Система линейных неравенств. Понятие системы неравенств

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Графический метод.. 3

Симплекс-метод.. 6

Метод искусственного базиса.. 8

Принцип двойственности.. 10

Список использованной литературы... 12

Вступление

Отдельные свойства систем линейных неравенств рассматривались еще в первой половине 19 века в связи с некоторыми задачами аналитической механики. Систематическое же изучение систем линейных неравенств началось в самом конце 19 века, однако о теории линейных неравенств стало возможным говорить лишь в конце двадцатых годов 20 века, когда уже накопилось достаточное количество связанных с ними результатов.

Сейчас теория конечных систем линейных неравенств может рассматриваться как ветвь линейной алгебры, выросшая из неё при дополнительном требовании упорядоченности поля коэффициентов.

Линейные неравенства имеют особо важное значение для экономистов, т.к именно при помощи линейных неравенств можно смоделировать производственные процессы и найти наиболее выгодные планы производства, транспортировки, размещения ресурсов и т. д.

В данной работе будут изложены основные методы решения линейных неравенств, применительно к конкретным задачам.

Графический метод

Графический метод заключается в построении множества допустимых решений ЗЛП, и нахождении в данном множестве точки, соответствующей max/min целевой функции.

В связи с ограниченными возможностями наглядного графического представления данный метод применяется только для систем линейных неравенств с двумя неизвестными и систем, которые могут быть приведены к данному виду.

Для того чтобы наглядно продемонстрировать графический метод, решим следующую задачу:

    На первом этапе надо построить область допустимых решений. Для данного примера удобнее всего выбрать X2 за абсциссу, а X1 за ординату и записать неравенства в следующем виде:
и графики и область допустимых решении находятся в первой четверти.

Для того чтобы найти граничные точки решаем уравнения (1)=(2), (1)=(3) и (2)=(3).


Как видно из иллюстрации многогранник ABCDEобразует область допустимых решений.

Если область допустимых решений не является замкнутой, то либо max(f)=+ ∞, либо min(f)= -∞.

    Теперь можно перейти к непосредственному нахождению максимума функции f.

Поочерёдно подставляя координаты вершин многогранника в функцию f и сравнивать значения, находим что

f(C)=f(4;1)=19 – максимум функции.

Такой подход вполне выгоден при малом количестве вершин. Но данная процедура может затянуться если вершин довольно много.

В таком случае удобнее рассмотреть линию уровня вида f=a. При монотонном увеличении числа aот -∞ до +∞ прямые f=aсмещаются по вектору нормали . Если при таком перемещении линии уровня существует некоторая точка X– первая общая точка области допустимых решений (многогранник ABCDE) и линии уровня, то f(X)- минимум fна множестве ABCDE. Если X- последняя точка пересечения линии уровня и множества ABCDE то f(X)- максимум на множестве допустимых решений. Если при а→-∞ прямая f=aпересекает множество допустимых решений, то min(f)= -∞. Если это происходит при а→+∞, то


В нашем примере прямая f=aпересевает область ABCDEв точке С(4;1). Поскольку это последняя точка пересечения, max(f)=f(C)=f(4;1)=19.

Симплекс-метод

Реальные задачи линейного программирования содержат очень большое число ограничений и неизвестных и выполняются на ЭВМ. Симплекс-метод – наиболее общий алгоритм, использующийся для решения таких задач. Суть метода заключается в том, что после некоторого числа специальных симплекс- преобразований ЗЛП, приведенная к специальному виду, разрешается. Для того, чтобы продемонстрировать симплекс-метод в действии решим, с попутными комментариями следующую задачу:

    Для того, чтобы приступить к решению ЗЛП симплекс методом, надо привести ЗЛП к специальному виду и заполнить симплекс таблицу.

Система (4) – естественные ограничения и в таблицу не вписываются. Уравнения (1), (2), (3) образуют область допустимых решений. Выражение (5) – целевая функция. Свободные члены в системе ограничений и области допустимых решений должны быть неотрицательны.

В данном примере X3, X4, X5 – базисные неизвестные. Их надо выразить через свободные неизвестные и произвести их замену в целевой функции.

