Как определять координаты на координатной плоскости. Что такое координатная плоскость? Построение точки по заданным координатам

Тема данного видео урока: Координатная плоскость .

Цели и задачи урока:

Ознакомиться с прямоугольной системой координат на плоскости
- научить свободно ориентироваться на координатной плоскости
- строить точки по заданным её координатам
- определять координаты точки, отмеченной на координатной плоскости
- хорошо воспринимать на слух координаты
- четко и аккуратно выполнять геометрические построения
- развитие творческих способностей
- воспитание интереса к предмету

Термин «координаты » произошел от латинского слова - «упорядоченный»

Чтобы указать положение точки на плоскости берут две перпендикулярные прямые Х и У.

Ось Х - ось абсцисс
Ось У- ось ординат
Точка О- начало координат

Плоскость, на которой задана система координат, называется координатной плоскостью .

Каждой точке М на координатной плоскости соответствует пара чисел: её абсцисса и ордината. Наоборот, каждой паре чисел соответствует одна точка плоскости, для которой эти числа являются координатами.

Рассмотрены примеры:

  • по построению точки по её координатам
  • нахождение координат точки расположенной на координатной плоскости

Немного дополнительной информации:

Идея задавать положение точки на плоскости зародилась в древности - прежде всего у астрономов. Во II в. Древнегреческий астроном Клавдий Птоломей пользовался широтой и долготой в качестве координат. Описание применения координат дал в книге «Геометрия» в 1637 г.

Описание применения координат дал в книге «Геометрия» в 1637 г. французский математик Рене Декарт, поэтому прямоугольную систему координат часто называют декартовой.

Слова «абсцисса », «ордината », «координаты » первым начал использовать в конце XVII.

Для лучшего понимания координатной плоскости, представим что нам даны: географический глобус, шахматная доска, театральный билет.

Для определения положения точки на земной поверхности надо знать долготу и широту.
Для определения положения фигуры на шахматной доске нужно знать две координаты, например: е3.
Места в зрительном зале определяются по двум координатам: ряд и место.

Дополнительное задание.

После изучения видео урока, для закрепления материала, предлагаю Вам взять ручку и листик в клеточку, начертить координатную плоскость и построить фигуры по заданным координатам:

Грибок
1) (6; 0), (6; 2), (5; 1,5), (4; 3), (2; 1), (0; 2,5), (- 1,5; 1,5), (- 2; 5), (- 3; 0,5), (- 4; 2), (- 4; 0).
2) (2; 1), (2,2; 2), (2,3; 4), (2,5; 6), (2,3; 8), (2; 10), (6; 10), (4,8; 12), (3; 13,3), (1; 14),
(0; 14), (- 2; 13,3), (- 3,8; 12), (- 5; 10), (2; 10).
3) (- 1; 10), (- 1,3; 8), (- 1,5; 6), (- 1,2; 4), (- 0,8;2).
Мышонок 1) (3; - 4), (3; - 1), (2; 3), (2; 5), (3; 6), (3; 8), (2; 9), (1; 9), (- 1; 7), (- 1; 6),
(- 4; 4), (- 2; 3), (- 1; 3), (- 1; 1), (- 2; 1), (-2; - 1), (- 1; 0), (- 1; - 4), (- 2; - 4),
(- 2; - 6), (- 3; - 6), (- 3; - 7), (- 1; - 7), (- 1; - 5), (1; - 5), (1; - 6), (3; - 6), (3; - 7),
(4; - 7), (4; - 5), (2; - 5), (3; - 4).
2) Хвост: (3; - 3), (5; - 3), (5; 3).
3) Глаз: (- 1; 5).
Лебедь
1) (2; 7), (0; 5), (- 2; 7), (0; 8), (2; 7), (- 4; - 3), (4; 0), (11; - 2), (9; - 2), (11; - 3),
(9; - 3), (5; - 7), (- 4; - 3).
2) Клюв: (- 4; 8), (- 2; 7), (- 4; 6).
3) Крыло: (1; - 3), (4; - 2), (7; - 3), (4; - 5), (1; - 3).
4) Глаз: (0; 7).
Верблюд
1) (- 9; 6), (- 5; 9), (- 5; 10), (- 4; 10), (- 4; 4), (- 3; 4), (0; 7), (2; 4), (4; 7), (7; 4),
(9; 3), (9; 1), (8; - 1), (8; 1), (7; 1), (7; - 7), (6; - 7), (6; - 2), (4; - 1), (- 5; - 1), (- 5; - 7),
(- 6; - 7), (- 6; 5), (- 7;5), (- 8; 4), (- 9; 4), (- 9; 6).
2) Глаз: (- 6; 7).
Слоник
1) (2; - 3), (2; - 2), (4; - 2), (4; - 1), (3; 1), (2; 1), (1; 2), (0; 0), (- 3; 2), (- 4; 5),
(0; 8), (2; 7), (6; 7), (8; 8), (10; 6), (10; 2), (7; 0), (6; 2), (6; - 2), (5; - 3), (2; - 3).
2) (4; - 3), (4; - 5), (3; - 9), (0; - 8), (1; - 5), (1; - 4), (0; - 4), (0; - 9), (- 3; - 9),
(- 3; - 3), (- 7; - 3), (- 7; - 7), (- 8; - 7), (- 8; - 8), (- 11; - 8), (- 10; - 4), (- 11; - 1),
(- 14; - 3), (- 12; - 1), (- 11;2), (- 8;4), (- 4;5).
3) Глаза: (2; 4), (6; 4).
Конь
1) (14; - 3), (6,5; 0), (4; 7), (2; 9), (3; 11), (3; 13), (0; 10), (- 2; 10), (- 8; 5,5),
(- 8; 3), (- 7; 2), (- 5; 3), (- 5; 4,5), (0; 4), (- 2; 0), (- 2; - 3), (- 5; - 1), (- 7; - 2),
(- 5; - 10), (- 2; - 11), (- 2; - 8,5), (- 4; - 8), (- 4; - 4), (0; - 7,5), (3; - 5).
2) Глаз: (- 2; 7).

