Что значит положительные и отрицательные числа. Отрицательные числа в Европе

Состоящее из положительных (натуральных) чисел, отрицательных чисел и нуля.

Все отрицательные числа, и только они, меньше, чем ноль. На числовой оси отрицательные числа располагаются слева от нуля . Для них, как и для положительных чисел, определено отношение порядка , позволяющее сравнивать одно целое число с другим.

Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое -n , которое дополняет n до нуля:

Полная и вполне строгая теория отрицательных чисел была создана только в XIX веке (Уильям Гамильтон и Герман Грассман).

Знаменитые отрицательные числа

См. также

Литература

  • Выгодский М. Я. Справочник по элементарной математике. - М .: АСТ, 2003. - ISBN 5-17-009554-6
  • Глейзер Г. И. История математики в школе . - М .: Просвещение, 1964. - 376 с.

Примечания


Wikimedia Foundation . 2010 .

  • Камень
  • Озон (значения)

Смотреть что такое "Отрицательное число" в других словарях:

    ОТРИЦАТЕЛЬНОЕ ЧИСЛО - действительное число а, меньшее нуля, т. е. удовлетворяющее неравенству а … Большая политехническая энциклопедия - 1.50. отрицательное биномиальное распределение Распределение вероятностей дискретной случайной величины Х такое, что при x = 0, 1, 2, ... и параметрах c > 0 (целое положительное число), 0 < p < 1, где Примечания 1. Название… … Словарь-справочник терминов нормативно-технической документации

    Число Вольфа - (W) количественная характеристика степени солнечной активности; представляет собой число солнечных пятен и их групп, выраженное в форме условного показателя: W=k(m+10n), где m общее число всех пятен, оформленных в виде групп или расположенных… … Экология человека

Отрицательные числа — это числа со знаком минус (−), например −1, −2, −3. Читается как: минус один, минус два, минус три.

Примером применения отрицательных чисел является термометр, показывающий температуру тела, воздуха, почвы или воды. В зимнее время, когда на улице очень холодно, температура бывает отрицательной (или как говорят в народе «минусовой»).

Например, −10 градусов холода:

Обычные же числа, которые мы рассматривали ранее, такие как 1, 2, 3 называют положительными. Положительные числа — это числа со знаком плюс (+).

При записи положительных чисел знак + не записывают, поэтому мы и видим привычные для нас числа 1, 2, 3. Но следует иметь ввиду, что эти положительные числа выглядят так: +1, +2, +3.

Содержание урока

Это прямая линия, на которой располагаются все числа: и отрицательные и положительные. Выглядит следующим образом:

Здесь показаны числа от −5 до 5. На самом деле координатная прямая бесконечна. На рисунке представлен лишь её небольшой фрагмент.

Числа на координатной прямой отмечают в виде точек. На рисунке жирная чёрная точка является началом отсчёта. Начало отсчёта начинается с нуля. Слева от начала отсчёта отмечают отрицательные числа, а справа — положительные.

Координатная прямая продолжается бесконечно по обе стороны. Бесконечность в математике обозначается символом ∞. Отрицательное направление будет обозначаться символом −∞, а положительное символом +∞. Тогда можно сказать, что на координатной прямой располагаются все числа от минус бесконечности до плюс бесконечности:

Каждая точка на координатной прямой имеет своё имя и координату. Имя — это любая латинская буква. Координата — это число, которое показывает положение точки на этой прямой. Проще говоря, координата это то самое число, которое мы хотим отметить на координатной прямой.

Например, точка А(2) читается как «точка А с координатой 2» и будет обозначаться на координатной прямой следующим образом:

Здесь A — это имя точки, 2 — координата точки A.

Пример 2. Точка B(4) читается как «точка B с координатой 4»

Здесь B — это имя точки, 4 — координата точки B.

Пример 3. Точка M(−3) читается как «точка M с координатой минус три» и будет обозначаться на координатной прямой так:

Здесь M — это имя точки, −3 — координата точки M.

Точки можно обозначать любыми буквами. Но общепринято обозначать их большими латинскими буквами. Более того, начало отчёта, которое по другому называют началом координат принято обозначать большой латинской буквой O

Легко заметить, что отрицательные числа лежат левее относительно начала отсчёта, а положительные числа правее.

Существуют такие словосочетания, как «чем левее, тем меньше» и «чем правее, тем больше» . Наверное, вы уже догадались о чём идёт речь. При каждом шаге влево, число будет уменьшаться в меньшую сторону. И при каждом шаге вправо число будет увеличиваться. Стрелка, направленная вправо, указывает на положительное направление отсчёта.

