Умножение и деление дробей со степенями. Сложение, вычитание, умножение, и деление степеней

Формулы степеней используют в процессе сокращения и упрощения сложных выражений, в решении уравнений и неравенств.

Число c является n -ной степенью числа a когда:

Операции со степенями.

1. Умножая степени с одинаковым основанием их показатели складываются:

a m ·a n = a m + n .

2. В делении степеней с одинаковым основанием их показатели вычитаются:

3. Степень произведения 2-х либо большего числа множителей равняется произведению степеней этих сомножителей:

(abc…) n = a n · b n · c n …

4. Степень дроби равняется отношению степеней делимого и делителя:

(a/b) n = a n /b n .

5. Возводя степень в степень, показатели степеней перемножают:

(a m) n = a m n .

Каждая вышеприведенная формула верна в направлениях слева направо и наоборот.

Например . (2·3·5/15)² = 2²·3²·5²/15² = 900/225 = 4 .

Операции с корнями.

1. Корень из произведения нескольких сомножителей равняется произведению корней из этих сомножителей:

2. Корень из отношения равен отношению делимого и делителя корней:

3. При возведении корня в степень довольно возвести в эту степень подкоренное число:

4. Если увеличить степень корня в n раз и в тоже время возвести в n -ую степень подкоренное число, то значение корня не поменяется:

5. Если уменьшить степень корня в n раз и в тоже время извлечь корень n -ой степени из подкоренного числа, то значение корня не поменяется:

Степень с отрицательным показателем. Степень некоторого числа с неположительным (целым) показателем определяют как единицу, деленную на степень того же числа с показателем, равным абсолютной величине неположительного показателя:

Формулу a m :a n =a m - n можно использовать не только при m > n , но и при m < n .

Например . a 4:a 7 = a 4 - 7 = a -3 .

Чтобы формула a m :a n =a m - n стала справедливой при m=n , нужно присутствие нулевой степени.

Степень с нулевым показателем. Степень всякого числа, не равного нулю, с нулевым показателем равняется единице.

Например . 2 0 = 1,(-5) 0 = 1,(-3/5) 0 = 1.

Степень с дробным показателем. Чтобы возвести действительное число а в степень m/n , необходимо извлечь корень n -ой степени из m -ой степени этого числа а .

Цели: повторить правило умножения обыкновенных дробей и научить применять это правило для умножения любых дробей; закрепить навыки сокращения дробей и свойства степеней с одинаковыми основаниями в ходе выполнения упражнений.

Ход урока

I. Анализ контрольной работы.

1. Указать ошибки, сделанные учащимися в контрольной работе.

2. Решить задания, вызвавшие затруднения у учащихся.

II. Устная работа.

1. Повторить свойства степеней с одинаковыми основаниями:

2. Представить в виде степени с основанием

Повторить основное свойство дроби и использовать это свойст­во для сокращения дробей.

III. Объяснения нового материала.

1. Докажем, что равенство

верно при любых допустимых значениях переменных, то есть при b≠0 и d≠0.

2. Правило : Чтобы умножить дробь на дробь, нужно перемножить их числители и перемножить их знаменатели и первое произведение записать числителем, а второе — знаменателем дроби.

3. Рассмотреть решение примеров 1, 2, 3, и 4 на страницах 26-27 учебника.

4. Правило умножения дробей распространяется на произведе­ние трех и более множителей.

Например:

1. Решить №108 (устно).

2. Решить № 109 (а, в, д) на доске и в тетрадях.

Учащиеся решают самостоятельно, потом проверяется реше­ние.

3. Решить № 112 (в; г; е).

Задание на дом : изучить п. 5 (1-4); решить № 109 (б; г; е),

№ 112 (а; б; д), № 118 (а; в; д), № 119 (б; г), № 120 (а; в).

Урок 2

Цели: вывести правило возведения дроби в степень и научить учащихся применять это правило при выполнении упражнений; закрепить правило умножения дробей и навыки сокращения дробей, развивать логическое мышление учащихся.

Ход урока

I. Устная работа.

4. Проверить домашнее задание по тетрадям выборочно.

II. Изучение нового материала.

1. Рассмотрим вопрос о возведении дроби в степень. Докажем, что

2. Правило . Чтобы возвести дробь в степень, надо возвести в эту степень числитель и знаменатель и первый результат записать в числителе, а второй — в знаменателе дроби.

