Эксперименты герца. Опыты генриха герца

Электромагнитные волны (ЭМВ) – это электромагнитное поле, которое распространяется с разной скоростью в зависимости от среды. Скорость распространения таких волн в вакуумном пространстве равна световой скорости. ЭМВ могут отражаться, преломляться, подвергаться дифракции, интерференции, дисперсии и др.

Электромагнитные волны

Электрический заряд приводится в колебания по линии подобно пружинному маятнику с очень высокой скоростью. В это время электрическое поле вокруг заряда начинает меняться с периодичностью, равной периодичности колебаний этого заряда. Непостоянное электрическое поле обусловит появление непостоянного магнитного поля. Оно в свое время породит меняющееся c определенными периодами электрическое поле на большей дистанции от электрического заряда. Описанный процесс будет происходить еще не один раз.

В итоге появляется целая система непостоянных электрических и магнитных полей около электрического заряда. Они оцепляют все большие площади пространства вокруг до определенного предела. Это и есть электромагнитная волна, которая распределяется от заряда во все стороны. В каждой отдельно взятой точке пространства оба поля изменяются с разными временными периодами. До точки, расположенной близко к заряду, колебания полей добираются быстро. До более отдаленной точки – позднее.

Необходимым условием для появления электромагнитных волн является ускорение электро-заряда. Его скорость должна изменяться со временем. Чем выше ускорение движущегося заряда, тем более сильное излучение имеют ЭМВ.

Электромагнитные волны излучаются поперечно – вектор напряженности электрического поля занимает место под 90 градусов к вектору индукции магнитного поля. Оба эти вектора идут под 90 градусов к направлению ЭМВ.

О факте наличия электромагнитных волн писал еще Майкл Фарадей в 1832 году, но теорию электромагнитных волн вывел Джеймс Максвелл в 1865 году. Обнаружив, что скорость распространения электромагнитных волн равняется известной в те времена световой скорости, Максвелл выдвинул обоснованное предположение о том, что свет – это не что иное, как электромагнитная волна.

Однако опытным путем подтвердить правильность максвелловской теории удалось лишь в 1888 году. Один немецкий физик не поверил Максвеллу и решил опровергнуть его теорию. Однако проведя экспериментальные исследования, он только подтвердил их существование и опытным путем доказал, что ЭМВ и вправду есть. Благодаря своим работам по исследованию поведения электромагнитных волн, он прославился на весь мир. Его звали Генрих Рудольф Герц.

Опыты Герца

Высокочастотные колебания, которые существенно превышают частоту тока в наших розетках, возможно произвести с помощью катушки индуктивности и конденсатора. Частота колебаний будет увеличиваться при уменьшении индуктивности и емкости контура.

Правда, не все колебательные контуры позволяют извлечь волны, которые можно легко обнаружить. В закрытых колебательных контурах происходит обмен энергией между емкостью и индуктивностью, а количество энергии, которое уходит в окружающую среду для создания электромагнитных волн слишком мало.

Как увеличить интенсивность электромагнитных волн, чтобы появилась возможность их детектировать? Для этого нужно увеличить расстояние между обкладками конденсатора. А сами обкладки уменьшить в размере. Потом еще раз увеличить и еще раз уменьшить. До тех пор, пока мы не придем к прямому проводу, только немного необычному. У него есть одна особенность – нулевая сила тока на концах и максимальная в середине. Это называется открытый колебательный контур.

Экспериментируя, Генрих Герц пришел к открытому колебательному контуру, который назвал «вибратором». Он представлял из себя два шара-проводника диаметром около 15 сантиметров, монтированных на концах рассеченного пополам стержня из проволоки. Посередине, на двух половинах стержня также находятся два шарика меньшего размера. Оба стержня подключались к индукционной катушке, которая выдавала высокое напряжение.

Вот как работает прибор Герца. Индукционная катушка создает очень высокое напряжение и выдает разноименные заряды шарам. Через некий отрезок времени в зазоре между стержнями возникает электрическая искра. Она снижает сопротивление воздуха между стержнями и в контуре появляются затухающие колебания высокой частоты. А, так как, вибратор у нас является открытым колебательным контуром он начинает излучать при этом ЭМВ.