Если построить на плоскости две взаимно перпендикулярные числовые оси : OX и OY , то они будут называться осями координат . Горизонтальная ось OX называется осью абсцисс (осью x ), вертикальная ось OY - осью ординат (осью y ).

Точка O , стоящая на пересечении осей, называется началом координат . Она является нулевой точкой для обеих осей. Положительные числа изображаются на оси абсцисс точками вправо, а на оси ординат - точками вверх от нулевой точки. Отрицательные числа изображаются точками влево и вниз от начала координат (точки O ). Плоскость, на которой лежат оси координат, называется координатной плоскостью .

Оси координат делят плоскость на четыре части, называемые четвертями или квадрантами . Принято эти четверти нумеровать римскими цифрами в том порядке, в котором они пронумерованы на чертеже.

Координаты точки на плоскости

Если взять на координатной плоскости произвольную точку A и провести от неё перпендикуляры к осям координат, то основания перпендикуляров лягут на два числа. Число, на которое указывает вертикальный перпендикуляр, называется абсциссой точки A . Число, на которое указывает горизонтальный перпендикуляр, - ординатой точки A .

На чертеже абсцисса точки A равна 3, а ордината 5.

Абсцисса и ордината называются координатами данной точки на плоскости.

Координаты точки записываются в скобках справа от обозначения точки. Первой записывается абсцисса, а за ней ордината. Так запись A (3; 5) обозначает, что абсцисса точки A равна трём, а ордината - пяти.

Координаты точки - это числа, определяющие её положение на плоскости.

Если точка лежит на оси абсцисс, то её ордината равна нулю (например, точка B с координатами -2 и 0). Если точка лежит на оси ординат, то её абсцисса равна нулю (например, точка C с координатами 0 и -4).

Начало координат - точка O - имеет и абсциссу и ординату равные нулю: O (0; 0).

Данная система координат называется прямоугольной или декартовой .

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

В речи взрослых вы могли слышать такую фразу: «Оставьте мне ваши координаты». Это выражение означает, что собеседник должен оставить свой адрес или номер телефона, по которым его можно найти. Те из вас, кто играл в «морской бой», пользовались при этом соответствующей системой координат. Аналогичная система координат используется в шахматах. Места в зрительном зале кинотеатра задают двумя числами: первым числом обозначают номер ряда, а вторым — номер кресла в этом ряду. Идея задавать положение точки на плоскости с помощью чисел зародилась ещё в древности. Система координат пронизывает всю практическую жизнь человека и имеет огромное практическое применение. Поэтому мы решили создать данный проект, чтобы расширить свои познания по теме «Координатная плоскость»

Задачи проекта :

    ознакомиться с историей возникновения прямоугольной системой координат на плоскости;

выдающимися деятелями, занимающимися данной темой;

    найти интересные исторические факты;

    хорошо воспринимать на слух координаты; четко и аккуратно выполнять построения;

    подготовить презентацию.

ГлаваI. Координатная плоскость

Идея задавать положение точки на плоскости с помощью чисел зародилась ещё в древности - прежде всего у астрономов и географов при составлении звёздных и географических карт, календарей.

§1. Зарождение координат. Система координат в географии

За 200 лет до нашей эры греческий ученый Гиппарх ввёл географические координаты. Он предложил нарисовать на географической карте параллели и меридианы и обозначить числами широту и долготу. С помощью этих двух чисел можно точно определить положение острова, поселка, горы или колодца в пустыне и нанести их на карту или глобус, Научившись определять в открытом мире широту и долготу местонахождения корабля, моряки получили возможность выбирать нужное им направление.

Восточную долготу и северную широту обозначают числами со знаком «плюс», а западную долготу и южную широту — со знаком «минус». Таким образом, пара чисел со знаками однозначно определяет точку на земном шаре.