Теперь можно приступить к заполнению симплекс-таблицы:

Б. X1 X2 X3 X4 X5 C
X3 0 -1 1 1 0 1
X4 0 1 -1 0 1 1
X5 1 1 1 0 0 2
f 0 -6 7 0 0 3

В первом столбце данной таблицы обозначены базисные неизвестные, в последнем – значения свободных неизвестных, в остальных – коэффициенты при неизвестных.

    Для того чтобы найти максимум функции fнадо с помощью преобразований методом Гаусса сделать так, чтобы все коэффициенты при неизвестных в последней строке были неотрицательными (для нахождения минимума, сделать так, чтобы все коэффициенты были меньше или равны нулю).
Б X1 X2 X3 X4 X5 C
X3 -1 1 1 0 0 1
X4 1 -1 0 1 0 1
X5 1 1 0 0 1 2
f -6 7 0 0 0 3

Для этого выбираем столбец с отрицательным коэффициентом в последней строке (столбец 3) и составляем для положительных элементов данного столбца отношения свободный член/коэффициент (1/1; 2/1) . Из данных отношений выбираем наименьшее и помечаем соответствующую строку .

Нами выбран элемент в ячейке (3;3). Теперь с помощью метода Гаусса обнуляем другие коэффициенты в данном столбце, это приводит к смене базиса и мы на один шаг приближаемся к оптимальному решению.

Б X1 X2 X3 X4 X5 C
X3 0 0 1 1 0 2
X1 1 -1 0 1 0 1
X5 0 2 0 -1 1 1
f 0 1 0 6 0 9

Как видно из таблицы теперь все коэффициенты в последней строке больше либо равны нулю. Это означает, что нами найдено оптимальное значение. Свободные неизвестные равны нулю, значению базисных неизвестных и максимуму функции f соответствует значения свободных неизвестных.

Неравенства и системы неравенств - это одна из тем, которая проходится в средней школе по алгебре. По уровню сложности она является не самой трудной, т. к. имеет незамысловатые правила (о них немного позже). Как правило, решение систем неравенств школьники усваивают достаточно легко. Это связано ещё и с тем, что учителя попросту "натаскивают" своих учеников по данной теме. И они не могут этого не делать, ведь она изучается и в дальнейшем с применением иных математических величин, а также проверяется на ОГЭ и ЕГЭ. В школьных учебниках тема, посвящённая неравенствам и системам неравенств, раскрыта очень подробно, поэтому если вы собираетесь её изучить, то лучше всего прибегнуть именно к ним. Данная статья лишь пересказывает большие материалы, и в ней могут быть некоторые опущения.

Понятие системы неравенств

Если обратиться к научному языку, то можно дать определение понятию "система неравенств". Это такая математическая модель, которая представляет собой несколько неравенств. От данной модели, конечно же, требуется решение, и в его качестве будет выступать общий ответ для всех неравенств системы, предложенной в задании (обычно в нём так и пишут, например: "Решите систему неравенств 4 x + 1 > 2 и 30 - x > 6... "). Однако перед тем как перейти к видам и методам решений, нужно ещё кое в чём разобраться.

Системы неравенств и системы уравнений

В процессе изучения новой темы очень часто возникают недопонимания. С одной стороны, всё ясно и скорее хочется приступить к решению заданий, а с другой - какие-то моменты остаются в "тени", не совсем хорошо осмысливаются. Также некоторые элементы уже полученных знаний могут переплетаться с новыми. В результате такого "наложения" зачастую случаются ошибки.

Поэтому перед тем как приступить к разбору нашей темы, следует вспомнить про отличия уравнений и неравенств, их систем. Для этого нужно ещё раз пояснить, что представляют собой данные математические понятия. Уравнение - это всегда равенство, и оно всегда чему-нибудь равно (в математике это слово обозначается знаком "="). Неравенство же представляет собой такую модель, в которой одна величина или больше, или меньше другой, или содержит в себе утверждение, что они неодинаковы. Таким образом, в первом случае уместно говорить о равенстве, а во втором, как бы это очевидно ни звучало из самого названия, о неравенстве исходных данных. Системы уравнений и неравенств друг от друга практически не отличаются и методы их решения одинаковы. Единственное различие заключается в том, что в первом случае используются равенства, а во втором применяются неравенства.