Чтобы детектировать волны используется устройство, которое Герц назвал «резонатор». Оно представляет собой разомкнутое кольцо или прямоугольник. На концах резонатора было установлено два шарика.В своих опытах Герц пытался найти правильные размеры для резонатора, его положение относительно вибратора, а также расстояние между ними. При правильно подобранном размере, положении и дистанции между вибратором и резонатором возникал резонанс. В этом случае электромагнитные волны, которые испускает контур производят электрическую искру в детекторе.

С помощью подручных средств, а именно, листа железа и призмы, сделанной из асфальта, этому невероятно находчивому экспериментатору удалось вычислить длины распространяемых волн, а также скорость, с которой они распространяются. Он также обнаружил, что эти волны ведут себя точно так же, как и остальные, а значит могут отражаться, преломляться, быть подвержены дифракции и интерференции.

Применение

Исследования Герца привлекли внимание физиков по всему миру. Мысли о том, где можно применить ЭМВ возникали у ученых то тут, то там.

Радиосвязь – способ передачи данных путем излучения электромагнитных волн частотой от 3×104 до 3×1011 Герц.

В нашей стране родоначальником радиопередачи электромагнитных волн стал Александр Попов. Сначала он повторял опыты Герца, а затем воспроизводил опыты Лоджа и построил собственную модификацию первого в истории радиоприемника Лоджа. Главное отличие приемника Попова заключается в том, что он создал устройство с обратной связью.

В приемнике Лоджа использовалась стеклянная трубка с опилками из металла, которые меняли свою проводимость под действием электромагнитной волны. Однако он срабатывал лишь раз, а, чтобы зафиксировать еще один сигнал, трубку надо было встряхнуть.

В приборе Попова волна, достигая трубки включала реле, по которому срабатывал звонок и приводилось в работу устройство, ударявшее молоточком по трубке. Оно встряхивало металлические опилки и тем самым давало возможность зафиксировать новый сигнал.

Радиотелефонная связь – передача речевых сообщений посредством электромагнитных волн.

В 1906 году был изобретен триод и уже через 7 лет был создан первый ламповый генератор незатухающих колебаний. Благодаря этим изобретениям стала возможна передача коротких и более длинных импульсов ЭМВ, а также изобретение телеграфов и радиотелефонов.

Звуковые колебания, которые передаются в трубку телефона перестраиваются в электрический заряд той же формы посредством микрофона. Однако звуковая волна – это всегда волна низкочастотная, чтобы электромагнитные волны в достаточной степени сильно излучалась у нее должна быть высокая частота колебания. Изобретатели решили эту проблему очень просто.

Высокочастотные волны, которые вырабатываются генератором, применяются для передачи, а низкочастотные звуковые волны применяются для модуляции высокочастотных волн. Другими словами, звуковые волны изменяют некоторые характеристики высокочастотных волн.

Итак, это были первые приборы, сконструированные на принципах электромагнитного излучения.

А вот где электромагнитные волны можно встретить сейчас:

  • Мобильная связь, Wi-Fi, телевидение, пульты ДУ, СВЧ-печи, радары и др.
  • ИК приборы ночного видения.
  • Детекторы фальшивых денег.
  • Рентгеновские аппараты, медицина.
  • Гамма-телескопы в космических обсерваториях.

Как видно, гениальный ум Максвелла и необычайная изобретательность и работоспособность Герца дали начало целому ряду приборов и бытовых вещей, которые сегодня являются неотъемлемой частью нашей жизни. Электромагнитные волны делятся по диапазону частот, правда, весьма условно.

В следующей таблице вы можете видеть классификацию электромагнитного излучения по диапазону частот.

Электромагнитной волной называют возмущение электромагнитного поля, которое передается в пространстве. Ее скорость совпадает со скоростью света

2. Опишите опыт Герца по обнаружению электромагнитных волн

В опыте Герца источником электромагнитного возмущения были электромагнитные колебания, которые возникали в вибраторе (проводник с воздушным промежутком посередине). К этому промежутку подавалось высокое напряжение, оно вызывало искровой разряд. Через мгновение искровой разряд возникал в резонаторе (аналогичный вибратор). Самая интенсивная искра возникала в резонаторе, который был расположен параллельно вибратору.

3. Объясните результаты опыта Герца с помощью теории Максвелла. Почему электромагнитная волна является поперечной?

Ток через разрядный промежуток создает вокруг себя индукцию, магнитный поток возрастает, возникает индукционный ток смещения. Напряженность в точке 1 (рис. 155, б учебника) направлена против часовой стрелки в плоскости чертежа, в точке 2 ток направлен вверх и вызывает индукцию в точке 3, напряженность направлена вверх. Если величина напряженности достаточна для электрического пробоя воздуха в промежутке, то возникает искра и в резонаторе протекает ток.

