Переходит в газообразное состояние из. Агрегатное состояние

В зависимости от условий тела могут находиться в жидком, твердом или газообразном состоянии. Эти состояния называются агрегатными состояниями вещества .

В газах расстояние между молекулами много больше размеров молекул. Если газу не мешают стенки сосуда, его молекулы разлетаются.

В жидкостях и твердых телах молекулы расположены ближе друг к другу и поэтому не могут удаляться далеко друг от друга.

Переход из одного агрегатного состояния в другое называется фазовым переходом .

Переход вещества из твердого состояния в жидкое называется плавлением , а температуру, при которой это происходит, – температурой плавления . Переход вещества из жидкого состояния в твердое называется кристаллизацией , а температуру перехода – температурой кристаллизации .

Количество теплоты, которое выделяется при кристаллизации тела либо поглощается телом при плавлении, отнесенное к единице массы тела, называется удельной теплотой плавления (кристаллизации) λ:

При кристаллизации выделяется такое же количество теплоты, какое поглощается при плавлении.

Переход вещества из жидкого состояния в газообразное называется парообразованием . Переход вещества из газообразного состояния в жидкое называется конденсацией . Количество теплоты, необходимое для парообразования (выделяющееся при конденсации):

Q = Lm ,
где L – удельная теплота парообразования (конденсации).

Парообразование, происходящее с поверхности жидкости, называется испарением . Испарение может происходить при любой температуре. Переход жидкости в пар, происходящий по всему объему тела, называется кипением , а температуру, при которой жидкость кипит, – температурой кипения .

Наконец, сублимация – это переход вещества из твердого состояния непосредственно в газообразное, минуя жидкую стадию.

Если прочие параметры внешней среды (в частности, давление) остаются постоянными, то температура тела в процессе плавления (кристаллизации) и кипения не изменяется.

Если количество молекул, покидающих жидкость, равно количеству молекул, возвращающихся в жидкость, то говорят, что наступило динамическое равновесие между жидкостью и ее паром. Пар, находящийся в динамическом равновесии со своей жидкостью, называется

: [в 30 т.] / гл. ред. А. М. Прохоров ; 1969-1978, т. 1).

  • Агрегатные состояния // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров . - М. : Советская энциклопедия (тт. 1-2); Большая Российская энциклопедия (тт. 3-5), 1988-1999. - ISBN 5-85270-034-7 .
  • Владимир Жданов. Плазма в космосе (неопр.) . Кругосвет . Дата обращения 21 февраля 2009. Архивировано 22 августа 2011 года.
  • В природе имеются некоторые жидкости, которые в обычных условиях эксперимента невозможно перевести при охлаждении в кристаллическое состояние. Молекулы отдельных органических полимеров столь сложны, что образовать регулярную и компактную решётку не могут - при охлаждении всегда переходят только в стеклообразное состояние (см. подробнее - DiMarzio E. A. Equilibrium theory of glasses // Ann. New York Acad. Sci. 1981. Vol. 371. P. 1-20). Редкий вариант «некристаллизуемости» жидкости - переход в стеклообразное состояние при температурах, близких к температуре ликвидуса T L или даже более высоких… Подавляющее большинство жидкостей при температурах ниже T L при больших или меньших изотермических выдержках, но в разумной с точки зрения эксперимента длительности, всегда переходят в кристаллическое состояние. Для жидкостей определённых химических соединений подразумевается не T L , а температура плавления кристаллов, но для упрощения - точки отсутствия (солидус) и начала кристаллизации здесь обозначены T L вне зависимости от однородности вещества. Возможность перехода из жидкого в стеклообразное состояние обусловлена скоростью охлаждения в той области температур, где наиболее высока вероятность кристаллизации - между T L и нижней границей интервала стеклования. Чем быстрее охлаждается вещество от состояния стабильной жидкости, тем вероятней то, что оно, минуя кристаллическую фазу, перейдёт в стеклообразное. Любое вещество, способное перейти в стеклообразное состояние, может характеризоваться так называемой критической скоростью охлаждения - минимальной допустимой, при которой оно после охлаждения обратимо для перехода в стеклообразное состояние. - Шульц М. М. , Мазурин О. В. ISBN 5-02-024564-X
  • Шульц М. М. , Мазурин О. В. Современное представление о строении стёкол и их свойствах. - Л.: Наука. 1988 ISBN 5-02-024564-X
  • "Фермионный конденсат" (неопр.) . scientific.ru. Архивировано 22 августа 2011 года.
  • K. v. Klitzing, G. Dorda, M. Pepper New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance Phys. Rev. Lett. 45 , 494 (1980) DOI :10.1103/PhysRevLett.45.494
  • Нобелевский лауреат по физике за 1985 год
  • C. Fuchs, H. Lenske, H.H. Wolter. Dencity Dependent Hadron Field Theory (неопр.) . arxiv.org (29.06.1995). Дата обращения 30 ноября 2012.
  • И. М. Дремин, А. В. Леонидов. Кварк-глюонная среда (неопр.) С. 1172. Успехи физических наук (Ноябрь 2010 года). doi :10.3367/UFNr.0180.201011c.1167 . - УФН 180 1167–1196 (2010). Дата обращения 29 марта 2013. Архивировано 5 апреля 2013 года.
  • Любое вещество при определенных условиях может находиться в различных агрегатных состояниях – твердом, жидком и газообразном.