Виды неравенств

Выделяют два вида неравенств: числовые и с неизвестной переменной. Первый тип представляет собой предоставленные величины (цифры), неравные друг другу, например, 8 > 10. Второй - это неравенства, содержащие в себе неизвестную переменную (обозначается какой-либо буквой латинского алфавита, чаще всего X). Данная переменная требует своего нахождения. В зависимости от того, сколько их, в математической модели различают неравенства с одной (составляют систему неравенств с одной переменной) или несколькими переменными (составляют систему неравенств с несколькими переменными).

Два последних вида по степени своего построения и уровню сложности решения делятся на простые и сложные. Простые называют ещё линейными неравенствами. Они, в свою очередь, подразделяются на строгие и нестрогие. Строгие конкретно "говорят", что одна величина обязательно должна быть либо меньше, либо больше, поэтому это в чистом виде неравенство. Можно привести несколько примеров: 8 x + 9 > 2, 100 - 3 x > 5 и т. д. Нестрогие включают в себя ещё и равенство. То есть одна величина может быть больше или равна другой величине (знак "≥") либо меньше или равна другой величине (знак "≤"). Ещё в линейных неравенствах переменная не стоит в корне, квадрате, не делится на что-либо, из-за чего они называются "простыми". Сложные включают в себя неизвестные переменные, нахождение которых требует выполнения большего количества математических операций. Они часто находятся в квадрате, кубе или под корнем, могут быть модульными, логарифмическими, дробными и пр. Но поскольку нашей задачей становится необходимость разобраться в решении систем неравенств, то мы поговорим о системе линейных неравенств. Однако перед этим следует сказать пару слов об их свойствах.

Свойства неравенств

К свойствам неравенств относятся следующие положения:

  1. Знак неравенства меняется на обратный, если применяется операция по перемене следования сторон (например, если t 1 ≤ t 2 , то t 2 ≥ t 1).
  2. Обе части неравенства позволяют прибавить к себе одно и то же число (например, если t 1 ≤ t 2 , то t 1 + число ≤ t 2 + число).
  3. Два и более неравенств, имеющие знак одного направления, позволяют складывать их левые и правые части (например, если t 1 ≥ t 2 , t 3 ≥ t 4 , то t 1 + t 3 ≥ t 2 + t 4).
  4. Обе части неравенства позволяют себя умножать или делить на одно и то же положительное число (например, если t 1 ≤ t 2 и число ≤ 0, то число · t 1 ≥ число · t 2).
  5. Два и более неравенств, имеющие положительные члены и знак одного направления, позволяют умножать себя друг на друга (например, если t 1 ≤ t 2 , t 3 ≤ t 4 , t 1 , t 2 , t 3 , t 4 ≥ 0 то t 1 · t 3 ≤ t 2 · t 4).
  6. Обе части неравенства позволяют себя умножать или делить на одно и то же отрицательное число, но при этом знак неравенства меняется (например, если t 1 ≤ t 2 и число ≤ 0, то число · t 1 ≥ число · t 2).
  7. Все неравенства обладают свойством транзитивности (например, если t 1 ≤ t 2 и t 2 ≤ t 3 , то t 1 ≤ t 3).

Теперь после изучения основных положений теории, относящейся к неравенствам, можно приступить непосредственно к рассмотрению правил решения их систем.

Решение систем неравенств. Общие сведения. Способы решения

Как уже говорилось выше, решением выступают значения переменной, подходящие ко всем неравенствам данной системы. Решение систем неравенств - это осуществление математических действий, которые в итоге приводят к решению всей системы или доказывают, что у неё решений не имеется. В таком случае говорят, что переменная относится к пустому числовому множеству (записывается так: буква, обозначающая переменную ∈ (знак "принадлежит") ø (знак "пустое множество"), например, x ∈ ø (читается так: "Переменная "икс" принадлежит пустому множеству"). Выделяют несколько способов решения систем неравенств: графический, алгебраический, способ подстановки. Стоит заметить, что они относятся к тем математическим моделям, которые имеют несколько неизвестных переменных. В случае, когда имеется только одна, подойдёт способ интервалов.