Потому что направления векторов индукции магнитного поля и напряженности электрического поля перпендикулярны друг другу и направлению волны.

4. Почему излучение электромагнитных волн возникает при ускоренном движении электрических зарядов? Как напряженность электрического поля в излучаемой электромагнитной волне зависит от ускорения излучающей заряженной частицы?

Сила тока пропорциональна скорости движения заряженных частиц, поэтому электромагнитная волна возникает только если скорость движения этих частиц зависит от времени. Напряженность в излучаемой электромагнитной волне прямо пропорциональна ускорению излучающей заряженной частицы.

5. Как зависит плотность энергии электромагнитного поля от напряженности электрического поля?

Плотность энергии электромагнитного поля прямо пропорциональна квадрату напряженности электрического поля.

Порядка 10-11 см соответствует частоте порядка 1021 периодов в секунду.

Как уже сказано в предыдущем параграфе, экспериментальные подтверждения теории Максвелла представлены в настоящее время в виде всех достижений радиотехники таким количеством материала, что доказывать что-либо экспериментально более не приходится. Но необходимо все же вкратце упомянуть здесь об опытах, бывших первым экспериментальным подтверждением максвелловой теории и, вместе с тем, первым осуществлением так называемой „беспроволочной передачи энергии". Мы говорим об опытах Герца, произведенных в 1887 -1889 гг.

Генератором электромагнитных волн, или, что то же, электро­магнитных колебаний, служил в опытах Герца простейший коле­бательный контур, так называемый вибратор, представляющий собою конденсатор, замкнутый накоротко. Подробный математи­ческий анализ явления электрических колебаний в такой цепи относится к специальным курсам. Здесь же мы остановимся коротко лишь на описании (схематическом) физической стороны явления в обстановке, которою Герц воспользовался в своих классических опытах, произведенных в то время, когда, конечно, еще не были известны современные генераторы незатухающих колебаний.

Представим себе конденсатор с обкладками Р и S (рис. 180), емкость которого равна С.

Обкладки конденсатора могут быть замкнуты через провод ВК. Всякий провод обладает, как мы знаем, некоторым коэффициентом самоиндукции L > 0. На рисунке 180 эта самоиндукция для наглядности представлена сосредоточенной. Пусть в начальный момент рубильник К. разомкнут и конденсатор заряжен с помощью какого-либо источника энергии, не предста­вленного на рисунке, до разности потенциалов U p -U s =U 1 , при­чем пластину Р предположим заряженной положительно. Запас энергии заряженного конденсатора, равен, как известно, величине:

где Q - заряд, С - емкость конденсатора, причем эта энергия

есть не что иное, как энергия электрического поля между обкладками конденсатора. Тока в цепи ВК. пока еще нет, так как цепь

эта разомкнута. Следовательно, вся энергия системы заключается

в энергии электрического поля.

Если теперь цепь ВК. замкнуть, то в ней возникнет ток, т. е. качнется некоторый кинетический процесс в диэлектрике, в кото­ром находится наша система. В силу электромагнитной инерции, характеризуемой коэффициентом самоиндукции L, ток не дости­гает сразу своей максимально» величины, а будет нарастать постепенно. По мере возрастания тока напряжение между обкладками конденсатора будет падать, энергия электрического поля будет убывать, превращаясь в энергию магнитного поля, т.е. в электро­кинетическую энергию, выражаемую величиной 1 / 2 Li 2 . Если бы



омическое (точнее - активное) сопротивление цепи r было равно нулю и никаких вообще потерь не было, то энергия электрического поля должна была бы полностью превращаться в энергию магнит­ного поля, так что в каждый данный момент сумма энергии элек­трического и магнитного полей была бы равна первоначальному запасу энергии электрического поля, т. е. имело бы место соотношение:

где U - электрическое напряжение, действующее между обкладками конденсатора в момент, соответствующий данной силе тока i, причем:

U" 1 .

Максимальной величины сила тока в цепи достигнет, когда энергия электрического поля целиком перейдет в энергию магнит­ного поля. Этот момент представляет собою второе типичное состояние системы (рис. 181), когда вся ее энергия выражается только в энергии магнитного поля.