    Область, в которой вещество однородно по всем физическим и химическим свойствам, называется фазой состояния этого вещества.

    Переход из одного состояния в другое называется фазовым переходом .

    Фазовый переход происходит при изменении температуры тела, т.е. при фазовом переходе изменяется внутренняя энергия вещества.

    Одним из важнейших понятий термодинамики является внутренняя энергия тела. Все макроскопические тела обладают энергией, заключенной внутри самих тел. С точки зрения молекулярно-кинетической теории внутренняя энергия вещества складывается из кинетической энергии всех атомов и молекул и потенциальной энергии их взаимодействия друг с другом .

    Внутренняя энергия – это сумма энергий молекулярных взаимодействий и энергии теплового движения молекул.

    В частности, внутренняя энергия идеального газа равна сумме кинетических энергий всех частиц газа, находящихся в непрерывном и беспорядочном тепловом движении. Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема (закон Джоуля).

    Внутреннюю энергию тела можно изменить разными способами :

    1. Совершение механической работы.
    2. Теплообмен.


    Количеством теплоты Q , полученной телом, называют изменение внутренней энергии тела в результате теплообмена.

    Количество теплоты Q является энергетической величиной. В СИ количество теплоты измеряется в единицах механической работы – джоулях (Дж).

    Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются.

    Чтобы нагреть тело массой m от температуры t 1 до температуры t 2 ему необходимо сообщить количество теплоты

    Q = cm (t 2 t 1 )

    Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c.

    c = Q / (mΔT).

    Испарение и конденсация являются примерами фазовых переходов.

    Все реальные газы (кислород, азот, водород и т. д.) при определенных условиях способны превращаться в жидкость.

    Переход вещества из жидкого состояния в газообразное называется парообразованием.

    Парообразование, происходящее со свободной поверхности жидкости называется испарением.

    С точки зрения молекулярно-кинетической теории, испарение – это процесс, при котором с поверхности жидкости вылетают наиболее быстрые молекулы, кинетическая энергия которых превышает энергию их связи с остальными молекулами жидкости. Это приводит к уменьшению средней кинетической энергии оставшихся молекул, то есть к охлаждению жидкости (если нет подвода энергии от окружающих тел). Жидкость при испарении охлаждается (ощущение холода при выходе из воды).