Графический способ

Позволяет решить систему неравенств с несколькими неизвестными величинами (от двух и выше). Благодаря данному методу система линейных неравенств решается достаточно легко и быстро, поэтому он является самым распространённым способом. Это объясняется тем, что построение графика сокращает объём написания математических операций. Особенно становится приятным немного отвлечься от ручки, взять в руки карандаш с линейкой и приступить к дальнейшим действиям с их помощью, когда выполнено много работы и хочется небольшого разнообразия. Однако данный метод некоторые недолюбливают из-за того, что приходится отрываться от задания и переключать свою умственную деятельность на рисование. Тем не менее, это очень действенный способ.

Чтобы выполнить решение системы неравенств с помощью графического способа, необходимо все члены каждого неравенства перенести в их левую часть. Знаки поменяются на противоположные, справа следует записать ноль, затем нужно записать каждое неравенство отдельно. В итоге из неравенств получатся функции. После этого можно доставать карандаш и линейку: теперь потребуется нарисовать график каждой полученной функции. Всё множество чисел, которое окажется в интервале их пересечения, будет являться решением системы неравенств.

Алгебраический способ

Позволяет решить систему неравенств с двумя неизвестными переменными. Также неравенства должны обладать одинаковым знаком неравенства (т. е. обязаны содержать либо только знак "больше", либо только знак "меньше" и пр.) Несмотря на свою ограниченность, этот способ к тому же и более сложный. Он применяется в двух этапах.

Первый включает себя действия по избавлению от одной из неизвестных переменных. Сначала нужно её выбрать, затем проверить на наличие чисел перед этой переменной. Если их нет (тогда переменная будет выглядеть, как одиночная буква), то ничего не изменяем, если есть (вид переменной будет, например, таким - 5y или 12y), то тогда необходимо сделать так, чтобы в каждом неравенстве число перед выбранной переменной было одинаковым. Для этого нужно умножить каждый член неравенств на общий множитель, например, если в первом неравенстве записано 3y, а во втором 5y, то необходимо все члены первого неравенства умножить на 5, а второго - на 3. Получится 15y и 15y соответственно.

Второй этап решения. Нужно левую часть каждого неравенства перенести в их правые части с изменением знака каждого члена на противоположный, справа записать нуль. Затем наступает самое интересное: избавление от выбранной переменной (по-другому это называется "сокращение") во время складывания неравенств. Получится неравенство с одной переменной, которое необходимо решить. После этого следует проделать то же самое, только с другой неизвестной переменной. Полученные результаты и будут решением системы.

Способ подстановки

Позволяет решить систему неравенств при наличии возможности ввести новую переменную. Обычно этот способ применяется, когда неизвестная переменная в одном члене неравенства возведена в четвёртую степень, а в другом члене имеет квадрат. Таким образом, данный метод направлен на понижение степени неравенств в системе. Неравенство образца х 4 - х 2 - 1 ≤ 0 данным способом решается так. Вводится новая переменная, например, t. Пишут: "Пусть t = х 2 ", далее модель переписывают в новом виде. В нашем случае получится t 2 - t - 1 ≤0. Это неравенство нужно решить методом интервалов (о нём немного позже), потом обратно вернуться к переменной X, затем проделать то же самое с другим неравенством. Полученные ответы будут решением системы.

Метод интервалов

Это самый простой способ решения систем неравенств, и в то же время он является универсальным и распространённым. Он используется и в средней школе, и даже в высшей. Его суть заключается в том, что ученик ищет промежутки неравенства на числовой прямой, которая рисуется в тетради (это не график, а просто обычная прямая с числами). Там, где промежутки неравенств пересекаются, находится решение системы. Чтобы использовать метод интервалов, необходимо выполнить следующие шаги:

  1. Все члены каждого неравенства переносятся в левую часть с изменением знака на противоположный (справа пишется ноль).
  2. Неравенства выписываются отдельно, определяется решение каждого из них.
  3. Находятся пересечения неравенств на числовой прямой. Все числа, находящиеся на этих пересечениях, будут являться решением.

Какой способ использовать?