Количество энергии магнитного поля

в этот момент, если система свободна от потерь, равно пер­воначальному запасу энергии электрического поля, т. е.

где I m - максимальная величина силы тока, так называемая ампли­туда. Напряжение на обкладках конденсатора в этот момент равно нулю (U 2 =0).

Если 0или, вообще, если есть потери энергии в системе, то, естественно, часть первоначального запаса энергии будет поте­ряна, и мы получим:

На рассмотренном втором типичном состоянии системы процесс не остановится. В силу той же электромагнитной инерции системы, которая препятствовала мгновенному нарастанию тока, последний не прекратится мгновенно, как только напряжение у зажимов кон­денсатора сделается равным нулю, а будет продолжать существо­вать, сохраняя прежнее направление и постепенно ослабевая по силе. В результате между обкладками конденсатора вновь возникает электрическое поле, направленное обратно прежнему, т. е. пластина Р получит отрицательный заряд, а пластина S - положительный. Сила этого электрического поля и запас энергии будет в этой ста­дии явления постепенно возрастать за счет ослабления силы тока и уменьшения энергии магнитного поля. Когда сила тока станет равной нулю, напряжение на обкладках конденсатора достигнет наибольшей величины U 3 (рис. 182),

причем для случая, когда никаких потерь энергии нет, должны иметь место равенства:

Если же 0, или вообще потери энергии в системе имеют место, то очевидно:

так как часть первоначального запаса энергии будет израсходована.

Ясно, что в момент, когда i =0, то вся энергия системы снова выражается только в энергии электрического поля. Это - третье типичное состояние системы, отличающееся от первого только знаком электрического поля.

В дальнейшем, очевидно, процесс будет происходить в обрат­ном направлении, проходя через те же фазы: максимум тока обрат­ного направления, при напряжении между обкладками конденсатора, равном нулю (4-е состояние, рис. 183) и, наконец, возвращение

к исходному состоянию, которым заканчивается первый цикл, или полный период электрического колебания, и начинается следующий, вполне аналогичный.

При этом, если омическое сопротивление равно нулю, то повто­рение этого цикла, казалось бы, будет иметь место бесконечное количество раз. В действительности, однако, как показывает опыт, если бы даже мы имели дело со сверхпроводящим проводником, во время процесса электрических колебаний в рассматриваемой цепи часть энергии системы будет непрерывно излучаться в окружающее пространство в форме электромагнитных волн, имеющих ту же частоту, что и основной ко­лебательный контур. При этом интенсивность электромагнитного излучения в значительной сте­пени будет зависеть от конфигурации основного контура и от частоты его электрических колебаний. Таким образом, расходование энергии в общем случае будет определяться не только наличием чисто омического сопротивления, от которого зависит джоулево тепло, выделяемое в колеба­тельной цепи, но также и наличием излучения. Это последнее обстоятельство можно учесть, вводя понятие об активном сопротивлении г, которое, являясь результирующим фактором рассеяния энергии в электрической цепи, слагается в данном случае изчисто омического сопротивления и из так называемого со­противления излучения. Итак, благодаря непрерывному расходованию энергии в колебательной цепи, первичный запас энергии будет исся­кать, т. е. будет непрерывно уменьшаться интенсивность колебатель­ного процесса. Это называют затуханием электрических колебаний. Практически, затухание бывает столь велико, что по прошествии очень малого промежутка времени, малой доли секунды, электри­ческие колебания прекращаются.

Роль сопротивления r не ограничивается постепенным уменьшением интенсивности колебательного процесса. Величина r, вернее, соотношение величины активного сопротивления с коэффициентом самоиндукции L цепи, характеризующим ее электромагнитную инерцию, оказывается решающим фактором для самого возникнове­ния колебания. Если r слишком велико по сравнению с L, именно,

если отношение r/L больше некоторой критической величины, то

колебания не могут возникнуть вовсе: сила тока, пройдя через максимальное значение, уменьшается постепенно до нуля, ток об­ратного направления не возникает (так называемый апериодический разряд). Если же т достаточно мало, колебательный процесс имеет место.

Период возникающих в этом случае электрических колебаний, т. е. промежуток времени между двумя соседними моментами, в ко­торые процесс проходит одни и те же стадии, например, между моментами, соответствующими i=I m , определяется, как известно,

величинами сопротивления r, емкости С и коэффициента самоиндук­ции L. При относительно малых значениях r, величина периода Т может быть достаточно точно определена по формуле В. Томсона.