Сравнение отрицательных и положительных чисел

Правило 1. Любое отрицательное число меньше любого положительного числа.

Например, сравним два числа: −5 и 3. Минус пять меньше , чем три, несмотря на то, что пятёрка бросается в глаза в первую очередь, как цифра большая, чем три.

Связано это с тем, что −5 является отрицательным числом, а 3 — положительным. На координатной прямой можно увидеть, где располагаются числа −5 и 3

Видно, что −5 лежит левее, а 3 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что любое отрицательное число меньше любого положительного числа. Отсюда следует, что

−5 < 3

«Минус пять меньше, чем три»

Правило 2. Из двух отрицательных чисел меньше то, которое располагается левее на координатной прямой.

Например, сравним числа −4 и −1. Минус четыре меньше , чем минус единица.

Связано это опять же с тем, что на координатной прямой −4 располагается левее, чем −1

Видно, что −4 лежит левее, а −1 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что из двух отрицательных чисел меньше то, которое располагается левее на координатной прямой. Отсюда следует, что

Минус четыре меньше, чем минус единица

Правило 3. Ноль больше любого отрицательного числа.

Например, сравним 0 и −3. Ноль больше , чем минус три. Связано это с тем, что на координатной прямой 0 располагается правее, чем −3

Видно, что 0 лежит правее, а −3 левее. А мы говорили, что «чем правее, тем больше» . И правило говорит, что ноль больше любого отрицательного числа. Отсюда следует, что

Ноль больше, чем минус три

Правило 4. Ноль меньше любого положительного числа.

Например, сравним 0 и 4. Ноль меньше , чем 4. Это в принципе ясно и так. Но мы попробуем увидеть это воочию, опять же на координатной прямой:

Видно, что на координатной прямой 0 располагается левее, а 4 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что ноль меньше любого положительного числа. Отсюда следует, что

Ноль меньше, чем четыре

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Отрицательные числа располагаются слева от нуля . Для них, как и для положительных чисел, определено отношение порядка , позволяющее сравнивать одно целое число с другим.

Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое -n , которое дополняет n до нуля: n + (− n ) = 0 . Оба числа называются противоположными друг для друга. Вычитание целого числа a равносильно сложению с противоположным для него: -a .

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же правилам, что и натуральные, но имеют некоторые особенности.

Исторический очерк

Литература

  • Выгодский М. Я. Справочник по элементарной математике. - М.: АСТ, 2003. - ISBN 5-17-009554-6
  • Глейзер Г. И. История математики в школе . - М.: Просвещение, 1964. - 376 с.

Ссылки

Wikimedia Foundation . 2010 .

  • Отрицательные формы рельефа
  • Отрицательный и положительный нуль

Смотреть что такое "Отрицательные числа" в других словарях:

    Отрицательные числа - действительные числа, меньшие нуля, например 2; 0,5; π и т. п. См. Число … Большая советская энциклопедия

    Положительные и отрицательные числа - (величины). Результат последовательных сложений или вычитаний не зависит от порядка, в котором эти действия производятся. Напр. 10 5 + 2 = 10 +2 5. Здесь переставлены не только числа 2 и 5, но и знаки, стоящие перед этими числами. Согласились… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    числа отрицательные - Числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами. Тематики бухгалтерский учет … Справочник технического переводчика

    ЧИСЛА, ОТРИЦАТЕЛЬНЫЕ - числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами … Большой бухгалтерский словарь

    Целые числа - Множество целых чисел определяется как замыкание множества натуральных чисел относительно арифметических операций сложения (+) и вычитания (). Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из… … Википедия

    Натуральные числа - числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления). Существуют два подхода к определению натуральных чисел числа, используемые при: перечислении (нумеровании) предметов (первый, второй,… … Википедия

    ЭЙЛЕРОВЫ ЧИСЛА - коэффициенты Е n в разложении Рекуррентная формула для Э. ч. имеет вид (в символической записи, (E + 1)n + (Е 1)n=0, E0 =1. При этом Е 2п+1=0, E4n положительные, E4n+2 отрицательные целые числа для всех n=0, 1, . . .; E2= 1, E4=5, E6=61, E8=1385 … Математическая энциклопедия

    Отрицательное число - Отрицательное число элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате… … Википедия

    История арифметики - Арифметика. Роспись Пинтуриккьо. Апартаменты Борджиа. 1492 1495. Рим, Ватиканские дворцы … Википедия

    Арифметика - Ганс Себальд Бехам. Арифметика. XVI век Арифметика (др. греч. ἀ … Википедия

Книги

  • Математика. 5 класс. Учебная книга и практикум. В 2 частях. Часть 2. Положительные и отрицательные числа , . Учебная книга и практикум для 5 класса входят в состав УМК по математике для 5-6 классов, разработанного авторским коллективом под руководством Э. Г. Гельфман и М. А. Холодной в рамках…

Состоящее из положительных (натуральных) чисел, отрицательных чисел и нуля.