Очевидно тот, который кажется наиболее лёгким и удобным, но бывают такие случаи, когда задания требуют определённого метода. Чаще всего в них написано, что нужно решать либо с помощью графика, либо методом интервалов. Алгебраический способ и подстановка используются крайне редко или не используются вообще, поскольку они достаточно сложные и запутанные, да и к тому же больше применяемы для решения систем уравнений, а не неравенств, поэтому следует прибегать к рисованию графиков и интервалов. Они привносят наглядность, которая не может не способствовать эффективному и быстрому проведению математических операций.

Если что-то не получается

Во время изучения той или иной темы по алгебре, естественно, могут возникнуть проблемы с её пониманием. И это нормально, ведь наш мозг устроен так, что он не способен уяснить сложный материал за один раз. Часто требуется перечитать параграф, воспользоваться помощью учителя или заняться практикой по решению типовых заданий. В нашем случае они выглядят, например, так: "Решите систему неравенств 3 x + 1 ≥ 0 и 2 x - 1 > 3". Таким образом, личное стремление, помощь сторонних людей и практика помогают в понимании любой сложной темы.

Решебник?

А ещё очень хорошо подойдёт решебник, только не для списывания домашних заданий, а для самопомощи. В них можно найти системы неравенств с решением, посмотреть на них (как на шаблоны), попытаться понять, как именно автор решения справился с поставленной задачей, а затем попытаться выполнить подобное в самостоятельном порядке.

Выводы

Алгебра - это один из самых сложных предметов в школе. Ну что же тут поделать? Математика всегда была такой: кому-то она даётся легко, а кому-то с затруднением. Но в любом случае следует помнить, что общеобразовательная программа построена так, что с ней может справиться любой ученик. К тому же, надо иметь в виду огромное количество помощников. Некоторые из них были упомянуты выше.

Существуют только «иксы» и только ось абсцисс, то сейчас добавляются «игреки» и поле деятельности расширяется до всей координатной плоскости. Далее по тексту словосочетание «линейное неравенство» понимаем в двумерном смысле, который прояснится через считанные секунды.

Помимо аналитической геометрии, материал актуален для ряда задач математического анализа, экономико-математического моделирования, поэтому рекомендую проштудировать данную лекцию со всей серьёзностью.

Линейные неравенства

Различают два типа линейных неравенств:

1) Строгие неравенства: .

2) Нестрогие неравенства: .

Какой геометрический смысл этих неравенств? Если линейное уравнение задаёт прямую, то линейное неравенство определяет полуплоскость .

Для понимания нижеследующей информации нужно знать разновидности прямых на плоскости и уметь строить прямые. Если возникнут трудности в этой части, прочитайте справку Графики и свойства функций – параграф про линейную функцию.

Начнём с простейших линейных неравенств. Голубая мечта любого двоечника – координатная плоскость, на которой нет ничегошеньки:


Как известно, ось абсцисс задаётся уравнением – «игрек» всегда (при любом значении «икс») равняется нулю

Рассмотрим неравенство . Как его понимать неформально? «Игрек» всегда (при любом значении «икс») положителен. Очевидно, что данное неравенство определяет верхнюю полуплоскость – ведь там и находятся все точки с положительными «игреками».

В том случае, если неравенство нестрогое , к верхней полуплоскости дополнительно добавляется сама ось .

Аналогично: неравенству удовлетворяют все точки нижней полуплоскости, нестрогому неравенству соответствует нижняя полуплоскость + ось .

С осью ординат та же самая прозаичная история:

– неравенство задаёт правую полуплоскость;
– неравенство задаёт правую полуплоскость, включая ось ординат;
– неравенство задаёт левую полуплоскость;
– неравенство задаёт левую полуплоскость, включая ось ординат.

На втором шаге рассмотрим неравенства, в которых отсутствует одна из переменных.

Отсутствует «игрек»:

Или отсутствует «икс»:

С такими неравенствами можно разобраться двумя способами, пожалуйста, рассмотрите оба подхода . Попутно вспомним-закрепим школьные действия с неравенствами, уже разобранные на уроке Область определения функции .

Пример 1

Решить линейные неравенства:

Что значит решить линейное неравенство?

Решить линейное неравенство – это значит найти полуплоскость , точки которой удовлетворяют данному неравенству (плюс саму прямую, если неравенство нестрогое). Решение , как правило, графическое .