Географическая широта? - угол между отвесной линией в данной точке и плоскостью экватора, отсчитываемый от 0 до 90 в обе стороны от экватора. Географическая долгота? - угол между плоскостью меридиана, проходящего через данную точку, и плоскостью начала меридиана(см. Гринвичский меридиан). Долготы от 0 до 180 к востоку от начала меридиана называют восточными, к западу - западными.

Чтобы найти некоторый объект в городе, в большинстве случаев достаточно знать его адрес. Трудности возникают, если нужно объяснить, где находится, например, дачный участок, место в лесу. Универсальным средством указания местоположения служат географические координаты.

При попадании в аварийную ситуацию, человек первым делом должен уметь ориентироваться на местности. Иногда необходимо определить географические координаты своего местоположения, например, чтобы передать спасательной службе или для других целей.

В современной навигации стандартно используется всемирная система координат WGS-84. В этой системе координат работают все GPS навигаторы и основные картографические проекты в Интернете. Координаты в системе WGS-84 столь же общеупотребимы и понятны всем, как всемирное время. Общедоступная точность при работе с географическими координатами составляет 5 - 10 метров на местности.

Географические координаты представляют собой числа со знаком (широта от -90° до +90°, долгота от -180° до +180°) и могут записываться в различных формах: в градусах (ddd.ddddd°); градусах и минутах (ddd° mm.mmm"); градусах, минутах и секундах (ddd° mm" ss.s"). Формы записи могут быть элементарно пересчитаны одна в другую (1 градус = 60 минут, 1 минута = 60 секунд). Для обозначения знака координат часто используются буквы, по названию сторон света: N и E - северная широта и восточная долгота - положительные числа, S и W - южная широта и западная долгота - отрицательные числа.

Форма записи координат в ГРАДУСАХ наиболее удобна для ручного ввода и совпадает с математической записью числа. Форма записи координат в ГРАДУСАХ И МИНУТАХ является предпочтительной во многих случаях, такой формат установлен по умолчанию в большинстве GPS навигаторов и стандартно используется в авиации и на море. Классическая форма записи координат в ГРАДУСАХ, МИНУТАХ И СЕКУНДАХ в действительности не находит большого практического применения.

§2. Система координат в астрономии. Мифы о созвездиях

Как было сказано выше идея задавать положение точки на плоскости с помощью чисел зародилась в древности у астрономов при составлении звездных карт. Людям нужно было считать время, предсказывать сезонные явления (приливы, отливы, сезонные дожди, затопления), нужно было ориентироваться на местности во время путешествий.

Астрономия - это наука о звёздах, планетах, небесных телах, их строении и развитии.

Прошли тысячи лет, наука шагнула далеко вперёд, а человек по-прежнему не может оторвать восхищённого взгляда от красоты ночного неба.

Созвездия - участки звёздного неба, характерные фигуры, образуемые яркими звёздами. Всё небо разделено на 88 созвездий, которые облегчают ориентирование среди звёзд. Большинство названий созвездий пришло из древности.

Самое известное созвездие - Большая Медведица. В Древнем Египте его называли “Гиппопотам”, а казахи называли “Конь на привязи”, хотя внешне созвездие не напоминает ни одного, ни другого животного. Какое же оно?

У древних греков существовала легенда о созвездиях Большой и Малой Медведиц. Всемогущий бог Зевс решил взять себе в жены прекрасную нимфу Калисто, одну из служанок богини Афродиты, вопреки желанию последней. Чтобы избавить Калисто от преследований богини, Зевс обратил Калисто в Большую медведицу, ее любимую собаку - в Малую Медведицу и взял их на небо. Перенести созвездия Большой и Малой Медведиц со звездного неба на координатную плоскость. . Каждая из звёзд “ Ковша большой медведицы” имеет свое название.

МЕДВЕДИЦУ БОЛЬШУЮ

Узнаю по КОВШУ я!

Семь звёзд сверкают тут,

А вот как их зовут:

ДУБХЕ освещает мрак,

Рядом с ним горит МЕРАК,

Сбоку ФЕКДА с МЕГРЕЦОМ,

Разудалым молодцом.

От МЕГРЕЦА на отлёт

Расположен АЛИОТ,

А за ним - МИЦАР с АЛЬКОРОМ

(Эти двое светят хором).

Замыкает ковшик наш

Бесподобный БЕНЕТНАШ.

Он указывает глазу

Путь в созвездье ВОЛОПАСА,

Где АРКТУР прекрасный светит,

Всяк теперь его заметит!

Не менее красивая легенда о созвездиях « Цефея», «Кассиопеи» и «Андромеды» .