3. Разобрать решение примера 5 на странице 28 учебника:

III. Выполнение упражнений.

1. Решить № 115 устно.

2. Решить № 116 самостоятельно с проверкой или с комменти- рованием на месте.

IV. Самостоятельная работа (10 мин).

V. Итог урока.

1. Сформируйте правило умножения дробей.

2. Сформируйте правило возведения дроби в степень.

Задание на дом: выучить правила п. 5; решить № 117, № 121 (а; г), № 122 (а; в), № 123 (а), № 124, № 130 (а; б).

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками .

Так, сумма a 3 и b 2 есть a 3 + b 2 .
Сумма a 3 - b n и h 5 -d 4 есть a 3 - b n + h 5 - d 4 .

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a 2 и 3a 2 равна 5a 2 .

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степени одинаковых переменных , должны слагаться их сложением с их знаками.

Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Или:
2a 4 - (-6a 4) = 8a 4
3h 2 b 6 - 4h 2 b 6 = -h 2 b 6
5(a - h) 6 - 2(a - h) 6 = 3(a - h) 6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

Или:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a 5 b 5 y 3 .

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат - это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

Здесь 5 - это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, a n .a m = a m+n .

Для a n , a берётся как множитель столько раз, сколько равна степень n;

И a m , берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

Или:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h - y) n ⋅ (b + h - y) = (b + h - y) n+1

Умножьте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x - y).
Ответ: x 4 - y 4 .
Умножьте (x 3 + x - 5) ⋅ (2x 3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых - отрицательные .

1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y -n .y -m = y -n-m .

3. a -n .a m = a m-n .

Если a + b умножаются на a - b, результат будет равен a 2 - b 2: то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат , результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a - y).(a + y) = a 2 - y 2 .
(a 2 - y 2)⋅(a 2 + y 2) = a 4 - y 4 .
(a 4 - y 4)⋅(a 4 + y 4) = a 8 - y 8 .

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

Или:
$\frac{9a^3y^4}{-3a^3} = -3y^4$
$\frac{a^2b + 3a^2}{a^2} = \frac{a^2(b+3)}{a^2} = b + 3$
$\frac{d\cdot (a - h + y)^3}{(a - h + y)^3} = d$

Запись a 5 , делённого на a 3 , выглядит как $\frac{a^5}{a^3}$. Но это равно a 2 . В ряде чисел
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются. .

Так, y 3:y 2 = y 3-2 = y 1 . То есть, $\frac{yyy}{yy} = y$.

И a n+1:a = a n+1-1 = a n . То есть $\frac{aa^n}{a} = a^n$.

Или:
y 2m: y m = y m
8a n+m: 4a m = 2a n
12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

Правило также справедливо и для чисел с отрицательными значениями степеней.
Результат деления a -5 на a -3 , равен a -2 .
Также, $\frac{1}{aaaaa} : \frac{1}{aaa} = \frac{1}{aaaaa}.\frac{aaa}{1} = \frac{aaa}{aaaaa} = \frac{1}{aa}$.

h 2:h -1 = h 2+1 = h 3 или $h^2:\frac{1}{h} = h^2.\frac{h}{1} = h^3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $\frac{5a^4}{3a^2}$ Ответ: $\frac{5a^2}{3}$.

2. Уменьшите показатели степеней в $\frac{6x^6}{3x^5}$. Ответ: $\frac{2x}{1}$ или 2x.

3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
a 2 .a -4 есть a -2 первый числитель.
a 3 .a -3 есть a 0 = 1, второй числитель.
a 3 .a -4 есть a -1 , общий числитель.
После упрощения: a -2 /a -1 и 1/a -1 .

4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

5. Умножьте (a 3 + b)/b 4 на (a - b)/3.

6. Умножьте (a 5 + 1)/x 2 на (b 2 - 1)/(x + a).

7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

9. Разделите (h 3 - 1)/d 4 на (d n + 1)/h.

Логично перейти к разговору о действиях с алгебраическими дробями . С алгебраическими дробями определены следующие действия: сложение, вычитание, умножение, деление и возведение в натуральную степень. Причем все эти действия замкнуты, в том смысле, что в результате их выполнения получается алгебраическая дробь. Разберем каждое из них по порядку.

