Какой тип связи в молекулах веществ. Понятия о типах связей между атомами, валентных состояниях углерода и механизме органических реакций

К эфирам серной кислоты относятся диалкилсульфаты (RO 2)SO 2 . Это высококипящие жидкости; низшие растворимы в воде; в присутствии щелочей образуют спирт и соли серной кис­лоты. Низшие диалкилсульфаты - алкилирующие агенты.

Диэтилсульфат (C 2 H 5) 2 SO 4 . Температура плавления -26°С, температура кипения 210°С, растворим в спиртах, нерастворим в воде. Получен взаимодействием серной кислоты с этанолом. Яв­ляется этилирующим агентом в органическом синтезе. Проника­ет через кожу.

Диметилсульфат (CH 3) 2 SO 4 . Температура плавления -26,8°С, температура кипения 188,5°С. Растворим в спиртах, плохо - в воде. Реагирует с аммиаком в отсутствие раствори­теля (со взрывом); сульфирует некоторые ароматические со­единения, например эфиры фенолов. Получают взаимодейст­вием 60%-ного олеума с метанолом при 150°С, Является метилирующим агентом в органическом синтезе. Канцероген, поражает глаза, кожу, органы дыхания.

Тиосульфат натрия Na 2 S 2 O 3

Соль тиосерной кислоты, в которой два атома серы имеют различные степени окисления: +6 и -2. Кристаллическое вещест­во, хорошо растворимо в воде. Выпускается в виде кристаллогид­рата Na 2 S 2 O 3 5Н 2 O, в обиходе называемый гипосульфитом. По­лучают взаимодействием сульфита натрия с серой при кипячении:

Na 2 SO 3 +S=Na 2 S 2 O 3

Как и тиосерная кислота, является сильным восстановителем, Легко окисляется хлором до серной кислоты:

Na 2 S 2 O 3 +4Сl 2 +5Н 2 О=2H 2 SO 4 +2NaCl+6НСl

На этой реакции было основано применение тиосульфата натрия для поглощения хлора (в первых противогазах).

Несколько иначе происходит окисление тиосульфата натрия слабыми окислителями. При этом образуются соли тетратионовой кислоты, например:

2Na 2 S 2 O 3 +I 2 =Na 2 S 4 O 6 +2NaI

Тиосульфат натрия является побочным продуктом в произ­водстве NaHSO 3 , сернистых красителей, при очистке промыш­ленных газов от серы. Применяется для удаления следов хлора после отбеливания тканей, Для извлечения серебра из руд; явля­ется фиксажем в фотографии, реактивом в иодометрии, противоядием при отравлении соединениями мышьяка, ртути, противо­воспалительным средством.

Тиосульфат натрия – синтетическое соединение, известное в химии как серноватистокислый натрий, а в пищевой промышленности – как добавка Е539, разрешенная к использованию при производстве продуктов питания.

Тиосульфат натрия выполняет функции регулятора кислотности (антиокислителя), антислеживающего агента или консерванта. Применение тиосульфата как пищевой добавки позволяет увеличить сроки хранения и качество продукции, предупредить гниение, закисание, брожение. В чистом виде это вещество участвует в технологических процессах изготовления пищевой йодированной соли как стабилизатор йода и используется для обработки хлебопекарской муки, склонной к слеживанию и комкованию.

Применение пищевой добавки Е539 ограничивается исключительно промышленной сферой, вещество не поступает в розничную продажу. В медицинских целях тиосульфат натрия используется как противоядие при тяжелых отравлениях и противовоспалительное средство наружного применения.

общие сведения

Тиосульфат (гипосульфит) – это неорганическое соединение, которое является натриевой солью тиосерной кислоты. Вещество представляет собой бесцветный порошок без запаха, который при ближайшем рассмотрении оказывается прозрачными моноклинными кристаллами.

Гипосульфит является неустойчивым соединением, которое не встречается в природе. Вещество образует кристаллогидрат, который при нагревании выше 40 °С плавится в собственной кристаллической воде и растворяется. Расплавленный тиосульфат натрия склонен к переохлаждению, а при температуре около 220 °С соединение полностью разрушается.

Тиосульфат натрия: синтез

Серноватистокислый натрий был впервые получен искусственным путем в лабораторных условиях методом Леблана. Это соединение является побочным продуктом производства соды, которое образуется в результате окисления сульфида кальция. Взаимодействуя с кислородом, сульфид кальция частично окисляется до тиосульфата, из которого с помощью сульфата натрия получают Na 2 S 2 O 3 .

Современная химия предлагает несколько способов синтеза серноватистокислого натрия:

  • окисление сульфидов натрия;
  • кипячение серы с сульфитом натрия;
  • взаимодействие сероводорода и оксида серы с гидроксидом натрия;
  • кипячение серы с гидроксидом натрия.

Вышеуказанные методы позволяют получить тиосульфат натрия как побочный продукт реакции или в виде водного раствора, из которого нужно выпарить жидкость. Получить щелочной раствор серноватистокислого натрия можно, растворив его сульфид в насыщенной кислородом воде.

Чистое безводное соединение тиосульфата является результатом взаимодействия соли натрия и азотистой кислоты с серой в веществе, известном как формамид. Реакция синтеза протекает при температуре 80 °С и длится около получаса, ее продукты – тиосульфат и его оксид.

Во всех химических реакциях гипосульфит проявляет себя как сильный восстановитель. В реакциях взаимодействия с сильными окислителями Na 2 S 2 O 3 окисляется до сульфата или серной кислоты, со слабыми – до тетратионовой соли. Реакция окисления тиосульфата является основой йодометрического метода определения веществ.

Отдельного внимания заслуживает взаимодействие тиосульфата натрия со свободным хлором, который является сильным окислителем и ядовитым веществом. Гипосульфит легко окисляется хлором и переводит его в безвредные водорастворимые соединения. Таким образом, это соединение препятствует разрушительному и токсическому воздействию хлора.

В промышленных условиях тиосульфат добывают из отходов газового производства. Самым распространенным сырьем является светильный газ, который выделяется в процессе коксования угля и содержит примеси сероводорода. Из него синтезируют сульфид кальция, который подвергают гидролизу и окислению, после чего соединяют с сульфатом натрия для получения тиосульфата. Несмотря на многостадийность, этот способ считается наиболее экономически выгодным и экологически чистым методом добычи гипосульфита.

Что нужно знать о тиосульфате натрия
Систематическое наименование Тиосульфат натрия (Sodium thiosulfate)
Традиционные наименования Серноватистокислый натрий, гипосульфит (натрия) соды, антихлор
Международная маркировка Е539
Химическая формула Na 2 S 2 O 3
Группа Неорганические тиосульфаты (соли)
Агрегатное состояние Бесцветные моноклинные кристаллы (порошок)
Растворимость Растворим в , нерастворим в
Температура плавления 50 °С
Критическая температура 220 °С
Свойства Восстановительные (антиокислительные), комплексообразующие
Категория пищевой добавки Регуляторы кислотности, вещества против слеживания (антислеживатели)
Происхождение Синтетическое
Токсичность Не исследована, вещество условно безопасно
Области применения Пищевая, текстильная, кожевенная промышленность, фотодело, фармацевтика, аналитическая химия

Тиосульфат натрия: применение

Серноватистокислый натрий использовали в различных целях задолго до включения этого соединения в состав пищевых добавок и медикаментов. Антихлором пропитывали марлевые повязки и фильтры противогазов для защиты органов дыхания от ядовитого хлора во времена Первой мировой войны.

Современные направления применения гипосульфита в промышленности:

  • обработка фотопленки и фиксирование изображений на фотобумаге;
  • дехлорирование и бактериологический анализ питьевой воды;
  • удаление пятен хлора при отбеливании тканей;
  • выщелачивание золотой руды;
  • изготовление сплавов меди и патины;
  • дубление кожи.

Серноватистокислый натрий используют в качестве реактива в аналитической и органической химии, им нейтрализуют сильные кислоты, обезвреживают тяжелые металлы и их токсические соединения. Реакции взаимодействия тиосульфата с различными веществами являются основой йодометрии и бромометрии.

Пищевая добавка Е539

Тиосульфат натрия не является широко распространенной пищевой добавкой и не находится в свободном доступе из-за неустойчивости соединения и токсичности продуктов его распада. Гипосульфит участвует в технологических процессах производства пищевой йодированной соли и хлебобулочных изделий в качестве регулятора кислотности и антислеживателя (антикомкователя).

Добавка Е539 выполняет функции антиокислителя и консерванта при изготовлении овощных и рыбных консерв, десертов и алкогольных напитков. Это вещество также входит в состав химикатов, которыми обрабатывают поверхность свежих, сушеных и замороженных овощей и фруктов.

Консервант и антиоксидант Е539 используют для улучшения качества и увеличения срока годности таких продуктов:

  • свежие и замороженные овощи, фрукты, морские ;
  • , орехи, семечки;
  • овощи, грибы и водоросли, консервированные в или масле;
  • джемы, желе, засахаренные фрукты, фруктовые пюре и начинки;
  • свежая, мороженая, копченая и сушеная рыба, морепродукты, консервы;
  • мука, крахмалы, соусы, приправы, уксус, ;
  • белый и тростниковый , сахарозаменители (декстроза и ), сахарные сиропы;
  • фруктовые и овощные соки, сладкая вода, слабоалкогольные напитки, виноградные .

При изготовлении поваренной йодированной соли пищевую добавку Е539 применяют для стабилизации йода, что позволяет существенно продлить сроки хранения продукта и сохранить его пищевую ценность. Предельно допустимая концентрация Е539 в поваренной соли составляет 250 мг на 1 кг.

В хлебопекарном деле активно используют тиосульфат натрия в составе различных добавок для улучшения качества продукции. Хлебопекарные улучшители бывают окислительными и восстановительными. Антислеживатель Е539 относится к улучшителям восстанавливающего действия, которые позволяют изменить свойства .

Тесто из плотной муки с короткорвущейся клейковиной плохо поддается обработке, слеживается, не достигает необходимого объема и трескается в процессе выпечки. Антислеживающий агент Е539 разрушает дисульфидные связи и структурирует белки клейковины, в результате чего тесто хорошо поднимается, мякиш становится рыхлым и эластичным, а корочка не трескается при выпекании.

На предприятиях антислеживатель добавляют в муку вместе с дрожжами непосредственно перед замешиванием теста. Содержание тиосульфата в муке составляет 0,001-0,002 % ее массы в зависимости от технологии изготовления хлебобулочного изделия. Санитарно-гигиенические нормы для добавки Е539 составляют 50 мг на 1 кг пшеничной муки.

Антислеживатель Е539 используют в технологических процессах в строгой дозировке, поэтому риск отравления тиосульфатом при употреблении мучных изделий отсутствует. Мука, предназначенная для розничной реализации, перед продажей не обрабатывается. В пределах нормы добавка безопасна и не оказывает токсического действия на организм.

Использование в медицине и его влияние на организм

Гипосульфит соды входит в перечень основных лекарственных средств Всемирной организации здравоохранения как один из наиболее эффективных и безопасных лекарственных препаратов. Его вводят под кожу, внутримышечно и внутривенно как раствор для инъекций или применяют в качестве наружного средства.

В начале ХХ века тиосульфат натрия был впервые использован как противоядие при отравлении синильной кислотой. В сочетании с нитритом натрия, тиосульфат рекомендуют для особо тяжелых случаев отравления цианидами и вводят внутривенно для превращения цианидов в нетоксичные тиоцианаты, которые впоследствии можно безопасно вывести из организма.

Медицинское применение серноватисто-кислого натрия:

Влияние гипосульфита на организм человека при пероральном употреблении не изучено, поэтому нельзя судить о пользе и вреде вещества в чистом виде или в составе продуктов питания. Случаев отравления добавкой Е539 зарегистрировано не было, поэтому ее принято считать нетоксичной.

Тиосульфат натрия и законодательство

Тиосульфат натрия входит в перечень пищевых добавок, разрешенных для применения при изготовлении продуктов питания в России и Украине. Антислеживающий агент и регулятор кислотности Е539 используют согласно установленным санитарно-гигиеническим нормам исключительно в промышленных целях.

Ввиду того, что действие химического вещества на организм человека при пероральном применении до сих пор не изучено, добавка Е539 не разрешена к применению в странах ЕС и США.

2.1. Цель работы: определить влияние различных факторов на скорость химической реак­ции, ознакомиться с методами определения средней константы скорости, порядка реакции, энергии активации.

2.2. Объекты и средства исследования: 0.1М растворы тиосульфата натрия и серной кислоты, дистиллированная вода, пробирки, две бюретки, пипетка на 2мл, термостат, секундомер.

2.3. Программа работы

2.3.1. Влияние концентрации на скорость реакции .

В результате реакции между серной кислотой и тиосульфатом натрия образуется сера, выделяющаяся в виде мути. Время от начала реакции до момента помутнения (голубоватой опалесценции) зависит от скорости реакции. Это дает возможность судить о средней скорости реакции.

Реакция идет в три стадии:

1) Na 2 S 2 O 3 + H 2 SO 4 = Na 2 SO 4 + Н 2 S 2 O 3

2) Н 2 S 2 O 3 = H 2 SO 3 + S¯

3) H 2 SO 3 = H 2 O + SO 2 ­

Суммарное уравнение:

Na 2 S 2 O 3 + H 2 SO 4 = Na 2 SO 4 + SO 2 ­ + S¯ + H 2 O

Самая медленная, скоростьопределяющая, стадия – вторая, следовательно, скорость всего процесса зависит только от концентрации тиосерной кислоты. Так как тиосерная кислота получается в результате реакции ионного обмена, которая идет практически мгновенно, можно считать, что концентрация тиосерной кислоты равна концентрации тиосульфата натрия и скорость всего процесса зависит от концентрации тиосульфата натрия.

Ход работы .

Приготовить четыре раствора тиосульфата натрия разной концентрации согласно таблице 3. Поочередно к каждому раствору прибавить по 2мл 0,1М раствора серной кислоты и измерить время от момента приливания кислоты до момента появления помутнения. Результаты занести в таблицу 3, учитывая что ΔС есть величина постоянная, равная 4×10 -3 моль/л.

Таблица 3

На основании полученных данных построить график lgV = f (lgC) для определения порядка реакции при температуре T 1 (К). Графики строятся вручную на миллиметровой бумаге в соответствующем масштабе или в программе Microsoft Excel 2007.

Для построения графиков в программе Microsoft Excel 2007 необходимо занести исходные данные в электронную таблицу.

Затем необходимо выделить диапазон ячеек A2:B5 с данными и выбрать в меню Вставка – Диаграммы – Точечная и, выделив на графике полученные точки, выбрать в контекстном меню Добавить линию тренда – Линейная – Показывать уравнение на диаграмме x ) и есть n – порядок реакции. Например, n = 0,9919 ≈ 1

Для определения константы скорости реакции k 1 при комнатной температуре следует построить график зависимости V = f(C) также вручную или с помощью программы Microsoft Excel 2007.

Для построения графиков в программе Microsoft Excel 2007 занести исходные данные в электронную таблицу. Обратите внимание, что для столбца скорость (V ) необходимо выбрать формат ячеек экспоненциальный . В результате получаем график прямолинейной зависимости, в уравнении которой множитель при независимой переменной (x ) является константой скорости реакции.

Например, k = 1,6· 10 -3

2.3.2. Влияние температуры на скорость реакции.

Опыт проводить аналогично предыдущему. Однако растворы тиосульфата натрия и серной кислоты перед смешением предварительно нагреть в термостате в течение 5 минут.

Результаты записать в таблицу 3 (T 2).

По результатам расчетов и измерений построить график V = f(C) и опре­делить константу скорости реакции k 2 при повышенной температуре (Т 2), также используя возможности программы Microsoft Excel 2007. Найти температурный коэффициент скорости реакции:

На основании данных опытов 3.1.1. и 3.1.2. рассчитать энергию ак­тивации реакции Е акт. по формуле:

где R = 8,31 Дж/(моль·К) –универсальная газовая постоянная;

Т 1 и Т 2 -температура, К;

k 1 и k 2 - константы скорости реакции при температурах Т 1 и Т 2 , соответственно, с -1 .

Конец работы -

Эта тема принадлежит разделу:

Неорганическая химия

Министерство образования и науки РФ.. Федеральное государственное бюджетное.. Учреждение высшего профессионального образования..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Химическая посуда
1.1. Цель работы: Изучить виды и назначение химической посуды. 1.2. Теоретические сведения Используемую в лабораториях химическую посуду можно разделить на несколь

Мерная химическая посуда и приемы работы с ней
Мерную посуду используют для измерения объемов жидкостей. К ней относятся: мерные колбы, цилиндры, пипетки и бюретки (рис.3). На правила работы с мерной посудой надо обратить

Весы и правила взвешивания
1.1. Цель работы: Познакомиться с приборами для взвешивания. Научиться взвешивать на лабораторных технических весах. 1.2. Теоретические сведения. Для определения м

Запрещается превышать максимальную грузоподъемность весов
Перед взвешиванием проверяют готовность весов к работе: 1. устанавливают их по уровню, 2. выверяют нулевое положение стрелки. Взвешиваемый предмет помещают на левую чашку

Очистка природной воды
3.1. Цель работы: познакомиться с методами очистки природной воды. 3.2. Объекты и средства исследования: два химических стакана на 300-500 мл, коническая воронка, колба Вюр

Очистка дихромата калия перекристаллизацией
4.1. Цель работы: освоить методику очистки веществ перекристаллизацией. 4.2. Объекты и средства исследования: коническая воронка, химические стаканы на 100 мл, мерный цилин

Очистка йода возгонкой
5.1. Цель работы: освоить методику очистки твердых веществ возгонкой. 5.2. Объекты и средства исследования: химический стакан без носика на 200-300 мл, круглодонная колба н

Определение плотности жидкостей, температуры плавления и температуры кипения веществ
6.1. Цель работы: ознакомиться с физическими характеристиками веществ и методами их определения. 6.2. Объекты и средства исследования: жидкие индивидуальные вещества (гексан, гептан, октан

Получение оксида свинца и металлического свинца из его соли
9.1. Цель работы: ознакомление с методами осаждения, фильтрования, высушивания и прокаливания осадков, а также с восстановлением металлов и их оксидов. 9.2. Объекты и средс

Определение молярной массы легко испаряющихся веществ
1.1. Цель работы: освоить методы определения молярных масс легко испаряющихся веществ и расчеты по уравнению Менделеева-Клапейрона. 1.2. Объекты и средства исследования: со

Определение молярной массы углекислого газа
2.1. Цель работы: освоить методы определения молярных масс газообразных веществ, используя уравнение Менделеева-Клапейрона и относительные плотности газов. 2.2. Объекты и средства ис

Определение молярной массы эквивалентов металлов
3.1. Цель работы: ознакомиться с методом определения молярной массы эквивалентов металлов в реакции взаимодействия металлов с разбавленными кислотами.

Свойства гидроксидов
1.1. Цель работы: изучить реакции получения и свойства гидроксидов 1.2. Объекты и средства исследования: 0,5М растворы сульфата меди(II), сульфата алюминия, хлорида хрома(I

Получение и изучение свойств аммино- , гидроксо- , ацидо- и аквакомплексов
1.1. Цель работы: познакомиться с методами получения, химическими свойствами и устойчивостью комплексных соединений. 1.2. Объекты и средства исследования: 0,5М растворы иод

Измерение тепловых эффектов химических реакций
1.1. Цель работы: выполнение калориметрических измерений и термодинамических расчетов, связанных с энергетикой химических реакций. 1.2. Объекты и средства исследования: кал

Влияние изменения концентрации реагирующих веществ на хими­ческое равновесие
3.1. Цель работы: установить, как влияет изменение концентрации реагирующих веществ на химическое равновесие. 3.2. Объекты и средства исследования: 0,1М раствор хлорида железа (III), насыщ

Способы выражения концентрации растворов
Способ выражения концентрации Формула Название и определение Обозначения и единица измерения

Явления, наблюдаемые при растворении
1.1. Цель работы: изучить явления, происходящие при растворении твердых, жидких и газообразных веществ в воде, объяснить наблюдаемые явления с точки зрения гидратной теории растворо

Определение растворимости веществ в воде
2.1. Цель работы: изучить свойства насыщенных и пересыщенных растворов, научиться определять растворимость веществ, изучить зависимость растворимости различных веществ от температур

Образование и растворение осадков
3.1. Цель работы: изучить условия образования и растворения осадков. 3.2. Объекты и средства исследования: 1н растворы нитрата свинца (II), хлорида натрия, хлорида магния, хлорида бария, б

Приготовление и титрование растворов
4.1. Цель работы: ознакомиться с методами приготовления растворов и определения их концентрации, выраженной в различных единицах. Освоить метод титрования растворов. Определить врем

Определение жесткости водопроводной воды
5.1. Цель работы: изучить метод объемного анализа растворов (титрование) при определении временной жесткости водопроводной воды. Научиться производить расчеты по концентрации электр

Определение электропроводности раствора и константы диссоциации слабого электролита
6.1. Цель и задачи работы: изучить кондуктометрический метод анализа. Установить зависимость удельной и эквивалентной электропроводности от концентрации раствора. Изучить закон разбавления Оствальд

Гидролиз солей
7.1. Цель и задачи работы: изучение процессов гидролиза солей различного типа. Установление влияния температуры, разбавления, реакции среды, заряда иона-комплексообразователя на сте

Задача 866.
Написать уравнение реакции получения тиосульфата натрия. Какова степень окисленности серы в этом соединении? Окислительные или восстановительные свойства проявляет тиосульфат-ион? Привести примеры реакций.
Решение:
Уравнения реакций получения тиосульфата натрия:
а) Водный раствор сульфита натрия кипятят в присутствии серы, а затем охлаждают, выделяется кристаллогидрат тиосульфата натрия :

Na 2 SO 3 + S + 5H 2 O ↔ Na 2 S 2 O 3 . 5H 2 O.

Водный раствор сульфита натрия кипятят в присутствии серы, а затем охлаждают, выделяется кристаллогидрат тиосульфата натрия.

б) Окисление полисульфидов кислородом воздуха:

2Na 2 S 5 + 3O 2 ↔ 2Na 2 S 2 O 3 +6S.

в) Получение тиосульфата натрия путём взаимодействия серы со щёлочью. Реакция протекает с одновременным окислением и восстановлением серы:

4S + 6NaOH ↔ Na 2 S 2 O 3 + 2Na 2 S +3H 2 O.

г) Непосредственное взаимодействие сернистого ангидрида с сероводородом в щелочной среде. Для этого смесь обеих газов пропускают при сильном размешивании в раствор едкого натра до его нейтрализации, то образуется тиосульфат натрия:

4SO 2 + 2H 2 S + 6NaOH ↔ 3Na 2 S 2 O 3 + 5H 2

Атомы серы, входящие в состав тиосульфатов имеют различную степень окисленности; у одного атома степень окисленности равна +4, у другого 0.Тиосульфат-ион S 2 O 3 2- проявляет свойства восстановителя. Хлор, бром и другие сильные окислители окисляют его до сульфат-иона SO 4 2- , например:
Взаимодействие тиосульфата натрия с хлором (при его избытке):

Na 2 S 2 O 3 + 4Cl 2 + 5H 2 O ↔ 2H 2 SO 4 + 2NaCl + 6HCl

Ионно-молекулярное уравнение:

S2O 3 2- + 4Cl 2 0 + 5H 2 O ↔ 2SO 4 2- + 8Cl - + 10H +

Молекулярная форма:

Na 2 S 2 O 3 + 4Cl 2 + 5H 2 O ↔ 2H 2 SO 4 + 2NaCl + 6HCl l

В данной реакции тиосульфат натрия выступает в роли восстановителя, увеличивая степень окисления одного атома серы от 0 до +4, другого – от +4 до +6.
Под действием слабого окислителя тиосульфат натрия окисляется до соли тетратионовой кислоты H 2 S 4 O 6 .
Взаимодействие тиосульфата натрия с йодом:

2 Na 2 S 2 O 3 + I 2 ↔ Na 2 S 4 O 6 + 2NaI

Уравнения ионно-молекулярного баланса:

Ионно-молекулярное уравнение:

2S 2 O 3 2- + I 2 0 ↔ S 4 O 6 2- + 2I -

Молекулярная форма:

2Na 2 S 2 O 3 + I 2 ↔ Na 2 S 4 O 6 + 2NaI

В данной реакции тиосульфат натрия выступает в роли восстановителя, увеличивая степень окисления одного атома серы от 0 до +4. При нагревании свыше 200 0С тиосульфат натрия распадается по схеме:

4Na 2 S 2 O 3Na 2 SO 4 + Na 2 S + 4S↓

При этом протекает реакция самоокисления-восстановления.

Реакции серной кислоты

Задача 867.
Составить уравнения реакций: а) концентрированной Н 2 SO 4 с магнием и с серебром; б) разбавленной Н 2 SO 4 с железом.
Решение:
а) 4Mg + 5Н 2 SO 4 (конц.) → 4MgSO 4 + H 2 S) + 4H 2 O;
б) 2Ag + 2Н 2 SO (конц.) → Ag 2 SO 4 + SO 2 + 2H 2 O;
в) Fe + Н 2 SO 4 (разб.) → FeSO 4 + H 2 .

Задача 868.
Сколько граммов серной кислоты необходимо для растворения 50 г ртути? Сколько из них пойдет на окисление ртути? Можно ли для растворения ртути взять разбавленную серную кислоту?
Решение:
Уравнение реакции:

Уравнения ионно-молекулярного баланса:

Ионно-молекулярное уравнение:

Hg + SO 4 2- + 4H + ↔ Hg 2+ + SO 2 + 2H 2 O

Из уравнений окисления-восстановления следует, что на окисление 1 моль Hg затрачивается 1 моль H2SO4, следовательно,

200,5: 98 = 50: х ; х = (98 . 50)/200,5 = 24,44 г.

Находим массу H2SO4 из пропорции:

200,5: (2 . 98) = 50: х ; х = (2 . 98 . 50)/200,5 = 48,88 г.

Ответ: 48,88 г; 24,44 г. Ртуть стоит в ряду напряжений после водорода – поэтому разбавленная серная кислота не действует на ртуть. Следовательно, для растворения ртути нужно взять концентрированную серную кислоту.

Задача 869.
Одинаковое ли количество серной кислоты потребуется для растворения 40 г никеля, если в одном случае взять концентрированную кислоту, а в другом разбавленную? Какая масса серной кислоты пойдет на окисление никеля в каждом случае?
Решение:
Уравнения реакций:

а) Ni + 2H 2 SO 4 (конц.) → NiSO4 + SO2 + 2H2O;
б) Ni + H 2 SO 4 (разб.) → NiSO4 + Н2.

Рассчитаем массу концентрированной серной кислоты идущую на окисление 40 г никеля из пропорции:

58,7: (2 . 98) = 40: х ; х = (2 . 98 . 40)/58,7 = 133,56, г.

Теперь рассчитаем массу разбавленной серной кислоты идущую на окисление 40 г никеля из пропорции:

58,7: 98 = 40: х ; х = (98 . 40)/58,7 = 66,78 г.

Ответ : 133,56 г; 66,78 г. На окисление никеля расходуется одинаковое количество серной кислоты.

Преподаватель: Кораблёва А.А.

ОТЧЕТ

О ЛАБОРАТОРНОЙ РАБОТЕ

ПО КУРСУ: ОБЩАЯ ХИМИЯ

" СКОРОСТЬ РЕАКЦИИ В РАСТВОРАХ "

ОФ 62 5528 1.04 ЛР

Работу выполнил

студент группы

Санкт – Петербург

Цель работы:

Определить константу скорости, температурный коэффициент, энергию активации реакции взаимодействия тиосульфата натрия с серной кислотой.

В данной лабораторной работе изучается реакция между тиосульфатом натрия (гипосульфитом) Na2S2O3 и серной кислотой H2SO4.

Эта реакция протекает в две стадии:

1) (быстро)

Первая стадия ионного обмена протекает практически мгновенно. Тиосерная кислота неустойчивое соединение, распадающееся с выделением белого осадка серы.

2) (медленно)

О скорости реакции можно судить по появлению опалесценции и дальнейшему помутнению раствора от выпавшей серы.

Суммарная реакция определяется второй стадией процесса и зависит от концентрации H2SO4 , а значит и Na2S2O3 (реакция псевдомолекулярна).

Кинетическое уравнение имеет вид:

Приборы и реактивы:

Термостаты, термометры, мерные цилиндры, пробирки, пробиркодержатели, секундомер, растворы Na2S2O3 и H2SO4 .

Опыт №1:

Влияние тиосульфата на скорость химической реакции.

Зависимость скорости реакции от концентрации тиосульфата натрия.

Обработка результатов опыта:

    Рассчитываем относительную скорость реакции по формуле:

2. Исходя из кинетического уравнения, определяем значение константы скорости реакции:

Р

3. Определяем среднее значение константы для данной комнатной температуры, в данном случае Т = 14 град цельс.

4
. Выразить зависимость скорости реакции от концентрации тиосульфата – графически. (см. рис.№1).

5. Графически определяем константу скорости реакции как тангенс угла наклона прямой ОА к оси абсцисс. Сравниваем графически определенную константу с ее аналитическим значением.

КГР = tg = 0.162 КСР = 0.17 КГР  КСР

Опыт №2:

Влияние температуры на скорость химической реакции.

Температура опыта,

Т, град цельс.

реакции t, с

Относит. скорость

реак. V, 1/с

Конст. скор. реак. К, л/моль*с

Обработка результатов опыта:

1.Рассчитываем относительную скорость реакции при каждой температуре:

Результаты смотреть в вышеприведенной таблице.

2.Исходя из кинетического уравнения определяем значение константы для каждой температуры:

Р
езультаты смотреть в вышеприведенной таблице.

3.Выражаем графически влияние температуры на скорость химической реакции. (см. рис.№2).

4.Исходя из уравнения Ван-Гоффа определяем для каждого температурного интервала значение температурного коэффициента и вычисляем его среднее значение:

К2/К1 = 1 = 2.42

К3/К2 = 2 = 1.97 сред = 2.3

К4/К3 = 3 = 2.49

5
. Исходя из уравнения Аррениуса вычисляем аналитическое значение энергии активации для каждого температурного интервала:

Е
а1 = 61785 Дж/моль Еа2 = 50729 Дж/моль Еа3 =72882 Дж/моль

И вычисляем его среднее значение:

ЕаСРЕД = 61798 Дж/моль

6. Выстраиваем графическую зависимость lgK от 1/Т по вычисленным константам скоростей при разных температурах и определяем энергию активации графическим способом (см. рис. №3).

tg = - Еа / 2.3 R , следовательно

ЕаГР = -2.3 R tg = -2.3 * 8.3 * tg = 19.09* 3230 = 61660 Дж/моль

7. Сравниваем значения энергии активации полученные графическим и аналитическим путем:

ЕаГР = 61660 Дж/моль ЕаСРЕД = 61798 Дж/моль ЕаГР  ЕаГР

Вывод:

При температуре равной const, скорость химической реакции пропорциональна концентрации веществ, участвующих в этой реакции. (см. рис.№1)

С увеличением температуры скорость химической реакции увеличивается

При условии, что концентрация остается неизменной. Это можно объяснить тем, что с ростом температуры атомы веществ переходят в более возбужденное состояние, т. е. они получают дополнительную энергию – энергию активации, необходимую для разрыва химической связи и образования нового вещества.