Когда-то Эфиопией правил царь Цефей. Однажды его супруга, царица Кассиопея, имела неосторожность похвастать своей красотой перед обитательницами моря - нереидами. Последние, обидевшись, пожаловались богу моря Посейдону, и разгневанный дерзостью Кассиопеи властитель морей напустил на берега Эфиопии морское чудовище - Кита. Чтобы избавить свое царство от разрушений, Цефей, по совету оракула, решил принести жертву чудовищу и отдать ему на съедение свою любимую дочь Андромеду. Он приковал Андромеду к прибрежной скале и оставил ее в ожидании решения своей участи.

А в это время на другом краю света мифический герой Персей совершил смелый подвиг. Он проник на уединенный остров, где жили горгоны - удивительные чудовища в образе женщин, у которых на головах вместо волос кишели змеи. Взгляд горгон был так ужасен, что каждый на кого они смотрели, мгновенно превращался в камень.

Воспользовавшись сном этих чудовищ, Персей отсек голову одной из них -Горгоне Медузе. В этот момент из отрубленного тела Медузы выпорхнул конь Пегас. Персей схватил голову медузы, вскочил на Пегаса и по воздуху помчался к себе на родину. Когда он пролетал над Эфиопией, то увидел прикованную к скале Андромеду. В этот момент Кит уже вынырнул из морских пучин, готовясь проглотить свою жертву. Но Персей, ринувшись в смертельный бой с Китом, победил чудовище. Он показал Киту еще не потерявшую силу голову медузы, и чудовище окаменело, превратившись в остров. Что же касается Персея, то, расковав Андромеду, он вернул ее отцу, а растроганный от счастья Цефей отдал Андромеду в жены Персею. Так благополучно закончилась эта история, главные герои которой были помещены древними греками на небо.

На звездной карте можно найти не только Андромеду с ее отцом, матерью и мужем, но и волшебного коня пегаса и виновника всех бед - чудовища Кита.

Созвездие Кита расположено ниже Пегаса и Андромеды. К сожалению, оно не отмечено какими-нибудь характерными яркими звездами и поэтому принадлежит к числу второстепенных созвездий.

§3. Использование идеи прямоугольных координат в живописи.

Следы применения идеи прямоугольных координат в виде квадратной сетки (палетки) изображены на стене одной из погребальных камер Древнего Египта. В погребальной камере пирамиды отца Рамсеса на стене имеется сеть квадратиков. С их помощью перенесено изображение в увеличенном виде. Прямоугольной сеткой пользовались и художники Возрождения.

Слово «перспектива» в переводе с латинского означает «ясно вижу». В изобразительном искусстве линейная перспектива — это изображение предметов на плоскости в соответствии с кажущимися изменениями их величины. Основу современной теории перспективы заложили великие художники эпохи Возрождения — Леонардо да Винчи, Альбрехт Дюрер и другие. На одной из гравюр Дюрера (рис. 3) изображён способ рисования с натуры через стекло с нанесённой на него квадратной сеткой. Этот процесс можно описать так: если встать перед окном и, не изменяя точки зрения, обвести на стекле всё, что видно за ним, то полученный рисунок и будет перспективным изображением пространства.

Египетские методы проектирования, которые, похоже, основывались на схемах квадратной сетки. В египетском искусстве имеются многочисленные примеры, показывающие, что художники и скульпторы сначала рисовали сетку на стене, которую предстояло расписать или вырезать, для того чтобы сохранить установленные пропорции. Простые числовые отношения этих сеток служат сердцевиной всех великих художественных произведений египтян.

Тот же метод использовался многими художниками Возрождения, в том числе и Леонардо да Винчи. В Древнем Египте это нашло свое воплощение в Великой пирамиде, что и подкрепляется ее тесной связью с узором на Марлборо-Дауне.

Приступая к работе, египетский художник расчерчивал стену сеткой прямых линий и затем тщательно переносил на нее фигуры. Но геометрическая упорядоченность не мешала ему воссоздавать натуру с детальной точностью. Наружность каждой рыбы, каждой птицы передана с такой правдивостью, что современные зоологи без труда определяют их виды. На рис.4 дана деталь композиции с иллюстрации- дерево с птицами, схваченными сетью Хнумхотепа. Движение руки художника направлялось не только запасами его навыков, но и глазом, чувствительным к очертаниям натуры.

Рис.4 Птицы на акации

Глава II. Метод координат в математике

§1. Применение координат в математике. Заслуги

французского математика Рене Декарта

Долгое время лишь география "землеописание" - пользовалась этим замечательным изобретением, и только в 14 веке французский математик Никола Орем (1323-1382) попытался приложить его к "землеизмерению" - геометрии. Он предложил покрыть плоскость прямоугольной сеткой и называть широтой и долготой то, что мы теперь называем абсциссой и ординатой.

На основе этого удачного нововведения возник метод координат, связавший геометрию с алгеброй. Основная заслуга в создании этого метода принадлежит великому французскому математику Рене Декарту (1596 - 1650). В его честь такая система координат называется декартовой, обозначающая место любой точки плоскости расстояниями от этой точки до "нулевой широты" - оси абсцисс " и "нулевого меридиана" - оси ординат.