Да, сразу стоит заметить, что действия с алгебраическими дробями являются обобщениями соответствующих действий с обыкновенными дробями. Поэтому соответствующие правила практически дословно совпадают с правилами выполнения сложения и вычитания, умножения, деления и возведения в степень обыкновенных дробей.

Навигация по странице.

Сложение алгебраических дробей

Сложение любых алгебраических дробей подходит под один из двух следующих случаев: в первом складываются дроби с одинаковыми знаменателями, во втором – с разными. Начнем с правила сложения дробей с одинаковыми знаменателями.

Чтобы сложить алгебраические дроби с одинаковыми знаменателями, нужно сложить числители, а знаменатель оставить прежним.

Озвученное правило позволяет перейти от сложения алгебраических дробей к сложению многочленов , находящихся в числителях. Например, .

Для сложения алгебраических дробей с разными знаменателями действовать нужно по следующему правилу: привести их к общему знаменателю, после чего сложить полученные дроби с одинаковыми знаменателями.

Например, при сложении алгебраических дробей и их сначала нужно привести к общему знаменателю, в результате они примут вид и соответственно, после чего выполняется сложение этих дробей с одинаковыми знаменателями: .

Вычитание

Следующее действие – вычитание алгебраических дробей – выполняется аналогично сложению. Если знаменатели исходных алгебраических дробей одинаковые, то нужно просто выполнить вычитание многочленов в числителях, а знаменатель оставить прежним. Если же знаменатели различны, то сначала выполняется приведение к общему знаменателю, после чего выполняется вычитание полученных дробей с одинаковыми знаменателями.

Приведем примеры.

Выполним вычитание алгебраических дробей и , их знаменатели одинаковые, поэтому . Полученную алгебраическую дробь можно еще сократить: .

Теперь вычтем из дроби дробь . Эти алгебраические дроби с разными знаменателями, поэтому, сначала приводим их к общему знаменателю, который в данном случае есть 5·x·(x-1) , имеем и . Осталось выполнить вычитание:

Умножение алгебраических дробей

Алгебраические дроби можно умножать. Выполнение этого действия проводится аналогично умножению обыкновенных дробей по следующему правилу: чтобы умножить алгебраические дроби нужно отдельно перемножить числители, и отдельно – знаменатели.

Приведем пример. Умножим алгебраическую дробь на дробь . Согласно озвученному правилу имеем . Осталось полученную дробь преобразовать к алгебраической дроби, для этого в данном случае нужно выполнить умножение одночлена и многочлена (а в общем случае - умножение многочленов) в числителе и знаменателе: .

Стоит заметить, что перед умножением алгебраических дробей желательно разложить на множители многочлены , находящиеся в их числителях и знаменателях. Это связано с возможностью сокращения получаемой дроби. Например,
.

Более детально это действие разобрано в статье .

Деление

Движемся дальше по действиям с алгебраическими дробями. На очереди – деление алгебраических дробей. Следующее правило сводит деление алгебраических дробей к умножению: чтобы разделить одну алгебраическую дробь на другую, нужно первую дробь умножить на дробь, обратную второй.

Под алгебраической дробью, обратной к данной дроби, понимается дробь с переставленными местами числителем и знаменателем. Иными словами, две алгебраические дроби считаются взаимно обратными, если их произведение тождественно равно единице (по аналогии с ).

Приведем пример. Выполним деление . Дробь, обратная делителю , есть . Таким образом, .

Для получения более детальной информации обращайтесь к упомянутой в предыдущем пункте статье умножение и деление алгебраических дробей .

Возведение алгебраической дроби в степень

Наконец, переходим к последнему действию с алгебраическими дробями – возведению в натуральную степень. , а также то, как мы определили умножение алгебраических дробей, позволяет записать правило возведения алгебраической дроби в степень: нужно в эту степень отдельно возвести числитель, и отдельно – знаменатель.

Покажем пример выполнения этого действия. Возведем алгебраическую дробь во вторую степень. По приведенному правилу имеем . Осталось возвести в степень одночлен в числителе, а также возвести в степень многочлен в знаменателе, что даст алгебраическую дробь вида .

Решение других характерных примеров показаны в статье возведение алгебраической дроби в степень.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.