Все отрицательные числа, и только они, меньше, чем нуль. На числовой оси отрицательные числа располагаются слева от нуля. Для них, как и для положительных чисел , определено отношение порядка, позволяющее сравнивать одно целое число с другим.

n -n , которое дополняет n до нуля: n + (− n ) = 0 . Оба числа называются противоположными друг для друга. Вычитание целого числа a равносильно сложению с противоположным для него: -a .

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же правилам, что и натуральные, но имеют некоторые особенности.

Исторический очерк

Литература

  • Выгодский М. Я. Справочник по элементарной математике. - М.: АСТ, 2003. - ISBN 5-17-009554-6
  • Глейзер Г. И. История математики в школе. - М.: Просвещение, 1964. - 376 с.

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Отрицательные числа" в других словарях:

    Действительные числа, меньшие нуля, например 2; 0,5; π и т. п. См. Число … Большая советская энциклопедия

    - (величины). Результат последовательных сложений или вычитаний не зависит от порядка, в котором эти действия производятся. Напр. 10 5 + 2 = 10 +2 5. Здесь переставлены не только числа 2 и 5, но и знаки, стоящие перед этими числами. Согласились… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    числа отрицательные - Числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами. Тематики бухгалтерский учет … Справочник технического переводчика

    ЧИСЛА, ОТРИЦАТЕЛЬНЫЕ - числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами … Большой бухгалтерский словарь

    Множество целых чисел определяется как замыкание множества натуральных чисел относительно арифметических операций сложения (+) и вычитания (). Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из… … Википедия

    Числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления). Существуют два подхода к определению натуральных чисел числа, используемые при: перечислении (нумеровании) предметов (первый, второй,… … Википедия

    Коэффициенты Е n в разложении Рекуррентная формула для Э. ч. имеет вид (в символической записи, (E + 1)n + (Е 1)n=0, E0 =1. При этом Е 2п+1=0, E4n положительные, E4n+2 отрицательные целые числа для всех n=0, 1, . . .; E2= 1, E4=5, E6=61, E8=1385 … Математическая энциклопедия

    Отрицательное число элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате… … Википедия

    Арифметика. Роспись Пинтуриккьо. Апартаменты Борджиа. 1492 1495. Рим, Ватиканские дворцы … Википедия

    Ганс Себальд Бехам. Арифметика. XVI век Арифметика (др. греч. ἀ … Википедия

Книги

  • Математика. 5 класс. Учебная книга и практикум. Положительные и отрицательные числа. В 2 частях. Часть 2. ФГОС, Гельфман Э.Г.. Учебная книга и практикум для 5 класса входят в состав УМК по математике для 5–6 классов, разработанный авторским коллективом под руководством Э. Г. Гельфман и М. А. Холодной в рамках проекта…

В рамках натуральных чисел можно вычесть только меньшее число из большего, а переместительный закон не включает вычитание - например, выражение 3 + 4 − 5 {\displaystyle 3+4-5} допустимо, а выражение с переставленными операндами 3 − 5 + 4 {\displaystyle 3-5+4} недопустимо...

Добавление к натуральным числам отрицательных чисел и нуля делает возможной операцию вычитания для любых пар натуральных чисел. В результате такого расширения получается множество (кольцо) «целых чисел ». При дальнейших расширениях множества чисел рациональными или вещественными числами для них тем же путём получаются соответствующие отрицательные значения. Для комплексных чисел упорядоченность не определена, и понятия «отрицательное число» не существует.

Все отрицательные числа, и только они, меньше, чем ноль. На числовой оси отрицательные числа располагаются слева от нуля. Для них, как и для положительных чисел, определено отношение порядка, позволяющее сравнивать одно целое число с другим.

Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое -n , которое дополняет n до нуля:

n + (− n) = 0. {\displaystyle n+\left(-n\right)=0.}

Оба числа называются противоположными друг для друга. Вычитание целого числа a из другого целого числа b равносильно сложению b с противоположным для a :

b − a = b + (− a) . {\displaystyle b-a=b+\left(-a\right).}

Пример: 25 − 75 = − 50. {\displaystyle 25-75=-50.}

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же алгебраическим правилам, что и натуральные, но имеют некоторые особенности.