Т=2pÖLC .

Обратимся теперь к опытам Герца. Основной колебательный контур, так называемый вибратор, применявшийся им, по существу был подобен представленному на рисунках 180- 183 с тою, однако, разницею, что обкладки конденсатора разводились, т. е. удалялись одна от другой. При этом электрическое поле, возникавшее в про­цессе заряжения конденсатора, захватывало район всего диэлектрика, который окружал вибратор. При такой обстановке создавались условия, особо благоприятные для излучения электромагнитной энергии во время электрических колебаний в вибраторе. Роль ключа K (рис. 180 -183), при помощи которого цепь вибратора замыкалась после первоначального заряжения конденсатора, в опытах Герца играл искровой промежуток между шариками. Когда в про­цессе заряжения конденсатора между этими шариками возникала достаточно большая разность потенциалов, между ними проскакивала искра, которая может рассматриваться как короткое замыка­ние концов цепи, потому что благодаря сильной ионизации газа в объеме искры сопротивление ее оказывается практически малым. Так как, вследствие излучения электромагнитной энергии и по причине тепловых потерь, колебательный процесс быстро затухает, то для периодического возбуждения этого процесса Герц при­соединял обкладки конденсатора ко вторичным зажимам катушки Румкорфа. В таком случае каждому прерыванию тока в первич­ной обмотке катушки соответствовало заряжение пластин конденса­тора и проскакивание искры, коротко замыкавшей колебательную цепь. Ко времени следующего импульса со стороны вторичной об­мотки катушки Румкорфа колебательный процесс обычно успевает вполне закончиться, и ионизация газа между шариками искрового разрядника исчезает, так что процесс возбуждения вибратора мо­жет полностью повториться, и т. д. Возобновляя таким образом электрические колебания в вибраторе много раз в секунду, Герц получил достаточно мощное результирующее излучение электромаг­нитной энергии, что дало ему возможность подвергнуть всесторон­нему изучению электромагнитные волны. Общее расположение описываемой схемы Герца представлено на рисунке 184.

Здесь Р и S суть обкладки „развернутого" конденсатора. Это были либо шары, либо пластины, которые могли передвигаться вдоль стерж­ней /1 и /2 с целью некоторого изменения емкости системы. К, есть искровой промежуток, ограниченный шариками. R - катушка Рум­корфа, от вторичных зажимов которой при помощи тонких про­волок ток, возбуждающий вибратор, подавался к последнему.

Герц, вообще говоря, разнообразил форму и размеры при­менявшихся в его опытах вибраторов. В позднейших опытах он применял вибратор, состоявший из двух латунных цилиндров,

каждый из которых имел 13 см длины и 3 см диаметра (рис. 185).

Эти цилиндры были расположены один над другим так, что общая ось составляла одну вертикальную линию, причем на обращенных друг к другу концах цилиндров были насажены шары, имевшие в диаметре 4 см. Оба эти цилиндра были соединены с зажимами вторичной обмотки румкорфовой катушки. По расчетам Герца, длина электромагнитной волны, возбуждаемой описанным вибрато­ром, была около 60 см.

Для обнаружения электромагнитных волн в воздухе Герц при­менял так называемые резонаторы, которые состояли из некото­рого контура, снабженного искровым промежутком между маленькими шариками, причем помощью микрометриче­ского винта можно было изменять и в то же время измерять расстояние между этими шариками. Форма резонаторного контура в различных опытах Герца значительно изменялась. Иногда он применял простой круговой контур, В дру­гих случаях контур этот имел форму квадрата. Наконец Герц при­менял и резонатор, подобный стержневому вибратору (рис. 185) и состоявший из двух прямых проволок, совпадавших по направле­нию, в промежутке между которыми располагался микрометрический искромер.

При существовании электромагнитных волн в пространстве, где был расположен резонатор, в нем могли возбуждаться электрические колебания аналогичные первичным колебаниям вибратора, вследствие чего появлялась искра между шариками резонаторного искромера. При этом для успеха опыта необходимо было надлежащим образом ориентировать приемный резонатор и, сверх того, так подобрать его геометрические размеры, чтобы период его собственных элек­трических колебаний возможно точнее соответствовал периоду колебаний вибратора, т. е. периоду излучаемых электромагнитных волн.