    Покинувшие жидкость молекулы составляют пар над её поверхностью. Некоторые молекулы пара при хаотическом движении над поверхностью жидкости залетают обратно в жидкость. Это означает, что наряду с испарением жидкости всегда происходит и конденсация её паров. При конденсации молекулы пара возвращаются в жидкость.

    Конденсация – это процесс превращения пара в жидкость.

    Скорость испарения зависит:

    1. от рода жидкости (эфир и вода);
    2. от площади её свободной поверхности (чем больше площадь, тем быстрее испаряется жидкость – блюдце и стакан);
    3. от температуры (чем выше температура, тем быстрее испаряется жидкость – лужи зимой и летом);
    4. от наличия движения воздуха над поверхностью (в ветреную погоду и в безветренную).

    На практике для превращения жидкости в пар в процессе теплообмена к ней подводится теплота.

    Количество теплоты Q п, необходимое для превращения жидкости в пар при неизменной температуре называется теплотой парообразования.

    Для того, чтобы превратить в пар при неизменной температуре жидкость массой m , ей необходимо сообщить количество теплоты, равное Q п = r·m

    r – удельная теплота парообразования – количество теплоты, необходимое для превращения в пар 1 кг жидкости при неизменной температуре [Дж/кг]

    При конденсации выделяется количество теплоты, равное Q к = - r·m

    Испарение может происходить не только с поверхности, но и в объеме жидкости.

    В жидкости всегда имеются мельчайшие пузырьки газа. Если давление насыщенного пара жидкости равно внешнему давлению (то есть давлению газа в пузырьках) или превышает его, жидкость будет испаряться внутрь пузырьков. Пузырьки, наполненные паром, расширяются и всплывают на поверхность. Этот процесс называется кипением .


    Кипением называют парообразование, которое происходит в объеме всей жидкости при постоянной температуре.

    Кипение жидкости начинается при такой температуре, при которой давление ее насыщенных паров становится равным внешнему давлению .

    Каждая жидкость при нормальных условиях кипит при определенной температуре, которая называется температура кипения. Она остается постоянной при одном и том же давлении.

    Вещество существует в твердом кристаллическом состоянии при определенных значениях давления и температуры. В этом состоянии вещество находится до тех пор, пока кинетической энергии атомов недостаточно, чтобы преодолеть силы взаимного притяжения. Эти силы удерживают атомы на некотором расстоянии друг относительно друга, не позволяя им перемещаться. При этом атом колеблется около положения своего равновесия. При нагревании твердого тела кинетическая энергия атомов или молекул возрастает. При этом амплитуды колебаний могут стать настолько большими, что уже будут сравнимы с периодом решетки, произойдет нарушение дальнего порядка, кристаллическая решетка начнет разрушаться. При дальнейшем увеличении температуры происходит плавление твердых тел.

    Плавление – переход вещества из твердого состояния в жидкое.

    При плавлении температура тела остается постоянной . Все переданное телу тепло идет на разрушение кристалла. При плавлении кристаллическое тело находится одновременно в твердом и жидком состояниях.

    После разрушения кристалла и образования жидкости подводимая теплота идет на нагревание жидкости.

    Температура плавления зависит от рода кристаллического тела.

    При плавлении изменяется плотность и объем вещества. У большинства веществ объем при плавлении увеличивается, а при отвердевании уменьшается. При этом изменяется и плотность: при плавлении плотность уменьшается, а при отвердевании увеличивается. Например, кристаллики твердого нафталина или парафина тонут в расплавленном нафталине (парафине).

    Но лед плавает в воде. Также ведут себя висмут, галлий, германий, кремний, чугун, т.е. при плавлении их плотность увеличивается, а при отвердевании уменьшается. При плавлении они сжимаются (объем уменьшается), а при отвердевании расширяются (объем увеличивается).

    Температура плавления зависит от атмосферного давления.