  1. Если любое множество положительных чисел ограничено снизу, то любое множество отрицательных чисел ограничено сверху.
  2. При умножении целых чисел действует правило знаков : произведение чисел с разными знаками отрицательно, с одинаковыми - положительно.
  3. При умножении обеих частей неравенства на отрицательное число знак неравенства меняется на обратный. Например, умножая неравенство 3 −10.

При делении с остатком частное может иметь любой знак, но остаток, по соглашению, всегда неотрицателен (иначе он определяется не однозначно). Например, разделим −24 на 5 с остатком:

− 24 = 5 ⋅ (− 5) + 1 = 5 ⋅ (− 4) − 4 {\displaystyle -24=5\cdot (-5)+1=5\cdot (-4)-4} .

Вариации и обобщения

Понятия положительных и отрицательных чисел можно определить в любом упорядоченном кольце. Чаще всего эти понятия относятся к одной из следующих числовых систем:

Приведенные выше свойства 1-3 имеют место и в общем случае. К комплексным числам понятия «положительный» и «отрицательный» неприменимы.

Исторический очерк

Древний Египет, Вавилон и Древняя Греция не использовали отрицательных чисел, а если получались отрицательные корни уравнений (при вычитании), они отвергались как невозможные. Исключение составлял Диофант, который в III веке уже знал правило знаков и умел умножать отрицательные числа. Однако он рассматривал их лишь как промежуточный этап, полезный для вычисления окончательного, положительного результата.

Впервые отрицательные числа были частично узаконены в Китае, а затем (примерно с VII века) и в Индии, где трактовались как долги (недостача), или, как у Диофанта, признавались как временные значения. Умножение и деление для отрицательных чисел тогда ещё не были определены. Полезность и законность отрицательных чисел утверждались постепенно. Индийский математик Брахмагупта (VII век) уже рассматривал их наравне с положительными.

В Европе признание наступило на тысячу лет позже, да и то долгое время отрицательные числа называли «ложными», «мнимыми» или «абсурдными». Первое описание их в европейской литературе появилось в «Книге абака» Леонарда Пизанского (1202 год), который трактовал отрицательные числа как долг. Бомбелли и Жирар в своих трудах считали отрицательные числа вполне допустимыми и полезными, в частности, для обозначения нехватки чего-либо. Даже в XVII веке Паскаль считал, что 0 − 4 = 0 {\displaystyle 0-4=0} , так как «ничто не может быть меньше, чем ничто» . Отголоском тех времён является то обстоятельство, что в современной арифметике операция вычитания и знак отрицательных чисел обозначаются одним и тем же символом (минус), хотя алгебраически это совершенно разные понятия.

В XVII веке, с появлением аналитической геометрии, отрицательные числа получили наглядное геометрическое представление на числовой оси. С этого момента наступает их полное равноправие. Тем не менее теория отрицательных чисел долго находилась в стадии становления. Оживлённо обсуждалась, например, странная пропорция 1: (− 1) = (− 1) : 1 {\displaystyle 1:(-1)=(-1):1} - в ней первый член слева больше второго, а справа - наоборот, и получается, что большее равно меньшему («парадокс

1. Вопросы, связанные с отрицательными числами являются одним из трудных вопросов для освоения учащимися.

История развития математики показывает, что отрицательные числа значительно труднее дались человеку, это связано с тем, отрицательные числа менее связаны с практической жизнью.

Отрицательные числа возникли в связи с необходимостью выполнения с известными числами. Математики древней Греции не признали отрицательных чисел, они не могли дать им конкретного толкования. Лишь работу Диофанта (3 в. н.э) встречаются преобразования, которые приводят к необходимости выполнения операций над отрицательными числами.

Отрицательные числа появляются лишь в зачаточной форме. Довольно широкое распределение они получили в работах индийских ученых. Положительные числа они называли настоящими, а отрицательные- не настоящими- ложными. Отрицательные числа рассматривали, как долг, а положительные числа как наличные деньги.

Первые правила сложения и вычитания принадлежат индийским ученым. И связаны с трактовкой этих чисел как имущество и долг.

Ученые долго не могли объяснить, дать трактовку произведения двух отрицательных чисел. Почему произведение 2-х долгов есть имущество. Такие ученые как Эйлер, Коми давали свое объяснение правилу произведения чисел, но они приводили к ошибочным результатам.

Немецкий ученый М. Штифель впервые в 1544 г. дал определение отрицательных чисел, как чисел меньших нуля.