По длине искры, появляющейся между шариками резонатора, Герц судил о достижении условий резонанса между тем резонато­ром, при посредстве которого исследовались электромагнитные

волны, и тем вибратором, который порождал эти волны в окружаю­щем его пространстве. Таким же путем, т. е. длиною искры в ре­зонаторе, Герц определял и степень напряженности электромаг­нитных возмущений в данном месте пространства.

В опытах, произведенных после работ Герца, были применены для обнаружения электрических колебаний в резонаторе и другие средства, как например, гейслеровы трубки, термоэлементы, коге­реры, детекторы и т. п., но общий характер получаемых резуль­татов незыблемо установлен классическими опытами Герца, при­менившего простейшие устройства, описанные выше.

Наблюдая искры в резонаторе, Герц имел возможность про­следить распределение электромагнитных возмущений в пространстве, окружающем вибратор, причем найденное непосредственно путем опытов распределение этих возмущений оказалось вполне согласным с теорией Максвелла. При помощи надлежаще подобранного вибратора Герцу удалось обнаружить электромагнитное излучение в свободном пространстве на расстоянии в 12 метров от вибратора, геометрические размеры которого были порядка 1 метра. Такая чувствительность герцовского резонатора позволила наблюдать и стоячие электромагнитные волны в воздухе, которые получались тогда, когда волны, излучаемые вибратором, претерпевали отраже­ние от большой металлической плоской поверхности, перпендикуляр­ной направлению излучения и расположенной на надлежащем рас­стоянии от вибратора. В этом случае, перемещая резонатор в про­межутке между вибратором и отражающею поверхностью так, что плоскость резонатора (круглого или прямоугольного) оставалась параллельною самой себе, Герц заметил весьма резкие изменения в длине искры, появлявшейся в резонаторе. В некоторых местах искра в резонаторе совсем не появлялась. В местах же, находив­шихся как раз в середине между этими положениями резонатора, искра получалась наиболее длинная. Таким путем Герц определил плоскости узлов и плоскости пучностей стоячих электромагнитных волн, а следовательно, можно было измерить и длину этих волн, излучаемых данным вибратором. По наблюденной длине стоячей волны и по вычисленному периоду электрических колебаний виб­ратора Герц мог определить скорость распространения электро­магнитной энергии. Эта скорость оказалась, в полном согласии с теорией Максвелла, равною скорости света.

Аналогия между электрическими и световыми волнами очень резко была выявлена в опытах Герца с параболическими зеркалами. Если поместить вибратор (рис. 185) в фокальной линии параболи­ческого цилиндрического зеркала так, чтобы электрические колеба­ния совершались параллельно фокальной линии, то в случае, если законы отражения электромагнитных и световых волн одинаковые, электромагнитные волны, излученные вибратором, после отражения от цилиндра должны образовать параллельный пучок, который должен сравнительно мало терять в своей интенсивности по мере удаления от зеркала. Когда такой пучок попадает на другой параболический цилиндр, обращенный к первому и расположенный так,

что его фокальная линия совпадает с фокальной линией первого зеркала, то этот пучок собирается в фокальной линии второго зеркала. Вдоль этой линии располагался прямолинейный резонатор.

Для того, чтобы показать отражение волн, зеркала ставились рядом таким образом, что их отверстия были обращены в одну сторону, и оси сходились в точке, отстоящей примерно на три метра. Когда в таком положении вибратор приводился в действие, то в резонаторе искорок не наблюдалось. Но если в точке пере­сечения осей зеркал ставилась металлическая пластина (поверх­ностью около двух кв. метров), и если эта пластина располагалась перпендикулярно линии, делящей угол между осями пополам, то в резонаторе появлялись искры. Эти искры при повороте метал­лической пластины на небольшой угол исчезали. Описываемый опыт доказывает, что электромагнитные волны отражаются, и то, что угол их отражения равен углу падения, т. е. что они ведут себя совершенно аналогично волнам световым.

Преломление электромагнитных волн Герцу удалось обнару­жить в опыте с призмой, сделанной из асфальта. Высота призмы доходила до 1,5 метра, преломляющий угол был равен 30°, и ребро основания, не противолежащее преломляющему углу, примерно равнялось 1,2 метра. При прохождении электромагнитных волн сквозь такую призму в резонаторе искр не наблюдалось, если ось зеркала с вибратором совпадала с осью резонаторного зеркала. Но когда оси зеркал образовывали подходящий угол, то искры в резонаторе появлялись. Далее при минимуме отклонения, искры были наиболее сильны. Для описанной призмы этот минимум угла отклонения был равен 22°, а следовательно, показатель преломле­ния электромагнитных волн для этой призмы был равен 1,69. Как видно, и в этом случае получается полная аналогия со световыми явлениями. Позднейшие исследования обнаружили, что электро­магнитные волны обладают вообще всеми физическими свойствами световых волн.