Удобнее сразу выполнить чертёж, а потом всё закомментировать:

а) Решим неравенство

Способ первый

Способ весьма напоминает историю с координатными осями, которую мы рассмотрели выше. Идея состоит в преобразовании неравенства – чтобы в левой части оставить одну переменную без всяких констант, в данном случае – переменную «икс».

Правило : В неравенстве слагаемые переносятся из части в часть со сменой знака, при этом знак САМОГО неравенства не меняется (например, если был знак «меньше», то так и останется «меньше»).

Переносим «пятёрку» в правую часть со сменой знака:

Правило ПОЛОЖИТЕЛЬНОЕ не меняется .

Теперь чертим прямую (синяя пунктирная линия). Прямая проведена пунктиром по той причине, что неравенство строгое , и точки, принадлежащие данной прямой, заведомо не будут входить в решение.

Каков смысл неравенства ? «Икс» всегда (при любом значении «игрек») меньше, чем . Очевидно, что этому утверждению удовлетворяют все точки левой полуплоскости. Данную полуплоскость, в принципе, можно заштриховать, но я ограничусь маленькими синими стрелочками, чтобы не превращать чертёж в художественную палитру.

Способ второй

Это универсальный способ. ЧИТАЕМ ОЧЕНЬ ВНИМАТЕЛЬНО!

Сначала чертим прямую . Для ясности, кстати, уравнение целесообразно представить в виде .

Теперь выбираем любую точку плоскости, не принадлежащую прямой . В большинстве случаев, самая лакомая точка, конечно . Подставим координаты данной точки в неравенство :

Получено неверное неравенство (простыми словами, так быть не может), значит, точка не удовлетворяет неравенству .

Ключевое правило нашей задачи :
не удовлетворяет неравенству, то и ВСЕ точки данной полуплоскости не удовлетворяют данному неравенству.
– Если какая-либо точка полуплоскости (не принадлежащая прямой) удовлетворяет неравенству, то и ВСЕ точки данной полуплоскости удовлетворяют данному неравенству.

Можете протестировать: любая точка справа от прямой не будет удовлетворять неравенству .

Какой вывод из проведённого опыта с точкой ? Деваться некуда, неравенству удовлетворяют все точки другой – левой полуплоскости (тоже можете проверить).

б) Решим неравенство

Способ первый

Преобразуем неравенство:

Правило : Обе части неравенства можно умножить (разделить) на ОТРИЦАТЕЛЬНОЕ число, при этом знак неравенства МЕНЯЕТСЯ на противоположный (например, если был знак «больше либо равно», то станет «меньше либо равно»).

Умножаем обе части неравенства на :

Начертим прямую (красный цвет), причём, начертим сплошной линией, так как неравенство у нас нестрогое , и прямая заведомо принадлежит решению.

Проанализировав полученное неравенство , приходим к выводу, что его решением является нижняя полуплоскость (+ сама прямая).

Подходящую полуплоскость штрихуем либо помечаем стрелочками.

Способ второй

Начертим прямую . Выберем произвольную точку плоскости (не принадлежащую прямой), например, и подставим её координаты в наше неравенство :

Получено верное неравенство , значит, точка удовлетворяет неравенству , и вообще – ВСЕ точки нижней полуплоскости удовлетворяют данному неравенству.

Здесь подопытной точкой мы «попали» в нужную полуплоскость.

Решение задачи обозначено красной прямой и красными стрелочками.

Лично мне больше нравится первый способ решения, поскольку второй таки более формален.

Пример 2

Решить линейные неравенства:

Это пример для самостоятельного решения. Постарайтесь решить задачу двумя способами (к слову, это хороший способ проверки решения). В ответе в конце урока будет только итоговый чертёж.

Думаю, после всех проделанных в примерах действий вам придётся на них жениться не составит труда решить простейшее неравенство вроде и т.п.

Переходим к рассмотрению третьего, общего случая, когда в неравенстве присутствуют обе переменные:

Как вариант, свободный член «цэ» может быть нулевым.

Пример 3

Найти полуплоскости, соответствующие следующим неравенствам:

Решение : Здесь используется универсальный метод решения с подстановкой точки.

а) Построим уравнение прямой , при этом линию следует провести пунктиром, так как неравенство строгое и сама прямая не войдёт в решение.

Выбираем подопытную точку плоскости, которая не принадлежит данной прямой, например, , и подставим её координаты в наше неравенство:

Получено неверное неравенство , значит, точка и ВСЕ точки данной полуплоскости не удовлетворяют неравенству . Решением неравенства будет другая полуплоскость, любуемся синими молниями:

б) Решим неравенство . Сначала построим прямую. Это сделать несложно, перед нами каноничная прямая пропорциональность . Линию проводим сплошняком, так как неравенство нестрогое.

Выберем произвольную точку плоскости, не принадлежащую прямой . Хотелось бы снова использовать начало координат, но, увы, сейчас оно не годится. Поэтому придётся работать с другой подругой. Выгоднее взять точку с небольшими значениями координат, например, . Подставим её координаты в наше неравенство:

Получено верное неравенство , значит, точка и все точки данной полуплоскости удовлетворяют неравенству . Искомая полуплоскость помечена красными стрелочками. Кроме того, в решение входит сама прямая .

Пример 4

Найти полуплоскости, соответствующие неравенствам:

Это пример для самостоятельного решения. Полное решение, примерный образец чистового оформления и ответ в конце урока.

Разберём обратную задачу:

Пример 5

а) Дана прямая . Определить полуплоскость, в которой находится точка , при этом сама прямая должна входить в решение.

б) Дана прямая . Определить полуплоскость, в которой находится точка . Сама прямая не входит в решение.

Решение : здесь нет необходимости в чертеже, и решение будет аналитическим. Ничего трудного:

а) Составим вспомогательный многочлен и вычислим его значение в точке :
. Таким образом, искомое неравенство будет со знаком «меньше». По условию прямая входит в решение, поэтому неравенство будет нестрогим:

б) Составим многочлен и вычислим его значение в точке :
. Таким образом, искомое неравенство будет со знаком «больше». По условию прямая не входит в решение, следовательно, неравенство будет строгим: .

Ответ :

Творческий пример для самостоятельного изучения:

Пример 6

Даны точки и прямая . Среди перечисленных точек найти те, которые вместе с началом координат лежат по одну сторону от заданной прямой.

Небольшая подсказка: сначала нужно составить неравенство, определяющее полуплоскость, в которой находится начало координат. Аналитическое решение и ответ в конце урока.

Системы линейных неравенств

Система линейных неравенств – это, как вы понимаете, система, составленная из нескольких неравенств. Лол, ну и определение выдал =) Ёжик – это ёжик, ножик – это ножик. А ведь правда – получилось просто и доступно! Нет, если серьёзно, не хочется приводить каких-то примеров в общем виде, поэтому сразу перейдём к насущным вопросам:

Что значит решить систему линейных неравенств?

Решить систему линейных неравенств – это значит найти множество точек плоскости , которые удовлетворяют каждому неравенству системы.

В качестве простейших примеров рассмотрим системы неравенств, определяющих координатные четверти прямоугольной системы координат («рисунок двоечников» находится в самом начале урока):

Система неравенств задаёт первую координатную четверть (правая верхняя). Координаты любой точки первой четверти, например, и т.д. удовлетворяют каждому неравенству данной системы.

Аналогично:
– система неравенств задаёт вторую координатную четверть (левая верхняя);
– система неравенств задаёт третью координатную четверть (левая нижняя);
– система неравенств задаёт четвёртую координатную четверть (правая нижняя).

Система линейных неравенств может не иметь решений , то есть, быть несовместной . Снова простейший пример: . Совершенно очевидно, что «икс» не может одновременно быть больше трёх и меньше двух.

Решением системы неравенств может являться прямая, например: . Лебедь, рак, без щуки, тянут воз в две разные стороны. Да воз и ныне там – решением данной системы является прямая .

Но самый распространённый случай, когда решением системы является некоторая область плоскости . Область решений может быть не ограниченной (например, координатные четверти) либо ограниченной . Ограниченная область решений называется многоугольником решений системы .

Пример 7

Решить систему линейных неравенств

На практике в большинстве случаев приходится иметь дело с нестрогими неравенствами, поэтому оставшуюся часть урока водить хороводы будут именно они.

Решение : то, что неравенств многовато, пугать не должно. Сколько может быть неравенств в системе? Да сколько угодно. Главное, придерживаться рационального алгоритма построения области решений:

1) Сначала разбираемся с простейшими неравенствами. Неравенства определяют первую координатную четверть, включая границу из координатных осей. Уже значительно легче, так как область поиска значительно сузилась. На чертеже сразу отмечаем стрелочками соответствующие полуплоскости (красные и синие стрелки)

2) Второе по простоте неравенство – здесь отсутствует «игрек». Во-первых, строим саму прямую , а, во-вторых, после преобразования неравенства к виду , сразу становится понятно, что все «иксы» меньше, чем 6. Отмечаем зелёными стрелками соответствующую полуплоскость. Ну что же, область поиска стала ещё меньше – такой не ограниченный сверху прямоугольник.

3) На последнем шаге решаем неравенства «с полной амуницией»: . Алгоритм решения мы подробно рассмотрели в предыдущем параграфе. Вкратце: сначала строим прямую, потом с помощью подопытной точки находим нужную нам полуплоскость.

Встаньте, дети, встаньте в круг:


Область решений системы представляет собой многоугольник , на чертеже он обведён малиновой линией и заштрихован. Перестарался немного =) В тетради область решений достаточно либо заштриховать, либо жирнее обвести простым карандашом.

Любая точка данного многоугольника удовлетворяет КАЖДОМУ неравенству системы (для интереса можете проверить).

Ответ : решением системы является многоугольник .

При оформлении на чистовик неплохо бы подробно расписать, по каким точкам вы строили прямые (см. урок Графики и свойства функций ), и как определяли полуплоскости (см. первый параграф данного урока). Однако на практике в большинстве случаев вам зачтут и просто правильный чертёж. Сами же расчёты можно проводить на черновике или даже устно.

Помимо многоугольника решений системы, на практике, пусть и реже, встречается открытая область. Попытайтесь разобрать следующий пример самостоятельно. Хотя, точности ради, пыток тут никаких – алгоритм построения такой же, просто область получится не ограниченной.

Пример 8

Решить систему

Решение и ответ в конце урока. У вас, скорее всего, будут другие буквенные обозначения вершин полученной области. Это не принципиально, главное, правильно найти вершины и правильно построить область.

Не редкость, когда в задачах требуется не только построить область решений системы, но и найти координаты вершин области. В двух предыдущих примерах координаты данных точек были очевидны, но на практике всё бывает далеко не айс:

Пример 9

Решить систему и найти координаты вершин полученной области

Решение : изобразим на чертеже область решений данной системы. Неравенство задаёт левую полуплоскость с осью ординат, и халявы тут больше нет. После расчётов на чистовике/черновике или глубоких мыслительных процессов, получаем следующую область решений:

В статье рассмотрим решение неравенств . Расскажем доступно о том, как строиться решение неравенств , на понятных примерах!

Перед тем, как рассмотреть решение неравенств на примерах, разберемся с базовыми понятиями.

Общи сведения о неравенствах

Неравенством называется выражение, в котором функции соединяются знаками отношения >, . Неравенства бывают как числовые, так и буквенные.
Неравенства с двумя знаками отношения, называются двойными, с тремя - тройными и т.д. Например:
a(x) > b(x),
a(x) a(x) b(x),
a(x) b(x).
a(x) Неравенства, содержащие знак > или или - нестрогими.
Решением неравенства является любое значение переменой, при котором это неравенство будет верно.
"Решить неравенство " означает, что надо найти множество всех его решений. Существуют различные методы решения неравенств . Для решения неравенства пользуются числовой прямой, которая бесконечна. Например, решением неравенства x > 3 есть промежуток от 3 до +, причем число 3 не входит в этот промежуток, поэтому точка на прямой обозначается пустым кружком, т.к. неравенство строгое.
+
Ответ будет следующим: x (3; +).
Значение х=3 не входит в множество решений, поэтому скобка круглая. Знак бесконечности всегда выделяется круглой скобкой. Знак означает «принадлежание».
Рассмотрим как решать неравенства на другом примере со знаком :
x 2
-+
Значение х=2 входит в множество решений, поэтому скобка квадратная и точка на прямой обозначается закрашенным кружком.
Ответ будет следующим: x }