Однако этот гениальный французский ученый и мыслитель XVII века (1596 - 1650) далеко не сразу нашел свое место в жизни. Родившись в дворянской семье, Декарт получил хорошее образование. В 1606 году отец отправил его в иезуитскую коллегию Ла Флеш. Учитывая не очень крепкое здоровье Декарта, ему делали некоторые послабления в строгом режиме этого учебного заведения, например, разрешали вставать позже других. Приобретя в коллегии немало познаний, Декарт в то же время проникся антипатией к схоластической философии, которую он сохранил на всю свою жизнь.

После окончания коллегии Декарт продолжил образование. В 1616 в университете Пуатье он получил степень бакалавра права. В 1617 Декарт поступает на службу в армию и много путешествует по Европе.

1619 год в научном отношении оказался ключевым для Декарта.

Именно в это время, как он сам писал в дневнике, ему открылись основания новой «удивительнейшей науки». Скорее всего, Декарт имел в виду открытие универсального научного метода, который он впоследствии плодотворно применял в самых разных дисциплинах.

В 1620-е годы Декарт знакомится с математиком М. Мерсенном, через которого он долгие годы «держал связь» со всем европейским научным сообществом.

В 1628 Декарт более чем на 15 лет обосновывается в Нидерландах, но не поселяется в каком-то одном месте, а около двух десятков раз меняет место жительства.

В 1633, узнав об осуждении церковью Галилея, Декарт отказывается от публикации натурфилософской работы «Мир», в которой излагались идеи естественного возникновения вселенной по механическим законам материи.

В 1637 на французском языке выходит работа Декарта «Рассуждение о методе», с которой, как многие считают, и началась новоевропейская философия.

Большое влияние на европейскую мысль оказала и последняя философская работа Декарта «Страсти души», опубликованная в 1649 г. В том же году по приглашению шведской королевы Кристины Декарт отправился в Швецию. Суровый климат и непривычный режим (королева заставляла Декарта вставать в 5 утра, чтобы давать ей уроки и выполнять другие поручения) подорвали здоровье Декарта, и, подхватив простуду, он

умер от пневмонии.

По традиции, введенной Декартом, "широта" точки обозначаются буквой x, "долгота" - буквой y

На этой системе основаны многие способы указания места.

Например, на билете в кинотеатр стоят два числа: ряд и место — их можно рассматривать как координаты места в зале.

Подобные координаты приняты в шахматах. Вместо одного из чисел берется буква: вертикальные ряды клеток обозначаются буквами латинского алфавита, а горизонтальные — цифрами. Таким образом, каждой клетке шахматной доски ставится в соответствие пара из буквы и числа, и шахматисты получают возможность записывать свои партии. О применении координат пишет в своём стихотворении "Сын артиллериста" Константин Симонов.

Всю ночь, шагая как маятник,

Глаз майор не смыкал,

Пока по радио утром

Донёсся первый сигнал:

"Всё в порядке, добрался,

Немцы левей меня,

Координаты (3;10),

Скорее давайте огня!

Орудия зарядили,

Майор рассчитал всё сам.

И с рёвом первые залпы

Ударили по горам.

И снова сигнал по радио:

"Немцы правей меня,

Координаты (5; 10),

Скорее ещё огня!

Летели земля и скалы,

Столбом поднимался дым.

Казалось, теперь оттуда

Никто не уйдёт живым.

Третий сигнал по радио:

"Немцы вокруг меня,

Координаты (4; 10),

Не жалейте огня.

Майор побледнел, услышав:

(4;10) - как раз

То место, где его Лёнька

Должен сидеть сейчас.

Константин Симонов "Сын артиллериста"

§2. Легенды об изобретении системы координат

Существует несколько легенд об изобретении системы координат, которая носит имя Декарта.

Легенда 1

До наших времён дошла такая история.

Посещая парижские театры, Декарт не уставал удивляться путанице, перебранкам, а подчас и вызовам на дуэль, вызываемыми отсутствием элементарного порядка распределения публики в зрительном зале. Предложенная им система нумерации, в которой каждое место получало номер ряда и порядковый номер от края, сразу сняла все поводы для раздоров и произвела настоящий фурор в парижском высшем обществе.

Легенда2. Однажды РенеДекарт весь день пролежал в кровати, думая о чем-то, а муха жужжала вокруг и не давала ему сосредоточиться. Он стал размышлять, как бы описать положение мухи в любой момент времени математически, чтобы иметь возможность прихлопнуть ее без промаха. И...придумал, декартовы координаты, одно из величайших изобретений в истории человечества.

Марковцев Ю.

Однажды в незнакомый город

Приехал молодой Декарт.

Его ужасно мучил голод.

Стоял промозглый месяц март.

Решил к прохожей обратиться

Декарт, пытаясь, дрожь унять:

Где тут гостиница, скажите?