1) Небезынтересно здесь отметить, что электронная теория, развитие которой рас­ценивалось некоторыми как крушение основных положений теории Максвелла, не привела к какой-либо особой теории распространения электромагнитной энер­гия. Оперируя понятиями электронной теории при описании, так сказать, „микро-электрических" явлений, обращаются обычно к основным представлениям Максвелла, как только заходит речь о распространении электромагнитной энергии в пространстве. По существу же между понятиями электронной теории и идеями Максвелла нет и не должно быть никаких внутренних противоречий: элемен­тарный электрический заряд мыслим по Максвеллу, как центр, вокруг которого соответствующим образом ориентирована связанная с ним электрическая деформа­ция среды. Является ли этот „центр" действительным носителем некоторого физи­ческого количества, в данном центре сосредоточенного, или это только так кажется,-с точки зрения формальной вопрос этот не имеет существенного значения.

Существование дискретных энергетических уровней атома подтверждается опытом Франка и Герца. Немецкие ученые Джеймс Франк и Густав Герц за экспериментальные исследования дискретности энергетических уровней получили Нобелевскую премию в 1925 г.

В опытах использовалась трубка (рис. 6.9), заполненная парами ртути при давлении р ≈ 1 мм рт. ст. и три электрода: катод, сетка и анод.

Электроны ускорялись разностью потенциалов U между катодом и сеткой. Эту разность потенциалов можно было изменять с помощью потенциометра П . Между сеткой и анодом тормозящее поле 0,5 В (метод задерживающих потенциалов).

Определялась зависимость тока через гальванометр Г от разности потенциалов между катодом и сеткой U . В эксперименте была получена зависимость, изображенная на рис. 6.10. ЗдесьU = 4,86 В – соответствует первому потенциалу возбуждения.

Согласно боровской теории, каждый из атомов ртути может получить лишь вполне определенную энергию, переходя в одно из возбужденных состояний. Поэтому если в атомах действительно существуют стационарные состояния, то электроны, сталкиваясь с атомами ртути, должны терять энергию дискретно , определенными порциями , равными разности энергии соответствующих стационарных состояний атома.

Из опыта следует, что при увеличении ускоряющего потенциала вплоть до 4,86 В анодный ток возрастает монотонно , его значение проходит через максимум (4,86 В), затем резко уменьшается и возрастает вновь. Дальнейшие максимумы наблюдаются при и .

Ближайшим к основному, невозбужденному состоянию атома ртути является возбужденное состояние, отстоящее по шкале энергий на 4,86 В. Пока разность потенциалов между катодом и сеткой меньше 4,86 В, электроны, встречая на своем пути атомы ртути, испытывают с ними только упругие соударения. При = 4,86 эВ энергия электрона становится достаточной, чтобы вызвать неупругий удар, при котором электрон отдает атому ртути всю кинетическую энергию , возбуждая переход одного из электронов атома из нормального состояния в возбужденное. Электроны, потерявшие свою кинетическую энергию, уже не смогут преодолеть тормозящий потенциал и достигнуть анода. Этим и объясняется резкое падение анодного тока при = 4,86 эВ. При значениях энергии, кратных 4,86, электроны могут испытывать с атомами ртути 2, 3, … неупругих соударения. При этом они полностью теряют свою энергию и не достигают анода, т.е. наблюдается резкое падение анодного тока.

Таким образом, опыт показал, что электроны передают свою энергию атомам ртути порциями , причем 4,86 эВ – наименьшая возможная порция, которая может быть поглощена атомом ртути в основном энергетическом состоянии. Следовательно, идея Бора о существовании в атомах стационарных состояний блестяще выдержала проверку экспериментом.

Атомы ртути, получившие при соударении с электронами энергию , переходят в возбужденное состояние и должны вернуться в основное, излучая при этом, согласно второму постулату Бора, квант света с частотой . По известному значению можно вычислить длину волны светового кванта: . Таким образом, если теория верна, то атомы ртути, бомбардируемые электронами с энергией 4,86 эВ, должны являться источником ультрафиолетового излучения с , что действительно обнаружилось в опытах .