Впервые математическую интерпретацию дал Рене Декарт в 1737 г. в книги «Аналитическая геометрия». Отрицательные числа он рассматривал как самостоятельное, расположенное на оси ОХ влево от начало координат. Однако он эти числа назвал ложными. Всеобщее признание отрицательные числа получили в первой половине 21 века, так отрицательные числа вошли в историю математики.

2. Различные приемы введения отрицательных чисел. В учебной литературе можно отметить 3 способа введения отрицательных чисел.

1) Рассматриваются случаи, когда вычисление на множестве положительных чисел ложно.

2) Рассматривают векторы расположенные на одной прямой, необходимость охарактеризовать не только их длину, но и направление приводит к понятию положительных и отрицательных чисел.

3) Введение отрицательных чисел посредством расположения изменяющихся величин в противоположных направлениях.

Методика введения отрицательного числа.

Прежде чем дать понятие об отрицательном числе необходимо показать на конкретных примерах , что известно уч-ся чисел недостаточно для характеристики положения точки на прямой к началу отсчета.

На достаточном количестве примеров надо показать неудобства понятия типа вправо или влево, вверх или вниз начертить числовую ось. Необходимо отложить начало отсчета и чтоб для определенности таких шкал, которые находятся вправо со знаком плюс, влево с противоположным знаком- минус.

В учебнике рассматривается достаточное число примеров, показывающих о целесообразности использования определенных знаков для обозначения направления противоположности движения. Для понятия введения отрицательного числа необходимо пользоваться демонстративным термометром и другими пособиями.

Знакомству с противоположными числами способствует изучение центра симметрии.

Понятие о противоположных числах связывается симметричными точками. В тоже время введение этого понятия основывается с геометрическим истолкованием положительных и отрицательных чисел.

В пункте противоположных чисел вводится определение целых чисел. Натуральные числа, противоположные числа, нуль- называют целыми числами. Модуль числа- понятие модуль числа дает от начала отсчета до точки соответствующему числу. Следует обратить внимание учащихся как мотивировать определение модуля числа.

В учебниках понятие модуля числа вводится путем рассмотрения примеров, поясняют как находить модуль числа. Поясняется, что модуль числа не может быть отрицательным ибо модуль числа это расстояние- обращается внимание, что для положительного числа модуль равен самому числу. Модуль отрицательного числа равен противоположному числу.

Сравнение чисел.

Соотношения равенства и неравенства между положительными и отрицательными числами вводится по определению, они не могут быть получены путем доказательства, причем очень важно показать учащимся целесообразность определения на конкретных примерах и геометрических образах.

Учащиеся должны на столько прочно усвоить расположение чисел на числовой прямой, чтобы это могло служить основным средством сравнения чисел. Иногда возникают трудности в сравнении отрицательных чисел, чтобы преодолеть их, необходимо рассмотреть их на числовой прямой.

Действия над отрицательными и положительными числами.

Основное, что надо учитывать учителю при рассмотрении этого материала – это действия сложения и вычитания над положительными и отрицательными числами вводится по определению, причем формулировки этих определений должны включать в себя ранее известные учащимся понятия об этих действиях. Вычитание и деление определяются как обратные сложению и умножению.

В учебнике отдельно дается определение действия сложения чисел с разными знаками, формулировки этих правил содержат указание на следующие действия. В учебнике большое время уделяется к тому как подойти к действию сложению. Основное внимание уделяется к рассмотрению конкретных задач, обращаясь при этом к координатной прямой.

Каким бы путем не вводилось правило сложение учащимся должно быть ясно, что ничто не доказывается при рассмотрении следующих примеров.

Примеры признаны лишь иллюстрировать целесообразность правил. Учащиеся должны овладеть навыками выполнения сложения 2-х отрицательных чисел с разными знаками, противоположных чисел, нуля с положительными и отрицательными числами.

Рассматривая свойства действий важно показать учащимся, что при установленных определениях действий сложения и вычитания чисел сохраняется все те законы которые имели место для положительных чисел.

Учащимся дается формулировка переместительного и сочетательного законов запись каждого из них с помощью букв.

Вычитание отрицательных чисел определяются как действие обратное сложению. Вычитание сводится к прибавлению противоположного числа.

Умножение положительных и отрицательных чисел представляет наибольшую трудность, трудность заключается в том, что учащейся испытывают потребность в доказательстве правил знаков при умножение, а учитель должен убедить учащихся, что такого доказательства нельзя искать или требовать, таким образом действие умножения вводится по определению, которое можно ввести по разному и по разному истолковать правило знаков. Сложения и умножения имеют много общего, однако трактовка правил умножения вызывает больше трудности.