    В тех случаях, когда объем вещества при плавлении возрастает, увеличение внешнего давления приводит к увеличению температуры плавления (т.к. увеличение давления затрудняет процесс плавления). Если же объем вещества при плавлении уменьшается, то увеличение внешнего давления ведет к понижению температуры плавления этого вещества (т.к. повышенное давление помогает процессу плавления в данном случае).

    Чтобы перевести в жидкость твердое тело массой m при температуре плавления, ему надо сообщить количество теплоты

    Q = λ m

    где λ – удельная теплота плавления – количество теплоты, необходимое, чтобы перевести в жидкость твердое тело массой 1 кг при температуре плавления.

    λ = Q / m [ Дж/кг ]

    При плавлении увеличивается внутренняя энергия тела.

    Если получившуюся при плавлении жидкость охладить до температуры плавления, то начнется обратный процесс.

    Кристаллизация (отвердевание) – процесс перехода жидкости в твердое состояние.

    Происходит сближение частиц жидкости и упорядочение их движения, в результате которого они начинают колебаться около узлов кристаллической решетки. Потенциальная энергия молекул при этом уменьшается, а т.к. температура кристаллизации постоянна (равна температуре плавления для данного вещества), процесс кристаллизации должен сопровождаться выделением тепла.

    Процесс кристаллизации сопровождается выделением теплоты кристаллизации, которая равна теплоте плавления Q = λ m

    Процесс кристаллизации происходит в двухфазной системе вблизи центров кристаллизации. такими центрами могут быть пылинки, мельчайшие примеси.

    Процессы плавления и кристаллизации можно представить на графике:

    По графику можно определить:

    • участок АВ – нагревание льда от -40 0 С до температуры плавления 0 0 С
    • участок ВС – плавление льда при температуре плавления
    • участок СD – нагревание воды от 0 0 С до температуры 50 0 С
    • участок DE – охлаждение воды от 50 0 С до температуры кристаллизации (отвердевания) 0 0 С
    • участок EF – кристаллизация (отвердевание) воды при температуре плавления (кристаллизации)
    • участок FK – охлаждение льда от 0 0 С до температуры -40 0 С

    Многие твердые вещества обладают запахом – камфара, нафталин. Значит пары этих веществ есть в воздухе. Это доказывает, что при определенных условиях твердые вещества могут переходить из твердого состояния в газообразное, минуя жидкое.

    Переход твердого состояния вещества в газообразное называется сублимацией или возгонкой («сублимаре» - возносить)

    Легко обнаружить возгонку (сублимацию) льда и снега: уменьшение инея на деревьях со временем, высыхание оледеневшего белья зимой.

    Часто можно наблюдать и обратный переход из газообразного состояния непосредственно в твердое, минуя жидкое состояние – десублимация. На окнах зимой иногда можно видеть быстрый рост кристалликов льда в виде узоров на стеклах, которые образуются непосредственно из водяных паров, находящихся в воздухе.

    Испарение твердых тел аналогично испарению жидкостей. Все твердые тела испаряются, но их паров обычно так мало, что их невозможно обнаружить. Процесс сублимации происходит как при нагревании твердого тела, так и без подвода теплоты извне. При сублимации происходит охлаждение тела, т.к. его покидают наиболее быстрые молекулы (обладающие кинетической энергией, достаточной для преодоления молекулярного притяжения и отрыва молекул от поверхности тела).

    Процесс сублимации или возгонки наблюдается во Вселенной. При сближении с солнцем происходит возгонка поверхностного слоя ядер комет. Практически вся масса кометы сосредоточена в ядре, которое является единственной твердой частью кометы. Ядро кометы состоит из смеси пылинок, твердых кусочков вещества и замерзших газов (углекислый газ, аммиак, метан). В далеких от Солнца областях кометы не имеют хвостов. При приближении кометы к Солнцу ядро прогревается и из него выделяются газы и пыль. Они образуют вокруг ядра газовую оболочку, которая вместе с ядром составляет голову кометы. Газы и пыль, выбрасываемые в голову кометы, отталкиваются под действия давления солнечного света и создают хвост кометы, всегда направленный в сторону, противоположную Солнцу. Чем ближе к Солнцу подходит комета, тем она ярче и тем длиннее её хвост вследствие большего её облучения и интенсивного выделения газов.