И дама стала объяснять:

- Идите до молочной лавки,

Потом до булочной, за ней

Цыганка продает булавки

И яд для крыс и для мышей,

Найдете в них наверняка

Сыры, бисквиты, фрукты

И разноцветные шелка…

Все объяснения эти слушал

Декарт, от холода дрожа.

Ему хотелось очень кушать,

- За магазинами - аптека

(аптекарь там - усатый швед),

И церковь, где в начале века

Венчался, кажется, мой дед…

Когда на миг умолкла дама,

Вдруг произнес ее слуга:

- Идите три квартала прямо

И два направо. Вход с угла.

Это - третья небылица о случае, который подсказал Декарту идею координат.

Заключение

Создавая, свой проект мы узнали о применении координатной плоскости в различных областях науки и повседневной жизни, некоторые сведения из истории возникновения координатной плоскости и математиках сделавших большой вклад в это изобретение. Материал, который мы собрали в ходе написания работы, может быть использован на занятиях школьного кружка, в качестве дополнительного материала к урокам. Всё это может заинтересовать школьников и скрасить учебный процесс.

А закончить нам бы хотелось такими словами:

«Представь свою жизнь координатной плоскостью. Ось у — твое положение в обществе. Ось х — продвижение вперед, к цели, к твоей мечте. И как мы знаем, она бесконечна… мы можем падать вниз, все дальше углубляясь в минус, можем оставаться на нуле и ничего не делать, абсолютно ничего. Можем подниматься вверх, можем падать, можем идти вперед или возвращаться назад, а все из-за того, что вся наша жизнь это координатная плоскость и самое главное здесь, какая у тебя координата…»

Список используемой литературы

    Глейзер Г.И. История математики в школе: - М.: Просвещение, 1981. - 239 с, ил.

    Ляткер Я. А. Декарт. М.: Мысль, 1975. - (Мыслители прошлого)

    Матвиевская Г. П. Рене Декарт, 1596-1650. М.: Наука, 1976.

    А. Савин. Координат. Квант. 1977. №9

    Математика - приложение к газете «Первое сентября», №7, №20, №17, 2003г., №11, 2000г.

    Зигель Ф.Ю. Звёздая азбука: Пособие для учащихся. - М.: Просвещение, 1981. - 191 с., ил

    Стив Паркер, Николас Харрис. Иллюстрированная энциклопедия для детей. Тайны вселенной. Харьков Белгород. 2008

    Материалы с сайта http://istina.rin.ru/

§ 1 Система координат: определение и способ построения

В этом уроке познакомимся с понятиями «система координат», «координатная плоскость», «оси координат», научимся строить точки на плоскости по координатам.

Возьмем координатную прямую х с началом координат точкой О, положительным направлением и единичным отрезком.

Через начало координат точку О координатной прямой х проведем еще одну координатную прямую y, перпендикулярную х, положительное направление зададим вверх, единичный отрезок такой же. Таким образом, мы построили систему координат.

Дадим определение:

Две взаимно перпендикулярные координатные прямые, пересекающиеся в точке, которая является началом координат каждой из них, образуют систему координат.

§ 2 Координатная ось и координатная плоскость

Прямые, которые образуют систему координат, называют координатными осями, каждая из которых имеет свое название: координатная прямая х - ось абсцисс, координатная прямая y - ось ординат.

Плоскость, на которой выбрана система координат, называется координатной плоскостью.

Описанная система координат называется прямоугольной. Часто ее называют декартовой системой координат в честь французского философа и математика Рене Декарта.

Каждая точка координатной плоскости имеет две координаты, которые можно определить, опустив из точки перпендикуляры на оси координат. Координаты точки на плоскости - это пара чисел, из которых первое число - абсцисса, второе число - ордината. Абсциссу показывает перпендикуляр к оси х, ординату - перпендикуляр к оси y.

Отметим на координатной плоскости точку А, проведем из неё перпендикуляры к осям системы координат.

По перпендикуляру к оси абсцисс (ось х) определяем абсциссу точки А, она равна 4, ординату точки А - по перпендикуляру к оси ординат (ось у) - это 3. Координаты нашей точки 4 и 3. А (4;3). Таким образом, координаты можно найти для любой точки координатной плоскости.

§ 3 Построение точки на плоскости

А как построить точку на плоскости с заданными координатами, т.е. по координатам точки плоскости определить её положение? В данном случае действия выполняем в обратном порядке. На координатных осях находим точки соответствующие заданным координатам, через которые проводим прямые, перпендикулярные осям х и y. Точка пересечения перпендикуляров и будет искомой, т.е. точкой с заданными координатами.

Выполним задание: построить на координатной плоскости точку М (2;-3).

Для этого на оси абсцисс находим точку с координатой 2, проводим через данную точку прямую перпендикулярную оси х. На оси ординат найдем точку с координатой -3, через нее проведем прямую перпендикулярную оси y. Точка пересечения перпендикулярных прямых и будет заданной точкой М.

А теперь рассмотрим несколько частных случаев.