Рассмотрим объяснения правил умножения является рассмотрение конкретных задач, решение которых требует вычисление по формуле а в, при различных а и в. недостатком этого метода является, то что они доказывают правило умножения.

Многие авторы придерживаются пути, когда в начале дается формулировка правил умножения, затем оно поясняется на примерах, задачах. Учащийся убеждаются на конкретном математическом в практичной целесообразности введенного определения. обычно в учебниках формулировки правил умножения чисел с разными знаками и правил умножения натуральных чисел представляет расписания рядов примеров.

При этом используется положение о том, что если изменить знак одного из множителей, то изменится знак произведения.

Правило формулируется удобным для использования вида. Необходимо обратить внимание учащихся на условия равенство произведения нулю.

Деление положительных, отрицательных чисел рассматривается как действие обратное умножению. Учащемуся сообщается, что деление положительных и отрицательных чисел имеет тот же смысл, что и деление положительных чисел. Важно обратить внимание на законы вычисления и умножения выражений.

Так же как и в случая сложения, правило сложения и умножения натуральных чисел может быть выведены из умножения чисел. Считая, что правило знаков для суммы известно.

В 6 классе в теме рациональные числа вводятся памяти отрицательные числа, которое может быть записано в виде дроби. Расписывается множество рациональных чисел можно сбить внимание, что когда выполнимо:, +, *, - на число не равное нулю.

При вычитании или выполни действий учащийся получают числа того же множества и это множество обладает свойством замкнутости по отношению к действиям первой и второй степени. Для сложения справедливы переместительный и сочетательный законы имеется нейтральный элемент, имеется противоположный элемент.

Для умножения справедливы первый распределительный и сочетательный закон, имеется нейтральный элемент 1, противоположный элемент ().

Практическое занятие №2

Тема: Изучение функции в ШКМ

1. Методика введения понятия функции.

2. Методика изучения отдельных функций

3. Виды функций, изучаемых в основной школе

Литература: , . Дополнительная литература I.

Мы знаем, что если сложить два или несколько натуральных чисел, то в результате получим натуральное число. Если перемножать натуральные числа между собой, то в результате всегда получаются натуральные числа. А какие числа будут в результате, если из одного натурального числа вычесть другое натуральное число? Если из большего натурального числа вычесть меньшее, то результат тоже будет натуральным числом. А какое число будет, если из меньшего числа вычесть большее? Например, если из 5 вычесть 7. Результат такого действия уже не будет натуральным числом, а будет числом меньше нуля, которое мы напишем как натуральное, но со знаком «минус», так называемым, отрицательным натуральным числом. На этом уроке мы познакомимся с отрицательными числами. Поэтому мы расширяем множество натуральных чисел, добавляя к нему «0» и целые отрицательные числа. Новое расширенное множество будет состоять из чисел:

…-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6…

Эти числа называются целыми. Следовательно, результат нашего примера 5 -7 = -2 будет целым числом.

Определение. Целые числа – это натуральные, отрицательные натуральные и число «0».

Изображение этого множества мы видим на градуснике для измерения температуры на улице.

Температура может быть с «минусом», т.е. отрицательной, может быть с «плюсом» т.е. положительной. Температура 0 градусов не положительная не отрицательная, число 0 – граница, которая отделяет положительные числа от отрицательных.

Изобразим целые числа на числовой оси.

Рисунок оси

Мы видим, что на числовой оси существует бесконечное множество чисел. Положительные и отрицательные числа разделены между собой нулем. Отрицательные целые числа, например -1, читаются как «минус единица» или «отрицательная единица».

Положительные целые числа, например «+3» читается как положительная 3 или просто «три», то есть у положительных (натуральных) чисел знак «+» не пишется и слово «положительное» не произносится.

Примеры: отметь на числовой оси +5, +6, -7, -3, -1, 0 и т.д.

При движении вправо по числовой оси числа увеличиваются, а при движении влево - уменьшаются. Если мы хотим увеличить число на 2, мы движемся вправо по координатной оси на 2 единицы. Пример: 0+2=2; 2+2=4; 4+2=6 и т. д. И наоборот, если мы хотим уменьшить число на 3 мы будем двигаться влево на 3 единицы. Например: 6-3=3; 3-3=0; 0-3=-3; и т.д.

1. Попробуй увеличить число (-4) за 3 шага, увеличивая каждый раз на 2 единицы.

Двигаясь по числовой оси, как показано на рисунке, мы получим в результате 2.

2. Уменьши число 6 за шесть шагов, уменьшая его за каждый шаг на 2 единицы.

3. Увеличь число (-1) за три шага, увеличивая его на 4 единицы на каждом шаге.

С помощью координатной прямой легко сравнивать целые числа: из двух чисел больше то, которое на координатной прямой расположено правее, а меньше то, что стоит левее.

4. Сравни числа, поставив знак > или < , для удобства сравнения изобрази их на координатной прямой:

3 и 2; 0 и -5; -34 и -67; -72 и 0 и т.д.

5. Вспомни, как мы отмечали на координатном луче точки с натуральными координатами. Точки принято называть заглавными латинскими буквами. Нарисуй координатную прямую, и взяв удобный единичный отрезок, изобрази точки с координатами:

А) А(10),В(20),С(30),М(-10),N(-20)
Б) С(100),В(200),К(300),F(-100)
В) U(1000),Е(2000),R(-3000)

6. Запиши все целые числа, расположенные между -8 и 5, между -15 и -7, между -1 и 1.

Сравнивая числа, мы должны уметь ответить на сколько единиц одно число больше или меньше другого.

Нарисуем координатную прямую. Изобразим на ней точки с координатами от -5 до 5. Число 3 на две единицы меньше 5, на единицу меньше 4, на 3 единица больше нуля. Число -1 на единицу меньше нуля, на 2 единицы больше -3.

7. Ответь, на сколько единиц:

3 меньше 4; -2 меньше 3; -5 меньше -4; 2 больше -1; 0 больше -5; 4 больше -1

8. Нарисуй координатную прямую. Выпиши 7 чисел, каждое из которых на 2 единицы меньше предыдущего, начиная с 6. Какое у этого ряда последнее число? Сколько может быть всего таких чисел, если количество выписываемых чисел не ограничивать?

9. Выпиши 10 чисел, каждое из которых на 3 единицы больше предыдущего начиная с (-6). Сколько таких чисел может существовать, если ряд не ограничивать десятью?

Противоположные числа.

На числовой оси для каждого положительного числа (или натурального) существует отрицательное число, расположенное слева от нуля на таком же расстоянии. Например: 3 и -3; 7 и -7; 11 и -11.

Говорят, что число -3 является противоположным числу 3, и наоборот, -3 противоположно 3.

Определение: Два числа, которые отличаются друг от друга только знаком называются противоположными.

Мы знаем, что если умножить число на +1, то число не изменится. А если число умножить на (-1), что будет? У такого числа поменяется знак. Например, если 7 умножить на (-1) или отрицательную единицу, то результат будет (-7), число становится отрицательным. Если (-10) умножить на (-1), то получим (+10), т. е. получаем уже положительное число. Таким образом, мы видим, что противоположные числа получаются простым умножением исходного числа на (-1). Мы видим на числовой оси, что у каждого числа существует только одно противоположное число. Например, у (4) противоположное будет (-4), у числа (-10) – противоположное будет (+10). Попробуем найти противоположное число у нуля. Его нет. Т.е. 0 – противоположен самому себе.

А теперь посмотрим на числовой оси, что получится, если сложить 2 противоположных числа. Мы получаем, что сумма противоположных чисел равна 0.

1. Игра: пусть игровое поле разделено пополам на два поля: левое и правое. Между ними проходит разделительная черта. На поле находятся числа. Переход через черту означает умножение на (-1), иначе при переходе через разделительную черту число становится противоположным.

Пусть в левом поле находится число (5). В какое число превратится (5), если пятерка перейдет разделительную полосу 1 раз? 2 раза? 3 раза?

2. Заполни следующую таблицу:

3. Из множества пар выбери пары противоположных. Сколько таких пар ты получил?

9 ; -100; 1009; -63; -7; -9; 3; -33; 25; -1009; -2; 1; 0; 100; 27; 345; -56; -345; 33; 7.

Сложение и вычитание целых чисел.

Сложение (или знак «+») означает движение вправо на числовой оси.

  1. 1+3 = 4
  1. -1 + 4 = 3
  2. -3 + 2 = -1

Вычитание(или знак»-«) означает движение влево на числовой оси

  1. 3 – 2 = 1
  2. 2 – 4 = -2
  3. 3 – 6 = -3
  4. -3 + 5 = 2
  5. -2 – 5 = -7
  6. -1 + 6 = 5
  7. 1 – 4 = -3

Реши следующие примеры с помощью числовой оси:

  1. -3+1=
  2. 2)-4-1=
  3. -5-1=
  4. -2-7=
  5. -1+3=
  6. -1-4=
  7. -6+7=

В Древнем Китае при составлении уравнений коэффициенты уменьшаемых и вычитаемых записывались цифрами разного цвета. Прибыль –обозначали красной краской, а убытки – синей. Пример, продали 3 быка и купили 2 лошади. Рассмотрим другой пример: хозяйка принесла на рынок картошку и продала ее за 300 рублей, эти деньги мы прибавим к имуществу хозяйки и напишем их как +300(красное), а затем она потратила 100 рублей (эти деньги мы запишем как(-100)(синие). Таким образом, получилось, что хозяйка вернулась с рынка с прибылью в 200рублей(или +200). Иначе, числа, записанные красной краской всегда складывали, а записанные синей краской вычитали. По аналогии, будем синей краской обозначать отрицательные числа.

Таким образом, мы можем все положительные числа считать выигрышем, а отрицательные проигрышем или долгом или потерей.

Пример: -4 + 9 = +5 результат (+5) можно рассматривать как выигрыш в какой-либо игре; после того, как сначала было проиграно 4 очка, а затем выиграно 9 очков, то в результате останется выигрыш в 5 очков. Реши следующие задачи:

11. В игре в лото Петя сначала выиграл 6 очков, затем проиграл 3 очка, затем опять выиграл 2 очка, затем проиграл 5 очков. Каков результат игры у Пети?

12 (*). Мама пожила конфеты в вазочку. Маша съела 4 конфеты, Миша съел 5 конфет, Оля съела 3 конфеты. Мама положила еще в вазочку 10 конфет, и в вазочке стало 12конфет. Сколько конфет было сначала в вазочке?

13. В доме одна лестница ведет из подвала на второй этаж. Лестница состоит из двух пролетов по 15 ступенек каждый (один из подвала на первый этаж, а второй с первого этажа на второй). Петя был на первом этаже. Сначала он поднялся по лестнице на 7ступенек вверх, а затем спустился на 13 ступенек вниз. Где оказался Петя?

14. Кузнечик прыгает вдоль числовой оси. Один прыжок кузнечика составляет 3 деления на оси. Кузнечик сначала делает 3 прыжка вправо, а затем 5 прыжков влево. Где окажется кузнечик после этих прыжков, если первоначально он находился в 1)«+1»;2) «-6»;3) «0»;4) «+5»;5) «-2»;6) «+3»;7) «-1».

До сих пор мы привыкли к тому, что рассматриваемые числа отвечали на вопрос «сколько». Но отрицательные числа не могут быть ответом на вопрос «сколько». В житейском смысле отрицательные числа связаны с долгом, проигрышем, с такими действиями, как недолил, недопрыгнул, недовесил и т.д. Во всех этих случаях мы просто вычитаем долг, проигрыш, недовес. Например,

  1. На вопрос « Сколько будет «тысяча без 100»?», мы из 1000 должны вычесть 100 и получим 900.
  2. Выражение «3 часа без четверти» – означает, что мы должны вычесть 15 мин из 3 часов. Получим, таким образом, 2часа 45 мин.

А теперь реши следующие задачи:

15. Саша покупал 200гр. масла, но недобросовестный продавец недовесил 5 гр. Какую массу масла купил Саша?

16.На беговой дистанции в 5 км. Володя сошел с дистанции, не добежав до финиша 200м. Какое расстояние Володя пробежал?

17. Заполняя трехлитровую банку соком мама не долила 100мл сока. Сколько сока получилось в банке?

18. Кино должно начаться без двадцати минут восемь. сколько минут Во сколько часов и во сколько минут должно начаться кино?

19.У Тани было 200руб. и она должна Пете 50 руб. После того, как она отдала долг, сколько денег осталось у Тани?

20. Петя с Ваней пошли в магазин. Петя захотел купить книгу за 5 рублей. Но у него оказалось только 3 рубля, и он занял у Вани 2 рубля и купил книгу. Сколько денег оказалось после покупки у Пети?

3 - 5= -2 (из того, что у него было до покупки вычтем стоимость покупки, получим -2 рубля, то есть два рубля долга).

21. Днем температура воздуха была 3°тепла или +3°, а ночью 4° мороза или -4°. На сколько градусов понизилась температура? И на сколько градусов ночная температура меньше, чем дневная?

22. Таня договорилась встретиться с Володей без четверти семь. Во сколько часов и во сколько минут они договорились встретиться?

23. Тима с приятелем пошел в магазин покупать книгу, которая стоила 97 рублей. Но когда они пришли в магазин, то выяснилось, что книга подорожала, и стала стоить 105 рублей. Тима занял приятеля недостающую сумму, и все-таки купил книгу. Сколько денег Тима стал должен приятелю?