    Любое изменение состояния вещества связано с метаморфозами температуры, давления. Можно одно вещество представить в следующих агрегатных состояниях: твердом, жидком, газообразном.

    Отметим, что по мере перехода не наблюдается изменения состава вещества. Переход вещества из жидкого состояния в твердое сопровождается только изменением сил межмолекулярного взаимодействия, расположением молекул. Превращение из одного состояния в другое именуют

    Плавление

    Данный процесс предполагает превращение в жидкость. Для его осуществления необходима повышенная температура.

    Например, можно наблюдать в природе такое состояние вещества. Физика легко объясняет процесс таяния снежинок под действием весенних лучей. Маленькие кристаллики льда, входящие в состав снега, после прогревания воздуха до нулевой отметки начинают разрушаться. Происходит плавление постепенно. Сначала лед поглощает тепловую энергию. По мере изменения температуры происходит полное превращение льда в жидкую воду.

    Он сопровождается существенным ростом скорости движения частиц, тепловой энергией, повышением величины внутренней энергии.

    После достижения показателя, именуемого происходит разрыв структуры твердого вещества. У молекул появляется большая свобода, они «перескакивают», занимая разные положения. Расплавленное вещество имеет больший запас энергии, чем в твердом состоянии.

    Температура отвердевания

    Переход вещества из жидкого состояния в твердое осуществляется при определенном значении температуры. Если от тела будет отводиться тепло, то оно застывает (кристаллизуется).

    Температуру отвердевания считают одной из важнейших характеристик.

    Кристаллизация

    Переход вещества из жидкого состояния в твердое положение называют кристаллизацией. При прекращении передачи тепла жидкости наблюдается снижение температуры до определенного значения. Фазовый переход вещества из жидкого состояния в твердое тело в физике называют кристаллизацией. При рассмотрении вещества, не содержащего примесей, температура плавления соответствует показателю кристаллизации.

    Оба процесса протекают постепенно. Процесс кристаллизации сопровождается снижением молекул, содержащихся в жидкости. Силы притяжения, благодаря которым частицы удерживаются в строгом порядке, присущие твердым телам, возрастают. После того как частицы приобретут упорядоченное расположение, сформируется кристалл.

    Называют физическую форму вещества, представленную в определенном интервале давлений и температур. Оно характеризуется количественными свойствами, которые изменены в выбранных интервалах:

    • способность вещества менять форму и объем;
    • отсутствие (присутствие) дальнего либо ближнего порядка.

    Процесс кристаллизации связан с энтропией, свободной энергией, плотностью, иными физическими величинами.

    Помимо жидкостей, твердых тел, газообразной формы, выделяют еще одно агрегатное состояние - плазму. В нее могут переходить газы в случае повышения температуры при неизменном давлении.

    Рамки между разнообразными состояниями вещества далеко не всегда являются строгими. В физике подтверждено существование аморфных тел, способных сохранять структуру жидкости, имеющей небольшую текучесть. обладают способностью поляризовать электромагнитное излучение, которое через них проходит.

    Заключение

    Для того чтобы описывать различные состояния в физике, применяют определение термодинамической фазы. Критическими явлениями называют состояния, которые описывают превращение одной фазы в другую. Твердые тела отличаются сохранением на протяжении длительного временного промежутка своего среднего положения. Они будут совершать незначительные колебания (с минимальной амплитудой) около положения равновесия. У кристаллов есть определенная форма, которая при переходе в жидкое состояние будет изменяться. Информация о температурах кипения (плавления) позволяет физикам использовать переходы из одного агрегатного состояния в другое для практических целей.