Отметим на координатной плоскости точки А (0; 2), В (0; -3), С (0; 4).

Абсциссы данных точек равны 0. На рисунке видно, что все точки находятся на оси ординат.

Следовательно, точки, абсциссы которых равны нулю, лежат на оси ординат.

Поменяем координаты данных точек местами.

Получится А (2;0), В (-3;0) С (4; 0). В этом случае все ординаты равны 0 и точки находятся на оси абсцисс.

Значит, точки, ординаты которых равны нулю, лежат на оси абсцисс.

Разберем еще два случая.

На координатной плоскости отметим точки М (3; 2), N (3; -1), Р (3; -4).

Легко заметить, что все абсциссы точек одинаковые. Если эти точки соединить, получится прямая, параллельная оси ординат и перпендикулярная оси абсцисс.

Напрашивается вывод: точки, имеющие одну и ту же абсциссу, лежат на одной прямой, которая параллельна оси ординат и перпендикулярна оси абсцисс.

Если поменять координаты точек М, N, Р местами, то получится М (2; 3), N (-1; 3), Р (-4; 3). Одинаковыми станут ординаты точек. В данном случае, если эти точки соединить, получится прямая параллельная оси абсцисс и перпендикулярная оси ординат.

Таким образом, точки, имеющие одну и ту же ординату, лежат на одной прямой параллельной оси абсцисс и перпендикулярной оси ординат.

В этом уроке Вы познакомились с понятиями «система координат», «координатная плоскость», «оси координат - ось абсцисс и ось ординат». Узнали, как найти координаты точки на координатной плоскости и научились строить точки на плоскости по ее координатам.

Список использованной литературы:

  1. Математика. 6 класс: поурочные планы к учебнику И.И. Зубаревой, А.Г. Мордковича//автор-составитель Л.А. Топилина. – Мнемозина, 2009.
  2. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений. И.И.Зубарева, А.Г.Мордкович.- М.: Мнемозина, 2013.
  3. Математика. 6 класс: учебник для общеобразовательных учреждений/Г.В. Дорофеев, И.Ф. Шарыгин, С.Б. Суворова и др./по редакцией Г.В. Дорофеева, И.Ф. Шарыгина; Рос.акад.наук, Рос.акад.образования. - М.: «Просвещение», 2010
  4. Справочник по математике - http://lyudmilanik.com.ua
  5. Справочник для учащихся в средней школе http://shkolo.ru

«прописаны» точки - «жильцы», у каждой точки есть свой «номер дома» - ее координата. Если же точка берется в плоскости, то для ее «прописки» нужно указывать не только «номер дома», но и «номер квартиры». Напомним, как это делается.

Проведем две взаимно-перпендикулярные координатные прямые и будем считать началом отсчета на обеих прямых точку их пересечения - точку О. Тем самым на плоскости задана прямоугольная система координат (рис. 20), которая превращает обычную плоскость в координатную. Точку О называют началом координат, координатные прямые (ось х и ось у) называют осями координат, а прямые углы, образованные осями координат, называют координатными углами. Координатные прямоугольная углы нумеруют так, как показано на рисунке 20.

А теперь обратимся к рисунку 21, где изображена прямоугольная система координат и отмечена точка М. Проведем через нее прямую, параллельную оси у. Прямая пересекает ось х в некоторой точке, у этой точки есть координата - на оси х. Для точки, изображенной на рисунке 21, эта координата равна -1,5, ее называют абсциссой точки М. Далее проведем через точку М прямую, параллельную оси х. Прямая пересекает ось у в некоторой точке, у этой точки есть координата - на оси у.

Для точки М, изображенной на рисунке 21, эта координата равна 2, ее называют ординатой точки М. Коротко пишут так: М(-1,5; 2). Абсциссу записывают на первом месте, ординату - на втором. Используют, если в этом есть необходимость, и другую форму записи: х = -1,5; у = 2.

Замечание 1 . На практике для отыскания координат точки М обычно вместо прямых, параллельных осям координат и проходящих через точку М, строят отрезки этих прямых от точки М до осей координат (рис. 22).

Замечание 2. В предыдущем параграфе мы ввели разные обозначения для числовых промежутков. В частности, как мы условились, запись (3, 5) означает, что на координатной прямой рассматривается интервал с концами в точках 3 и 5. В настоящем же параграфе пару чисел мы рассматриваем как координаты точки; например, (3; 5) - это точка на координатной плоскости с абсциссой 3 и ординатой 5. Как же правильно по символической записи определить, о чем идет речь: об интервале или о координатах точки? Чаще всего это бывает ясно по тексту. А если не ясно? Обратите внимание на одну деталь: в обозначении интервала мы использовали запятую, а в обозначении координат - точку с запятой. Это, конечно, не очень существенное, но все-таки различие; будем его применять.

Учитывая введенные термины и обозначения, горизонтальную координатную прямую называют абсцисс, или осью х, а вертикальную координатную прямую - осью ординат, или осью у. Обозначения х, у используют обычно при задании на плоскости прямоугольной системы координат (см. рис. 20) и часто говорят так: дана система координат хОу. Впрочем, встречаются и другие обозначения: например, на рисунке 23 задана система координат tOs.
Алгоритм отыскания координат точки М, заданной в прямоугольной системе координат хОу

Именно так мы и действовали, находя координаты точки М на рисунке 21. Если точка М 1 (х; у) принадлежит первому координатному углу, то х > 0, у > 0; если точка М 2 (х; у) принадлежит второму координатному углу, то х < 0, у > 0; если точка М 3 (х; у) принадлежит третьему координатному углу, то х < О, у < 0; если точка М 4 (х; у) принадлежит четвертому координатному углу, то х > О, у < 0 (рис. 24).

А что будет, если точка, координаты которой надо найти, лежит на одной из осей координат? Пусть точка А лежит на оси х, а точка В - на оси у (рис. 25). Проводить через точку А прямую, параллельную оси у, и находить точку пересечения этой прямой с осью х не имеет смысла, поскольку такая точка пересечения уже есть - это точка А, ее координата (абсцисса) равна 3. Точно так же не нужно проводить через точку А прямую, параллельную оси х, - этой прямой является сама ось х, которая пересекает ось у в точке О с координатой (ординатой) 0. В итоге для точки А получаем А(3; 0). Аналогично для точки В получаем В(0; - 1,5). А для точки О имеем О(0; 0).

Вообще, любая точка на оси х имеет координаты (х; 0), а любая точка на оси у - координаты (0; у)

Итак, как находить координаты точки в координатной плоскости, мы обсудили. А как решать обратную задачу, т. е. как, задав координаты, построить соответствующую точку? Чтобы выработать алгоритм, проведем два вспомогательных, но в то же время важных рассуждения.

Первое рассуждение. Пусть в системе координат хОу проведена I, параллельная оси у и пересекающая ось х в точке с координатой (абсциссой) 4

(рис. 26). Любая точка, лежащая на этой прямой, имеет абсциссу 4. Так, для точек М 1 , М 2 , М 3 имеем М 1 (4; 3), М 2 (4; 6), М 3 (4; - 2). Иными словами, абсцисса любой точки М прямой удовлетворяет условию х = 4. Говорят, что х = 4 - уравнение прямой l или что прямая I удовлетворяет уравнению х = 4.


На рисунке 27 изображены прямые, удовлетворяющие уравнениям х = - 4 (прямая I 1), x = - 1
(прямая I 2) x = 3,5 (прямаяI 3). А какая прямая удовлетворяет уравнению х = 0? Догадались? Ось у.

Второе рассуждение. Пусть в системе координат хОу проведена прямая I, параллельная оси х и пересекающая ось у в точке с координатой (ординатой) 3 (рис. 28). Любая точка, лежащая на этой прямой, имеет ординату 3. Так, для точек М 1 , М 2 , М 3 имеем: М 1 (0; 3), М 2 (4; 3), М 3 (- 2; 3). Иными словами, ордината любой точки М прямой I удовлетворяет условию у = 3. Говорят, что у = 3 - уравнение прямой I или что прямая I удовлетворяет уравнению у = 3.

На рисунке 29 изображены прямые, удовлетворяющие уравнениям у = - 4 (прямая l 1), у = - 1 (прямая I 2), у = 3,5 (прямая I 3)- A какая прямая удовлетворяет уравнению у = 01 Догадались? Ось х.

Заметим, что математики, стремясь к краткости речи, говорят «прямая х = 4», а не «прямая, удовлетворяющая уравнению х = 4». Аналогично, они говорят «прямая у = 3», а не «прямая, удовлетворяющая равнению у = 3 ». Мы будем поступать точно так же. Вернемся теперь к рисунку 21. Обратите внимание, что точка М (- 1,5; 2), которая там изображена, есть точка пересечения прямой х = -1,5 и прямой у = 2. Теперь, видимо, будет понятен алгоритм построения точки по заданным ее координатам.

Алгоритм построения точки М (а; Ь) в прямоугольной системе координат хОу

П р и м е р. В системе координат хОу построить точки: А (1; 3), В (- 2; 1), С (4; 0), D (0; - 3).

Решение. Точка А есть точка пересечения прямых х = 1 и у = 3 (см. рис. 30).

Точка В есть точка пересечения прямых x = - 2 и y = 1 (рис. 30). Точка С принадлежит оси х, а точка D - оси у (см. рис. 30).


В заключение параграфа заметим, что впервые прямоугольную систему координат на плоскости стал активно использовать для замены алгебраических моделей геометрическими французский философ Рене Декарт (1596-1650). Поэтому иногда говорят «декартова система координат», «декартовы координаты».

Полный перечень тем по классам, календарный план согласно школьной программе по математике онлайн , видеоматериал по математике для 7 класса скачать

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки