Заменим вычитание сложением

−20−16−2 = −20 + (−16) + (−2)

Наибольшим общим делителем для слагаемых −20, −16 и −2 является число 2. Это число является общим множителем для этих слагаемых. Посмотрим, как это выглядит:

−10 × 2 = −20

−8 × 2 = −16

−1 × 2 = −2

Но приведенные разложения можно заменить на тождественно равные разложения. Различие будет в том, что общим множителем будет не 2 , а −2

10 × (−2) = −20

8 × (−2) = −16

1 × (−2) = −2

Поэтому для удобства за скобки можно вынести не 2 , а −2

Запишем приведенное решение покороче:

А если бы вынесли за скобки 2 , то получилось бы не совсем аккуратное выражение:

Пример 9. Вынести общий множитель за скобки в выражении −30−36−42

Заменим вычитание сложением:

−30 + (−36) + (−42)

Наибольшим общим делителем слагаемых −30, −36 и −42 это число 6. Данное число является общим множителем для этих слагаемых. Но за скобки мы вынесем не 6, а −6 поскольку числа −30, −36 и −42 можно представить так:

5 × (−6) = −30

6 × (−6) = −36

7 × (−6) = −42

Вынесение минуса за скобки

При решении задач иногда может быть полезным вынесение минуса за скобки. Это позволяет упростить выражение и привести его в порядок.

Рассмотрим следующий пример. Вынести минус за скобки в выражении −15+(−5)+(−3)

Для наглядности заключим данное выражение в скобки, ведь речь идёт о том, чтобы вынести минус за эти скобки

(−15 + (−5) + (−3))

Итак, чтобы вынести минус за скобки, нужно записать перед скобками минус и в скобках записать все слагаемые, но с противоположными знаками

Мы вынесли минус за скобки в выражении −15+(−5)+(−3) и получили −(15+5+3). Оба выражения равны одному и тому же значению −23

−15 + (−5) + (−3) = −23

−(15 + 5 + 3) = −(23) = −23

Поэтому между выражениями −15+(−5)+(−3) и −(15+5+3) можно поставить знак равенства, потому что они несут одно и то же значение:

−15 + (−5) + (−3) = −(15 + 5 + 3)

На самом деле при вынесении минуса за скобки опять же срабатывает распределительный закон умножения:

a(b+c) = ab + ac

Если поменять местами левую и правую часть этого тождества, то получится, что сомножитель a вынесен за скобки

ab + ac = a(b+c)

Тоже самое происходит, когда мы выносим общий множитель в других выражениях и когда выносим минус за скобки.

Очевидно, что при вынесении минуса за скобки, выносится не минус, а минус единица. Мы уже говорили, что коэффициент 1 принято не записывать.

Поэтому и образуется перед скобками минус, а знаки слагаемых которые были в скобках меняют свой знак на противоположный, поскольку каждое слагаемое разделено на минус единицу.

Вернёмся к предыдущему примеру и детально увидим, как на самом деле минус выносился за скобки

Пример 2. Вынести минус за скобки в выражении −3 + 5 + 11

Ставим минус и рядом в скобках записываем выражение −3 + 5 + 11 с противоположным знаком у каждого слагаемого:

−3 + 5 + 11 = −(3 − 5 − 11)

Как и в прошлом примере, здесь за скобки вынесен не минус, а минус единица. Подробное решение выглядит следующим образом:

Сначала получилось выражение −1(3 + (−5) + (−11)) , но мы раскрыли в нем внутренние скобки и получили выражение −(3 − 5 − 11) . Раскрытие скобок это тема следующего урока, поэтому если данный пример вызывает у вас затруднения, можете пока пропустить его.

Вынесение общего множителя за скобки в буквенном выражении

Выносить общий множитель за скобки в буквенном выражении намного интереснее.

Для начала рассмотрим простейший пример. Пусть имеется выражение 3 a + 2 a . Вынесем общий множитель за скобки.

В данном случае, общий множитель виден невооруженным глазом — это множитель a . Его и вынесем за скобки. Для этого записываем сам множитель a и рядом в скобках записываем выражение 3a + 2a , но уже без множителя a поскольку он вынесен за скобки:

Как и в случае с числовым выражением, здесь происходит деление каждого слагаемого на вынесенный общий множитель. Выглядит это так:

В обеих дробях переменные a были сокращены на a . Вместо них в числителе и в знаменателе получились единицы. Единицы получились по причине того, что вместо переменной a может стоять любое число. Эта переменная располагалась и в числителе и в знаменателе. А если в числителе и в знаменателе располагаются одинаковые числа, то наибольший общий делитель для них будет само это число.

Например, если вместо переменной a подставить число 4 , то конструкция примет следующий вид: . Тогда четвёрки в обеих дробях можно будет сократить на 4:

Получается то же самое, что и раньше, когда вместо четвёрок стояла переменная a .

Поэтому не следует пугаться при виде сокращения переменных. Переменная это полноправный множитель, пусть даже выраженный буквой. Такой множитель можно выносить за скобки, сокращать и выполнять другие действия, которые допустимы к обычным числам.

Буквенное выражение содержит не только числа, но и буквы (переменные). Поэтому общий множитель, который выносится за скобки часто бывает буквенным множителем, состоящим из числа и буквы (коэффициента и переменной). К примеру, следующие выражения являются буквенными множителями:

3a, 6b, 7ab, a, b, c

Прежде чем выносить такой множитель за скобки, нужно определиться, какое число будет в числовой части общего множителя и какая переменная будет в буквенной части общего множителя. Другими словами, нужно узнать какой коэффициент будет у общего множителя и какая переменная будет в него входить.

Рассмотрим выражение 10a + 15a . Попробуем вынести в нём общий множитель за скобки. Сначала определимся из чего будет состоять общий множитель, то есть узнаем его коэффициент и какая переменная будет в него входить.

Коэффициентом общего множителя должен быть наибольший общий делитель коэффициентов буквенного выражения 10a + 15a . 10 и 15 , а их наибольший общий делитель это число 5 . Значит число 5 будет коэффициентом общего множителя, выносимого за скобки.

Теперь определимся какая переменная будет входить в общий множитель. Для этого нужно посмотреть на выражение 10a + 15a и найти буквенный сомножитель, который входит во все слагаемые. В данном случае, это сомножитель a . Этот сомножитель входит в каждое слагаемое выражения 10a + 15a . Значит переменная a будет входить в буквенную часть общего множителя, выносимого за скобки:

Теперь осталось вынести общий множитель 5a за скобки. Для этого разделим каждое слагаемое выражения 10a + 15a на 5a . Для наглядности коэффициенты и числа будем отделять знаком умножения (×)

Проверим получившееся выражение. Для этого умножим 5a на каждое слагаемое в скобках. Если мы всё сделали правильно, то получим выражение 10a + 15a

Буквенный множитель не всегда можно вынести за скобки. Иногда общий множитель состоит только из числа, поскольку ничего подходящего для буквенной части в выражении не находится.

Например, вынесем общий множитель за скобки в выражении 2a − 2b . Здесь общим множителем будет только число 2 , а среди буквенных сомножителей общих множителей в выражении нет. Поэтому в данном случае будет вынесен только множитель 2

Пример 2. Вынести общий множитель выражении 3x + 9y + 12

Коэффициентами данного выражения являются числа 3, 9 и 12, их НОД равен 3 3 . А среди буквенных сомножителей (переменных) нет общего множителя. Поэтому окончательный общий множитель это 3

Пример 3. Вынести общий множитель за скобки в выражении 8x + 6y + 4z + 10 + 2

Коэффициентами данного выражения являются числа 8, 6, 4, 10 и 2, их НОД равен 2 . Значит коэффициентом общего множителя, выносимого за скобки, будет число 2 . А среди буквенных сомножителей нет общего множителя. Поэтому окончательный общий множитель это 2

Пример 4. Вынести общий множитель 6ab + 18ab + 3abc

Коэффициентами данного выражения являются числа 6, 18 и 3, их НОД равен 3 . Значит коэффициентом общего множителя, выносимого за скобки, будет число 3 . В буквенную часть общего множителя будут входить переменные a и b, поскольку в выражении 6ab + 18ab + 3abc эти две переменные входят в каждое слагаемое. Поэтому окончательный общий множитель это 3ab

При подробном решении выражение становится громоздким и даже непонятным. В данном примере это более чем заметно. Это связано с тем, что мы сокращаем множители в числителе и в знаменателе. Лучше всего делать это в уме и сразу записывать результаты деления. Тогда выражение станет коротким и аккуратным:

Как и в случае с числовым выражением в буквенном выражении общий множитель может быть и отрицательным.

Например, вынесем общий за скобки в выражении −3a − 2a .

Для удобства заменим вычитание сложением

−3a − 2a = −3a + (−2a )

Общим множителем в данном выражении является множитель a . Но за скобки можно вынести не только a , но и −a . Его и вынесем за скобки:

Получилось аккуратное выражение −a (3+2). Не следует забывать, что множитель −a на самом деле выглядел как −1a и после сокращения в обеих дробях переменных a , в знаменателях остались минус единицы. Поэтому в итоге и получаются положительные ответы в скобках

Пример 6. Вынести общий множитель за скобки в выражении −6x − 6y

Заменим вычитание сложением

−6x−6y = −6x+(−6y)

Вынесем за скобки −6

Запишем решение покороче:

−6x − 6y = −6(x + y)

Пример 7. Вынести общий множитель за скобки в выражении −2a − 4b − 6c

Заменим вычитание сложением

−2a-4b-6c = −2a + (−4b) + (−6c)

Вынесем за скобки −2

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках