Нахождение нод онлайн. Наибольший общий делитель (НОД) – определение, примеры и свойства

Нахождение наибольшего общего делителя трех и большего количества чисел может быть сведено к последовательному нахождению НОД двух чисел. Мы об этом упоминали, при изучении свойств НОД. Там мы сформулировали и доказали теорему: наибольший общий делитель нескольких чисел a 1 , a 2 , …, a k равен числу d k , которое находится при последовательном вычислении НОД(a 1 , a 2)=d 2 , НОД(d 2 , a 3)=d 3 , НОД(d 3 , a 4)=d 4 , …,НОД(d k-1 , a k)=d k .

Давайте разберемся, как выглядит процесс нахождения НОД нескольких чисел, рассмотрев решение примера.

Пример.

Найдите наибольший общий делитель четырех чисел 78 , 294 , 570 и 36 .

Решение.

В этом примере a 1 =78 , a 2 =294 , a 3 =570 , a 4 =36 .

Сначала по алгоритму Евклида определим наибольший общий делитель d 2 двух первых чисел 78 и 294 . При делении получаем равенства 294=78·3+60 ; 78=60·1+18 ;60=18·3+6 и 18=6·3 . Таким образом, d 2 =НОД(78, 294)=6 .

Теперь вычислим d 3 =НОД(d 2 , a 3)=НОД(6, 570) . Опять применим алгоритм Евклида:570=6·95 , следовательно, d 3 =НОД(6, 570)=6 .

Осталось вычислить d 4 =НОД(d 3 , a 4)=НОД(6, 36) . Так как 36 делится на 6 , тоd 4 =НОД(6, 36)=6 .

Таким образом, наибольший общий делитель четырех данных чисел равен d 4 =6 , то есть,НОД(78, 294, 570, 36)=6 .

Ответ:

НОД(78, 294, 570, 36)=6 .

Разложение чисел на простые множители также позволяет вычислять НОД трех и большего количества чисел. В этом случае наибольший общий делитель находится как произведение всех общих простых множителей данных чисел.

Пример.

Вычислите НОД чисел из предыдущего примера, используя их разложения на простые множители.

Решение.

Разложим числа 78 , 294 , 570 и 36 на простые множители, получаем 78=2·3·13 ,294=2·3·7·7 , 570=2·3·5·19 , 36=2·2·3·3 . Общими простыми множителями всех данных четырех чисел являются числа 2 и 3 . Следовательно, НОД(78, 294, 570, 36)=2·3=6 .

Ответ:

НОД(78, 294, 570, 36)=6 .

К началу страницы

Нахождение НОД отрицательных чисел

Если одно, несколько или все числа, наибольший делитель которых нужно найти, являются отрицательными числами, то их НОД равен наибольшему общему делителю модулей этих чисел. Это связано с тем, что противоположные числа a и −a имеют одинаковые делители, о чем мы говорили при изучении свойств делимости.

Пример.

Найдите НОД отрицательных целых чисел −231 и −140 .

Решение.

Модуль числа −231 равен 231 , а модуль числа −140 равен 140 , иНОД(−231, −140)=НОД(231, 140) . Алгоритм Евклида дает нам следующие равенства:231=140·1+91 ; 140=91·1+49 ; 91=49·1+42 ; 49=42·1+7 и 42=7·6 . Следовательно,НОД(231, 140)=7 . Тогда искомый наибольший общий делитель отрицательных чисел−231 и −140 равен 7 .


Ответ:

НОД(−231, −140)=7 .

Пример.

Определите НОД трех чисел −585 , 81 и −189 .

Решение.

При нахождении наибольшего общего делителя отрицательные числа можно заменить их абсолютными величинами, то есть, НОД(−585, 81, −189)=НОД(585, 81, 189) . Разложения чисел 585 , 81 и 189 на простые множители имеют соответственно вид585=3·3·5·13 , 81=3·3·3·3 и 189=3·3·3·7 . Общими простыми множителями этих трех чисел являются 3 и 3 . Тогда НОД(585, 81, 189)=3·3=9 , следовательно,НОД(−585, 81, −189)=9 .

Ответ:

НОД(−585, 81, −189)=9 .

35. Корені многочлена. Теорема Безу. (33 и выше)

36. Кратні корені, критерій кратності кореня.

Онлайн калькулятор позволяет быстро находить наибольший общий делитель и наименьшее общее кратное как для двух, так и для любого другого количества чисел.

Калькулятор для нахождения НОД и НОК

Найти НОД и НОК

Найдено НОД и НОК: 5806

Как пользоваться калькулятором

  • Введите числа в поле для ввода
  • В случае ввода некорректных символов поле для ввода будет подсвечено красным
  • нажмите кнопку "Найти НОД и НОК"

Как вводить числа

  • Числа вводятся через пробел, точку или запятую
  • Длина вводимых чисел не ограничена , так что найти НОД и НОК длинных чисел не составит никакого труда

Что такое НОД и НОК?

Наибольший общий делитель нескольких чисел – это наибольшее натуральное целое число, на которое все исходные числа делятся без остатка. Наибольший общий делитель сокращённо записывается как НОД .
Наименьшее общее кратное нескольких чисел – это наименьшее число, которое делится на каждое из исходных чисел без остатка. Наименьшее общее кратное сокращённо записывается как НОК .

Как проверить, что число делится на другое число без остатка?

Чтобы узнать, делится ли одно число на другое без остатка, можно воспользоваться некоторыми свойствами делимости чисел. Тогда, комбинируя их, можно проверять делимость на некоторые их них и их комбинации.

Некоторые признаки делимости чисел

1. Признак делимости числа на 2
Чтобы определить, делится ли число на два (является ли оно чётным), достаточно посмотреть на последнююю цифру этого числа: если она равна 0, 2, 4, 6 или 8, то число чётно, а значит делится на 2.
Пример: определить, делится ли на 2 число 34938 .
Решение: смотрим на последнюю цифру: 8 - значит число делится на два.

2. Признак делимости числа на 3
Число делится на 3 тогда, когда сумма его цифр делится на три. Таким образом, чтобы определить, делится ли число на 3, нужно посчитать сумму цифр и проверить, делится ли она на 3. Даже если сумма цифр получилась очень большой, можно повторить этот же процесс вновь.
Пример: определить, делится ли число 34938 на 3.
Решение: считаем сумму цифр: 3+4+9+3+8 = 27. 27 делится на 3, а значит и число делится на три.

3. Признак делимости числа на 5
Число делится на 5 тогда, когда его последняя цифра равна нулю или пяти.
Пример: определить, делится ли число 34938 на 5.
Решение: смотрим на последнюю цифру: 8 - значит число НЕ делится на пять.

4. Признак делимости числа на 9
Этот признак очень похож на признак делимости на тройку: число делится на 9 тогда, когда сумма его цифр делится на 9.
Пример: определить, делится ли число 34938 на 9.
Решение: считаем сумму цифр: 3+4+9+3+8 = 27. 27 делится на 9, а значит и число делится на девять.

Как найти НОД и НОК двух чисел

Как найти НОД двух чисел

Наиболее простым способом вычисления наибольшего общего делителя двух чисел является поиск всех возможных делителей этих чисел и выбор наибольшего из них.

Рассмотрим этот способ на примере нахождения НОД(28, 36) :

  1. Раскладываем оба числа на множители: 28 = 1·2·2·7 , 36 = 1·2·2·3·3
  2. Находим общие множители, то есть те, которые есть у обоих чисел: 1, 2 и 2.
  3. Вычисляем произведение этих множителей: 1·2·2 = 4 - это и есть наибольший общий делитель чисел 28 и 36.

Как найти НОК двух чисел

Наиболее распространены два способа нахождения наименьшего кратного двух чисел. Первый способ заключается в том, что можно выписать первые кратные двух чисел, а затем выбрать среди них такое число, которое будет общим для обоих чисел и при этом наименьшем. А второй заключается в нахождении НОД этих чисел. Рассмотрим только его.

Для вычисления НОК нужно вычислить произведение исходных чисел и затем разделить его на предварительно найденный НОД. Найдём НОК для тех же чисел 28 и 36:

  1. Находим произведение чисел 28 и 36: 28·36 = 1008
  2. НОД(28, 36), как уже известно, равен 4
  3. НОК(28, 36) = 1008 / 4 = 252 .

Нахождение НОД и НОК для нескольких чисел

Наибольший общий делитель можно находить и для нескольких чисел, а не только для двух. Для этого числа, подлежащие поиску наибольшего общего делителя, раскладывают на простые множители, затем находят произведение общих простых множителей этих чисел. Также для нахождение НОД нескольких чисел можно воспользоваться следующим соотношением: НОД(a, b, c) = НОД(НОД(a, b), c) .

Аналогичное соотношение действует и для наименьшего общего кратного чисел: НОК(a, b, c) = НОК(НОК(a, b), c)

Пример: найти НОД и НОК для чисел 12, 32 и 36.

  1. Cперва разложим числа на множители: 12 = 1·2·2·3 , 32 = 1·2·2·2·2·2 , 36 = 1·2·2·3·3 .
  2. Найдём обшие множители: 1, 2 и 2 .
  3. Их произведение даст НОД: 1·2·2 = 4
  4. Найдём теперь НОК: для этого найдём сначала НОК(12, 32): 12·32 / 4 = 96 .
  5. Чтобы найти НОК всех трёх чисел, нужно найти НОД(96, 36): 96 = 1·2·2·2·2·2·3 , 36 = 1·2·2·3·3 , НОД = 1·2·2·3 = 12 .
  6. НОК(12, 32, 36) = 96·36 / 12 = 288 .

Наибольшее натуральное число, на которое делятся без остатка числа a и b, называют наибольшим общим делителем этих чисел. Обозначают НОД(a, b).

Рассмотрим нахождения НОД на примере двух натуральных чисел 18 и 60:

  • 1 Разложим числа на простые множители:
    18 = 2 × 3 × 3
    60 = 2 × 2 × 3 × 5
  • 2 Вычеркнуть из разложения первого числа все множители которые не входят в разложения второго числа, получим 2 × 3 × 3 .
  • 3 Перемножаем оставшиеся простые множители после вычеркивания и получаем наибольший общий делитель чисел: НОД(18 , 60 )=2 × 3 = 6 .
  • 4 Заметим что не важно из первого или второго числа вычеркиваем множители, результат будет одинаков:
    18 = 2 × 3 × 3
    60 = 2 × 2 × 3 × 5
  • 324 , 111 и 432

    Разложим числа на простые множители:

    324 = 2 × 2 × 3 × 3 × 3 × 3

    111 = 3 × 37

    432 = 2 × 2 × 2 × 2 × 3 × 3 × 3

    Вычеркнуть из первого числа, множители которых нету во втором и третьем числе, получим:

    2 × 2 × 2 × 2 × 3 × 3 × 3 = 3

    В результате НОД(324 , 111 , 432 )=3

    Нахождение НОД с помощью алгоритма Евклида

    Второй способ нахождения наибольшего общего делителя с помощью алгоритма Евклида . Алгоритм Евклида является наиболее эффективным способом нахождения НОД , используя его нужно постоянно находить остаток от деления чисел и применять рекуррентную формулу .

    Рекуррентная формула для НОД, НОД(a, b)=НОД(b, a mod b) , где a mod b — остаток от деления a на b.

    Алгоритм Евклида
    Пример Найти наибольший общий делитель чисел 7920 и 594

    Найдем НОД(7920 , 594 ) с помощью алгоритма Евклида, вычислять остаток от деления будем с помощью калькулятора.

  • НОД(7920 , 594 )
  • НОД(594 , 7920 mod 594 ) = НОД(594 , 198 )
  • НОД(198 , 594 mod 198 ) = НОД(198 , 0 )
  • НОД(198 , 0 ) = 198
    • 7920 mod 594 = 7920 — 13 × 594 = 198
    • 594 mod 198 = 594 — 3 × 198 = 0
    • В результате получаем НОД(7920 , 594 ) = 198

      Наименьшее общее кратное

      Для того, чтобы находить общий знаменатель при сложении и вычитании дробей с разными знаменателями необходимо знать и уметь рассчитывать наименьшее общее кратное (НОК).

      Кратное числу « a » - это число, которое само делится на число « a » без остатка.

      Числа кратные 8 (то есть, эти числа разделятся на 8 без остатка): это числа 16, 24, 32 …

      Кратные 9: 18, 27, 36, 45 …

      Чисел, кратных данному числу a бесконечно много, в отличии от делителей этого же числа. Делителей - конечное количество.

      Общим кратным двух натуральных чисел называется число, которое делится на оба эти числа нацело .

      Наименьшим общим кратным (НОК) двух и более натуральных чисел называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел.

      Как найти НОК

      НОК можно найти и записать двумя способами.

      Первый способ нахождения НОК

      Данный способ обычно применяется для небольших чисел.

    1. Выписываем в строчку кратные для каждого из чисел, пока не найдётся кратное, одинаковое для обоих чисел.
    2. Кратное числа « a » обозначаем большой буквой «К».

    Пример. Найти НОК 6 и 8 .

    Второй способ нахождения НОК

    Этот способ удобно использовать, чтобы найти НОК для трёх и более чисел.

    Количество одинаковых множителей в разложениях чисел может быть разное.

  • Подчеркнуть в разложении меньшего числа (меньших чисел) множители, которые не вошли в разложение бóльшего числа (в нашем примере это 2) и добавить эти множители в разложение бóльшего числа.
    НОК (24, 60) = 2 · 2 · 3 · 5 · 2
  • Полученное произведение записать в ответ.
    Ответ: НОК (24, 60) = 120
  • Оформить нахождение наименьшего общего кратного (НОК) можно также следующим образом. Найдём НОК (12, 16, 24) .

    24 = 2 · 2 · 2 · 3

    Как видим из разложения чисел, все множители 12 вошли в разложение 24 (самого бóльшего из чисел), поэтому в НОК добавляем только одну 2 из разложения числа 16 .

    НОК (12, 16, 24) = 2 · 2 · 2 · 3 · 2 = 48

    Ответ: НОК (12, 16, 24) = 48

    Особые случаи нахождения НОК

  • Если одно из чисел делится нацело на другие, то наименьшее общее кратное этих чисел равно этому числу.
  • Например, НОК (60, 15) = 60
    Так как взаимно простые числа не имеют общих простых делителей, то их наименьшее общее кратное равно произведению этих чисел.

    На нашем сайте вы также можете с помощью специального калькулятора найти наименьшее общее кратное онлайн, чтобы проверить свои вычисления.

    Если натуральное число делится только на 1 и на само себя, то оно называется простым.

    Любое натуральное число всегда делится на 1 и на само себя.

    Число 2 - наименьшее простое число. Это единственное чётное простое число, остальные простые числа - нечётные.

    Простых чисел много, и первое среди них - число 2 . Однако нет последнего простого числа. В разделе «Для учёбы» вы можете скачать таблицу простых чисел до 997 .

    Но многие натуральные числа делятся нацело ещё и на другие натуральные числа.

    • число 12 делится на 1 , на 2 , на 3 , на 4 , на 6 , на 12 ;
    • число 36 делится на 1 , на 2 , на 3 , на 4 , на 6 , на 12 , на 18 , на 36 .
    • Числа, на которые число делится нацело (для 12 это 1, 2, 3, 4, 6 и 12) называются делителями числа.

      Делитель натурального числа a - это такое натуральное число, которое делит данное число « a » без остатка.

      Натуральное число, которое имеет более двух делителей называется составным.

      Обратите внимание, что числа 12 и 36 имеют общие делители. Это числа: 1, 2, 3, 4, 6, 12 . Наибольший из делителей этих чисел - 12 .

      Общий делитель двух данных чисел « a » и « b » - это число, на которое делятся без остатка оба данных числа « a » и « b ».

      Наибольший общий делитель (НОД) двух данных чисел « a » и « b » - это наибольшее число, на которое оба числа « a » и « b » делятся без остатка.

      Кратко наибольший общий делитель чисел « a » и « b » записывают так :

      Пример: НОД (12; 36) = 12 .

      Делители чисел в записи решения обозначают большой буквой «Д».

      Числа 7 и 9 имеют только один общий делитель - число 1 . Такие числа называют взаимно простыми числами .

      Взаимно простые числа - это натуральные числа, которые имеют только один общий делитель - число 1 . Их НОД равен 1 .

      Как найти наибольший общий делитель

      Чтобы найти НОД двух или более натуральных чисел нужно:

    • разложить делители чисел на простые множители;
    • Вычисления удобно записывать с помощью вертикальной черты. Слева от черты сначала записываем делимое, справа - делитель. Далее в левом столбце записываем значения частных.

      Поясним сразу на примере. Разложим на простые множители числа 28 и 64 .

      Подчёркиваем одинаковые простые множители в обоих числах.
      28 = 2 · 2 · 7

    64 = 2 · 2 · 2 · 2 · 2 · 2
    Находим произведение одинаковых простых множителей и записать ответ;
    НОД (28; 64) = 2 · 2 = 4

    Ответ: НОД (28; 64) = 4

    Оформить нахождение НОД можно двумя способами: в столбик (как делали выше) или «в строчку».

    Первый способ записи НОД

    Найти НОД 48 и 36 .

    НОД (48; 36) = 2 · 2 · 3 = 12

    Второй способ записи НОД

    Теперь запишем решение поиска НОД в строчку. Найти НОД 10 и 15 .

    На нашем информационном сайте вы также можете с помощью программы помощника найти наибольший общий делитель онлайн, чтобы проверить свои вычисления.

    Нахождение наименьшего общего кратного, способы, примеры нахождения НОК.

    Представленный ниже материал является логическим продолжением теории из статьи под заголовком НОК — наименьшее общее кратное, определение, примеры, связь между НОК и НОД. Здесь мы поговорим про нахождение наименьшего общего кратного (НОК) , и особое внимание уделим решению примеров. Сначала покажем, как вычисляется НОК двух чисел через НОД этих чисел. Дальше рассмотрим нахождение наименьшего общего кратного с помощью разложения чисел на простые множители. После этого остановимся на нахождении НОК трех и большего количества чисел, а также уделим внимание вычислению НОК отрицательных чисел.

    Навигация по странице.

    Вычисление наименьшего общего кратного (НОК) через НОД

    Один из способов нахождения наименьшего общего кратного основан на связи между НОК и НОД. Существующая связь между НОК и НОД позволяет вычислять наименьшее общее кратное двух целых положительных чисел через известный наибольший общий делитель. Соответствующая формула имеет вид НОК(a, b)=a·b:НОД(a, b) . Рассмотрим примеры нахождения НОК по приведенной формуле.

    Найдите наименьшее общее кратное двух чисел 126 и 70 .

    В этом примере a=126 , b=70 . Воспользуемся связью НОК с НОД, выражающуюся формулой НОК(a, b)=a·b:НОД(a, b) . То есть, сначала нам предстоит найти наибольший общий делитель чисел 70 и 126 , после чего мы сможем вычислить НОК этих чисел по записанной формуле.

    Найдем НОД(126, 70) , используя алгоритм Евклида: 126=70·1+56 , 70=56·1+14 , 56=14·4 , следовательно, НОД(126, 70)=14 .

    Теперь находим требуемое наименьшее общее кратное: НОК(126, 70)=126·70:НОД(126, 70)= 126·70:14=630 .

    Чему равно НОК(68, 34) ?

    Так как 68 делится нацело на 34 , то НОД(68, 34)=34 . Теперь вычисляем наименьшее общее кратное: НОК(68, 34)=68·34:НОД(68, 34)= 68·34:34=68 .

    Заметим, что предыдущий пример подходит под следующее правило нахождения НОК для целых положительные чисел a и b: если число a делится на b , то наименьшее общее кратное этих чисел равно a .

    Нахождение НОК с помощью разложения чисел на простые множители

    Другой способ нахождения наименьшего общего кратного базируется на разложении чисел на простые множители. Если составить произведение из всех простых множителей данных чисел, после чего из этого произведения исключить все общие простые множители, присутствующие в разложениях данных чисел, то полученное произведение будет равно наименьшему общему кратному данных чисел .

    Озвученное правило нахождения НОК следует из равенства НОК(a, b)=a·b:НОД(a, b) . Действительно, произведение чисел a и b равно произведению всех множителей, участвующих в разложениях чисел a и b . В свою очередь НОД(a, b) равен произведению всех простых множителей, одновременно присутствующих в разложениях чисел a и b (о чем написано в разделе нахождение НОД с помощью разложения чисел на простые множители).

    Приведем пример. Пусть мы знаем, что 75=3·5·5 и 210=2·3·5·7 . Составим произведение из всех множителей данных разложений: 2·3·3·5·5·5·7 . Теперь из этого произведения исключим все множители, присутствующие и в разложении числа 75 и в разложении числа 210 (такими множителями являются 3 и 5), тогда произведение примет вид 2·3·5·5·7 . Значение этого произведения равно наименьшему общему кратному чисел 75 и 210 , то есть, НОК(75, 210)= 2·3·5·5·7=1 050 .

    Разложив числа 441 и 700 на простые множители, найдите наименьшее общее кратное этих чисел.

    Разложим числа 441 и 700 на простые множители:

    Получаем 441=3·3·7·7 и 700=2·2·5·5·7 .

    Теперь составим произведение из всех множителей, участвующих в разложениях данных чисел: 2·2·3·3·5·5·7·7·7 . Исключим из этого произведения все множители, одновременно присутствующие в обоих разложениях (такой множитель только один – это число 7): 2·2·3·3·5·5·7·7 . Таким образом, НОК(441, 700)=2·2·3·3·5·5·7·7=44 100 .

    НОК(441, 700)= 44 100 .

    Правило нахождения НОК с использованием разложения чисел на простые множители можно сформулировать немного иначе. Если ко множителям из разложения числа a добавить недостающие множители из разложения числа b , то значение полученного произведения будет равно наименьшему общему кратному чисел a и b .

    Для примера возьмем все те же числа 75 и 210 , их разложения на простые множители таковы: 75=3·5·5 и 210=2·3·5·7 . Ко множителям 3 , 5 и 5 из разложения числа 75 добавляем недостающие множители 2 и 7 из разложения числа 210 , получаем произведение 2·3·5·5·7 , значение которого равно НОК(75, 210) .

    Найдите наименьшее общее кратное чисел 84 и 648 .

    Получаем сначала разложения чисел 84 и 648 на простые множители. Они имеют вид 84=2·2·3·7 и 648=2·2·2·3·3·3·3 . К множителям 2 , 2 , 3 и 7 из разложения числа 84 добавляем недостающие множители 2 , 3 , 3 и 3 из разложения числа 648 , получаем произведение 2·2·2·3·3·3·3·7 , которое равно 4 536 . Таким образом, искомое наименьшее общее кратное чисел 84 и 648 равно 4 536 .

    Нахождение НОК трех и большего количества чисел

    Наименьшее общее кратное трех и большего количества чисел может быть найдено через последовательное нахождение НОК двух чисел. Напомним соответствующую теорему, дающую способ нахождения НОК трех и большего количества чисел.

    Пусть даны целые положительные числа a 1 , a 2 , …, a k , наименьшее общее кратное m k этих чисел находится при последовательном вычислении m 2 =НОК(a 1 , a 2) , m 3 =НОК(m 2 , a 3) , …, m k =НОК(m k−1 , a k) .

    Рассмотрим применение этой теоремы на примере нахождения наименьшего общего кратного четырех чисел.

    Найдите НОК четырех чисел 140 , 9 , 54 и 250 .

    Сначала находим m 2 =НОК(a 1 , a 2)=НОК(140, 9) . Для этого по алгоритму Евклида определяем НОД(140, 9) , имеем 140=9·15+5 , 9=5·1+4 , 5=4·1+1 , 4=1·4 , следовательно, НОД(140, 9)=1 , откуда НОК(140, 9)=140·9:НОД(140, 9)= 140·9:1=1 260 . То есть, m 2 =1 260 .

    Теперь находим m 3 =НОК(m 2 , a 3)=НОК(1 260, 54) . Вычислим его через НОД(1 260, 54) , который также определим по алгоритму Евклида: 1 260=54·23+18 , 54=18·3 . Тогда НОД(1 260, 54)=18 , откуда НОК(1 260, 54)= 1 260·54:НОД(1 260, 54)= 1 260·54:18=3 780 . То есть, m 3 =3 780 .

    Осталось найти m 4 =НОК(m 3 , a 4)=НОК(3 780, 250) . Для этого находим НОД(3 780, 250) по алгоритму Евклида: 3 780=250·15+30 , 250=30·8+10 , 30=10·3 . Следовательно, НОД(3 780, 250)=10 , откуда НОК(3 780, 250)= 3 780·250:НОД(3 780, 250)= 3 780·250:10=94 500 . То есть, m 4 =94 500 .

    Таким образом, наименьшее общее кратное исходных четырех чисел равно 94 500 .

    НОК(140, 9, 54, 250)=94 500 .

    Во многих случаях наименьшее общее кратное трех и большего количества чисел удобно находить с использованием разложений данных чисел на простые множители. При этом следует придерживаться следующего правила. Наименьшее общее кратное нескольких чисел равно произведению, которое составляется так: ко всем множителям из разложения первого числа добавляются недостающие множители из разложения второго числа, к полученным множителям добавляются недостающие множители из разложения третьего числа и так далее .

    Рассмотрим пример нахождения наименьшего общего кратного с использованием разложения чисел на простые множители.

    Найдите наименьшее общее кратное пяти чисел 84 , 6 , 48 , 7 , 143 .

    Сначала получаем разложения данных чисел на простые множители: 84=2·2·3·7 , 6=2·3 , 48=2·2·2·2·3 , 7 (7 – простое число, оно совпадает со своим разложением на простые множители) и 143=11·13 .

    Для нахождения НОК данных чисел к множителям первого числа 84 (ими являются 2 , 2 , 3 и 7) нужно добавить недостающие множители из разложения второго числа 6 . Разложение числа 6 не содержит недостающих множителей, так как и 2 и 3 уже присутствуют в разложении первого числа 84 . Дальше к множителям 2 , 2 , 3 и 7 добавляем недостающие множители 2 и 2 из разложения третьего числа 48 , получаем набор множителей 2 , 2 , 2 , 2 , 3 и 7 . К этому набору на следующем шаге не придется добавлять множителей, так как 7 уже содержится в нем. Наконец, к множителям 2 , 2 , 2 , 2 , 3 и 7 добавляем недостающие множители 11 и 13 из разложения числа 143 . Получаем произведение 2·2·2·2·3·7·11·13 , которое равно 48 048 .

    Следовательно, НОК(84, 6, 48, 7, 143)=48 048 .

    НОК(84, 6, 48, 7, 143)=48 048 .

    Нахождение наименьшего общего кратного отрицательных чисел

    Иногда встречаются задания, в которых требуется найти наименьшее общее кратное чисел, среди которых одно, несколько или все числа являются отрицательными. В этих случаях все отрицательные числа нужно заменить противоположными им числами, после чего находить НОК положительных чисел. В этом и состоит способ нахождения НОК отрицательных чисел. Например, НОК(54, −34)=НОК(54, 34) , а НОК(−622, −46, −54, −888)= НОК(622, 46, 54, 888) .

    Мы можем так поступать, потому что множество кратных числа a совпадает со множеством кратных числа −a (a и −a – противоположные числа). Действительно, пусть b – какое-то кратное числа a , тогда b делится на a , и понятие делимости утверждает существование такого целого числа q , что b=a·q . Но будет справедливо и равенство b=(−a)·(−q) , которое в силу того же понятия делимости означает, что b делится на −a , то есть, b есть кратное числа −a . Справедливо и обратное утверждение: если b – какое-то кратное числа −a , то b является кратным и числа a .

    Найдите наименьшее общее кратное отрицательных чисел −145 и −45 .

    Заменим отрицательные числа −145 и −45 на противоположные им числа 145 и 45 . Имеем НОК(−145, −45)=НОК(145, 45) . Определив НОД(145, 45)=5 (например, по алгоритму Евклида), вычисляем НОК(145, 45)=145·45:НОД(145, 45)= 145·45:5=1 305 . Таким образом, наименьшее общее кратное отрицательных целых чисел −145 и −45 равно 1 305 .

    www.cleverstudents.ru

    Продолжаем изучать деление. В данном уроке мы рассмотрим такие понятия, как НОД и НОК .

    НОД - это наибольший общий делитель.

    НОК - это наименьшее общее кратное.

    Тема довольно скучная, но разобраться в ней нужно обязательно. Не понимая этой темы, не получится эффективно работать с дробями, которые являются настоящей преградой в математике.

    Наибольший общий делитель

    Определение. Наибольшим общим делителем чисел a и b a и b делятся без остатка.

    Чтобы хорошо понять это определение, подставим вместо переменных a и b любые два числа, например, вместо переменной a подставим число 12, а вместо переменной b число 9. Теперь попробуем прочитать это определение:

    Наибольшим общим делителем чисел 12 и 9 называется наибольшее число, на которое 12 и 9 делятся без остатка.

    Из определения понятно, что речь идёт об общем делителе чисел 12 и 9, причем этот делитель является наибольшим из всех существующих делителей. Этот наибольший общий делитель (НОД) нужно найти.

    Для нахождения наибольшего общего делителя двух чисел, используется три способа. Первый способ довольно трудоёмкий, но зато позволяет хорошо понять суть темы и прочувствовать весь ее смысл.

    Второй и третий способы довольны просты и дают возможность быстро найти НОД. Мы с вами рассмотрим все три способа. А какой применять на практике - выбирать вам.

    Первый способ заключается в поиске всех возможных делителей двух чисел и в выборе наибольшего из них. Рассмотрим этот способ на следующем примере: найти наибольший общий делитель чисел 12 и 9 .

    Сначала найдём все возможные делители числа 12. Для этого разделим 12 на все делители в диапазоне от 1 до 12. Если делитель позволит разделить 12 без остатка, то мы будем выделять его синим цветом и в скобках делать соответствующее пояснение.

    12: 1 = 12
    (12 разделилось на 1 без остатка, значит 1 является делителем числа 12)

    12: 2 = 6
    (12 разделилось на 2 без остатка, значит 2 является делителем числа 12)

    12: 3 = 4
    (12 разделилось на 3 без остатка, значит 3 является делителем числа 12)

    12: 4 = 3
    (12 разделилось на 4 без остатка, значит 4 является делителем числа 12)

    12: 5 = 2 (2 в остатке)
    (12 не разделилось на 5 без остатка, значит 5 не является делителем числа 12)

    12: 6 = 2
    (12 разделилось на 6 без остатка, значит 6 является делителем числа 12)

    12: 7 = 1 (5 в остатке)
    (12 не разделилось на 7 без остатка, значит 7 не является делителем числа 12)

    12: 8 = 1 (4 в остатке)
    (12 не разделилось на 8 без остатка, значит 8 не является делителем числа 12)

    12: 9 = 1 (3 в остатке)
    (12 не разделилось на 9 без остатка, значит 9 не является делителем числа 12)

    12: 10 = 1 (2 в остатке)
    (12 не разделилось на 10 без остатка, значит 10 не является делителем числа 12)

    12: 11 = 1 (1 в остатке)
    (12 не разделилось на 11 без остатка, значит 11 не является делителем числа 12)

    12: 12 = 1
    (12 разделилось на 12 без остатка, значит 12 является делителем числа 12)

    Теперь найдём делители числа 9. Для этого проверим все делители от 1 до 9

    9: 1 = 9
    (9 разделилось на 1 без остатка, значит 1 является делителем числа 9)

    9: 2 = 4 (1 в остатке)
    (9 не разделилось на 2 без остатка, значит 2 не является делителем числа 9)

    9: 3 = 3
    (9 разделилось на 3 без остатка, значит 3 является делителем числа 9)

    9: 4 = 2 (1 в остатке)
    (9 не разделилось на 4 без остатка, значит 4 не является делителем числа 9)

    9: 5 = 1 (4 в остатке)
    (9 не разделилось на 5 без остатка, значит 5 не является делителем числа 9)

    9: 6 = 1 (3 в остатке)
    (9 не разделилось на 6 без остатка, значит 6 не является делителем числа 9)

    9: 7 = 1 (2 в остатке)
    (9 не разделилось на 7 без остатка, значит 7 не является делителем числа 9)

    9: 8 = 1 (1 в остатке)
    (9 не разделилось на 8 без остатка, значит 8 не является делителем числа 9)

    9: 9 = 1
    (9 разделилось на 9 без остатка, значит 9 является делителем числа 9)

    Теперь выпишем делители обоих чисел. Числа выделенные синим цветом и являются делителями. Их и выпишем:

    Выписав делители, можно сразу определить, какой является наибольшим и общим.

    Согласно определению, наибольшим общим делителем чисел 12 и 9, является число, на которое 12 и 9 делятся без остатка. Наибольшим и общим делителем чисел 12 и 9 является число 3

    И число 12 и число 9 делятся на 3 без остатка:

    Значит НОД (12 и 9) = 3

    Второй способ нахождения НОД

    Теперь рассмотрим второй способ нахождения наибольшего общего делителя. Суть данного способа заключается в том, чтобы разложить оба числа на простые множители и перемножить общие из них.

    Пример 1 . Найти НОД чисел 24 и 18

    Сначала разложим оба числа на простые множители:

    Теперь перемножим их общие множители. Чтобы не запутаться, общие множители можно подчеркнуть.

    Смотрим на разложение числа 24. Первый его множитель это 2. Ищем такой же множитель в разложении числа 18 и видим, что он там тоже есть. Подчеркиваем обе двойки:

    Снова смотрим на разложение числа 24. Второй его множитель тоже 2. Ищем такой же множитель в разложении числа 18 и видим, что его там второй раз уже нет. Тогда ничего не подчёркиваем.

    Следующая двойка в разложении числа 24 также отсутствует в разложении числа 18.

    Переходим к последнему множителю в разложении числа 24. Это множитель 3. Ищем такой же множитель в разложении числа 18 и видим, что там он тоже есть. Подчеркиваем обе тройки:

    Итак, общими множителями чисел 24 и 18 являются множители 2 и 3. Чтобы получить НОД, эти множители необходимо перемножить:

    Значит НОД (24 и 18) = 6

    Третий способ нахождения НОД

    Теперь рассмотрим третий способ нахождения наибольшего общего делителя. Суть данного способа заключается в том, что числа подлежащие поиску наибольшего общего делителя раскладывают на простые множители. Затем из разложения первого числа вычеркивают множители, которые не входят в разложение второго числа. Оставшиеся числа в первом разложении перемножают и получают НОД.

    Например, найдём НОД для чисел 28 и 16 этим способом. В первую очередь, раскладываем эти числа на простые множители:

    Получили два разложения: и

    Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входит семерка. Её и вычеркнем из первого разложения:

    Теперь перемножаем оставшиеся множители и получаем НОД:

    Число 4 является наибольшим общим делителем чисел 28 и 16. Оба этих числа делятся на 4 без остатка:

    Пример 2. Найти НОД чисел 100 и 40

    Раскладываем на множители число 100

    Раскладываем на множители число 40

    Получили два разложения:

    Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входит одна пятерка (там только одна пятёрка). Её и вычеркнем из первого разложения

    Перемножим оставшиеся числа:

    Получили ответ 20. Значит число 20 является наибольшим общим делителем чисел 100 и 40. Эти два числа делятся на 20 без остатка:

    НОД (100 и 40) = 20.

    Пример 3. Найти НОД чисел 72 и 128

    Раскладываем на множители число 72

    Раскладываем на множители число 128

    2 × 2 × 2 × 2 × 2 × 2 × 2

    Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входят две тройки (там их вообще нет). Их и вычеркнем из первого разложения:

    Получили ответ 8. Значит число 8 является наибольшим общим делителем чисел 72 и 128. Эти два числа делятся на 8 без остатка:

    НОД (72 и 128) = 8

    Нахождение НОД для нескольких чисел

    Наибольший общий делитель можно находить и для нескольких чисел, а не только для двух. Для этого числа, подлежащие поиску наибольшего общего делителя, раскладывают на простые множители, затем находят произведение общих простых множителей этих чисел.

    Например, найдём НОД для чисел 18, 24 и 36

    Разложим на множители число 18

    Разложим на множители число 24

    Разложим на множители число 36

    Получили три разложения:

    Теперь выделим и подчеркнём общие множители в этих числах. Общие множители должны входить во все три числа:

    Мы видим, что общие множители для чисел 18, 24 и 36 это множители 2 и 3. Перемножив эти множители, мы получим НОД, который ищем:

    Получили ответ 6. Значит число 6 является наибольшим общим делителем чисел 18, 24 и 36. Эти три числа делятся на 6 без остатка:

    НОД (18, 24 и 36) = 6

    Пример 2. Найти НОД для чисел 12, 24, 36 и 42

    Разложим на простые множители каждое число. Затем найдём произведение общих множителей этих чисел.

    Разложим на множители число 12

    Разложим на множители число 42

    Получили четыре разложения:

    Теперь выделим и подчеркнём общие множители в этих числах. Общие множители должны входить во все четыре числа:

    Мы видим, что общие множители для чисел 12, 24, 36, и 42 это множители 2 и 3. Перемножив эти множители, мы получим НОД, который ищем:

    Получили ответ 6. Значит число 6 является наибольшим общим делителем чисел 12, 24, 36 и 42. Эти числа делятся на 6 без остатка:

    НОД (12, 24 , 36 и 42) = 6

    Из предыдущего урока мы знаем, что если какое-то число без остатка разделилось на другое, его называют кратным этого числа.

    Оказывается, кратное может быть общим у нескольких чисел. И сейчас нас будет интересовать кратное двух чисел, при этом оно должно быть максимально маленьким.

    Определение. Наименьшее общее кратное (НОК) чисел a и b - a и b a и число b .

    Определение содержит две переменные a и b . Давайте подставим вместо этих переменных любые два числа. Например, вместо переменной a подставим число 9, а вместо переменной b подставим число 12. Теперь попробуем прочитать определение:

    Наименьшее общее кратное (НОК) чисел 9 и 12 - это наименьшее число, которое кратно 9 и 12 . Другими словами, это такое маленькое число, которое делится без остатка на число 9 и на число 12 .

    Из определения понятно, что НОК это наименьшее число, которое делится без остатка на 9 и на 12. Этот НОК требуется найти.

    Для нахождения наименьшего общего кратного (НОК) можно пользоваться двумя способами. Первый способ заключается в том, что можно выписать первые кратные двух чисел, а затем выбрать среди этих кратных такое число, которое будет общим для обоих чисел и маленьким. Давайте применим этот способ.

    В первую очередь, найдем первые кратные для числа 9. Чтобы найти кратные для 9, нужно эту девятку поочерёдно умножить на числа от 1 до 9. Получаемые ответы будут кратными для числа 9. Итак, начнём. Кратные будем выделять красным цветом:

    Теперь находим кратные для числа 12. Для этого, поочерёдно умножаем 12 на все числа 1 до 12.

    Множество делителей

    Рассмотрим такую задачу: найти делитель числа 140. Очевидно, что у числа 140 не один делитель, а несколько. В таких случаях говорят, что задача имеет множество решений. Найдем их все. Прежде всего разложим данное число на простые множители:

    140 = 2 ∙ 2 ∙ 5 ∙ 7.

    Теперь мы без труда можем выписать все делители. Начнем с простых делителей, то есть тех, которые присутствуют в разложении, приведенном выше:

    Затем выпишем те, которые получаются попарным умножением простых делителей:

    2∙2 = 4, 2∙5 = 10, 2∙7 = 14, 5∙7 = 35.

    Затем - те, которые содержат в себе три простых делителя:

    2∙2∙5 = 20, 2∙2∙7 = 28, 2∙5∙7 = 70.

    Наконец, не забудем единицу и само разлагаемое число:

    Все найденные нами делители образуют множество делителей числа 140, которое записывается с помощью фигурных скобок:

    Множество делителей числа 140 =

    {1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}.

    Для удобства восприятия мы выписали здесь делители (элементы множества ) в порядке возрастания, но, вообще говоря, это делать необязательно. Кроме того, введем сокращение записи. Вместо «Множество делителей числа 140» будем писать «Д(140)». Таким образом,

    Точно так же можно найти множество делителей для любого другого натурального числа. Например, из разложения

    105 = 3 ∙ 5 ∙ 7

    мы получаем:

    Д(105) = {1, 3, 5, 7, 15, 21, 35, 105}.

    От множества всех делителей следует отличать множество простых делителей, которые для чисел 140 и 105 равны соответственно:

    ПД(140) = {2, 5, 7}.

    ПД(105) = {3, 5, 7}.

    Следует особо подчеркнуть, что в разложении числа 140 на простые множители двойка присутствует два раза, в то время как во множестве ПД(140) - только один. Множество ПД(140) - это, по своей сути, все ответы на задачу: «Найти простой множитель числа 140». Ясно, что один и тот же ответ не следует повторять больше одного раза.

    Сокращение дробей. Наибольший общий делитель

    Рассмотрим дробь

    Мы знаем, что эту дробь можно сократить на такое число, которое одновременно является и делителем числителя (105) и делителем знаменателя (140). Взглянем на множества Д(105) и Д(140) и выпишем их общие элементы.

    Д(105) = {1, 3, 5, 7, 15, 21, 35, 105};

    Д(140) = {1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}.

    Общие элементы множеств Д(105) и Д(140) =

    Последнее равенство можно записать короче, а именно:

    Д(105) ∩ Д(140) = {1, 5, 7, 35}.

    Здесь специальный значок «∩» («мешок отверстием вниз») как раз и указывает на то, что из двух множеств, записанных по разные стороны от него, надо выбрать только общие элементы. Запись «Д(105) ∩ Д(140)» читается «пересечение множеств Дэ от 105 и Дэ от 140».

    [Заметим по ходу дела, что с множествами можно производить разные бинарные операции, почти как с числами. Другой распространенной бинарной операцией является объединение , которое обозначается значком «∪» («мешок отверстием вверх»). В объединение двух множеств входят все элементы как того, так и другого множества:

    ПД(105) = {3, 5, 7};

    ПД(140) = {2, 5, 7};

    ПД(105) ∪ ПД(140) = {2, 3, 5, 7}. ]

    Итак, мы выяснили, что дробь

    можно сократить на любое из чисел, принадлежащих множеству

    Д(105) ∩ Д(140) = {1, 5, 7, 35}

    и нельзя сократить ни на какое другое натуральное число. Вот все возможные способы сокращения (за исключением неинтересного сокращения на единицу):

    Очевидно, что практичнее всего сокращать дробь на число, по возможности большее. В данном случае это число 35, про которое говорят, что оно является наибольшим общим делителем (НОД ) чисел 105 и 140. Это записывается как

    НОД(105, 140) = 35.

    Впрочем, на практике, если нам даны два числа и требуется найти их наибольший общий делитель, мы вовсе не должны строить какие-либо множества. Достаточно просто разложить оба числа на простые множители и подчеркнуть те из этих множителей, которые являются общими для обоих разложений, например:

    105 = 3 ∙ 5 7 ;

    140 = 2 ∙ 2 ∙ 5 7 .

    Перемножая подчеркнутые числа (в любом из разложений), получаем:

    НОД(105, 140) = 5 7 = 35.

    Разумеется, возможен случай, когда подчеркнутых множителей окажется больше двух:

    168 = 2 2 ∙ 2 ∙ 3 ∙ 7;

    396 = 2 2 3 ∙ 3 ∙ 11.

    Отсюда видно, что

    НОД(168, 396) = 2 2 3 = 12.

    Особого упоминания заслуживает ситуация, когда общих множителей совсем нет и подчеркивать нечего, например:

    42 = 2 ∙ 3 ∙ 7;

    В этом случае,

    НОД(42, 55) = 1.

    Два натуральных числа, для которых НОД равен единице, называются взаимно простыми . Если из таких чисел составить дробь, например,

    то такая дробь является несократимой .

    Вообще говоря, правило сокращения дробей можно записать в таком виде:

    a / НОД(a , b )

    b / НОД(a , b )

    Здесь предполагается, что a и b - натуральные числа, а вся дробь положительна. Если мы теперь припишем знак «минус» к обоим частям этого равенства, то получим соответствующее правило для отрицательных дробей.

    Сложение и вычитание дробей. Наименьшее общее кратное

    Пусть требуется вычислить сумму двух дробей:

    Мы уже знаем, как раскладываются на простые множители знаменатели:

    105 = 3 ∙ 5 7 ;

    140 = 2 ∙ 2 ∙ 5 7 .

    Из этого разложения сразу следует, что, для того чтобы привести дроби к общему знаменателю, достаточно числитель и знаменатель первой дроби умножить на 2 ∙ 2 (произведение неподчеркнутых простых множителей второго знаменателя), а числитель и знаменатель второй дроби - на 3 («произведение» неподчеркнутых простых множителей первого знаменателя). В результате знаменатели обеих дробей станут равны числу, которое можно представить так:

    2 ∙ 2 ∙ 3 ∙ 5 7 = 105 ∙ 2 ∙ 2 = 140 ∙ 3 = 420.

    Нетрудно видеть, что оба исходных знаменателя (как 105, так и 140) являются делителями числа 420, а число 420, в свою очередь, кратно обоим знаменателям, - и не просто кратно, оно является наименьшим общим кратным (НОК ) чисел 105 и 140. Это записывается так:

    НОК(105, 140) = 420.

    Приглядевшись повнимательнее к разложению чисел 105 и 140, мы видим, что

    105 ∙ 140 = НОК(105, 140) ∙ НОД(105, 140).

    Точно так же, для произвольных натуральных чисел b и d :

    b d = НОК(b , d ) ∙ НОД(b , d ).

    Теперь давайте доведем до конца суммирование наших дробей:

    3 ∙ 5 7

    2 ∙ 2 ∙ 5 7

    2 ∙ 2 ∙ 3 ∙ 5 7

    2 ∙ 2 ∙ 3 ∙ 5 7

    2 ∙ 2 ∙ 3 ∙ 5 ∙ 7

    2 ∙ 2 ∙ 3 ∙ 5 ∙ 7

    2 ∙ 2 ∙ 3 ∙ 5

    Примечание. Для решения некоторых задач требуется знать, что такое квадрат числа. Квадратом числа a называется число a , помноженное само на себя, то есть a a . (Как нетрудно видеть, оно равно площади квадрата со стороной a ).

    Признаки делимости натуральных чисел.

    Числа, делящиеся без остатка на 2, называются четными .

    Числа, которые не делятся без остатка на 2, называются нечетными .

    Признак делимости на 2

    Если запись натурального числа оканчивается четной цифрой, то это число делится без остатка на 2, а если запись числа оканчивается нечетной цифрой, то это число не делится без остатка на 2.

    Например, числа 6 0 , 30 8 , 8 4 делятся без остатка на 2, а числа 5 1 , 8 5 , 16 7 не делятся без остатка на 2.

    Признак делимости на 3

    Если сумма цифр числа делится на 3, то и число делится на 3; если сумма цифр числа не делится на 3, то и число не делится на 3.

    Например, выясним, делится ли на 3 число 2772825. Для этого подсчитаем сумму цифр этого числа: 2+7+7+2+8+2+5 = 33 - делится на 3. Значит, число 2772825 делится на 3.

    Признак делимости на 5

    Если запись натурального числа оканчивается цифрой 0 или 5, то это число делится без остатка на 5. Если же запись числа оканчивается иной цифрой, то число без остатка на 5 не делится.

    Например, числа 1 5 , 3 0 , 176 5 , 47530 0 делятся без остатка на 5, а числа 1 7 , 37 8 , 9 1 не делятся.

    Признак делимости на 9

    Если сумма цифр числа делится на 9, то и число делится на 9; если сумма цифр числа не делится на 9, то и число не делится на 9.

    Например, выясним, делится ли на 9 число 5402070. Для этого подсчитаем сумму цифр этого числа: 5+4+0+2+0+7+0 = 16 - не делится на 9. Значит, число 5402070 не делится на 9.

    Признак делимости на 10

    Если запись натурального числа оканчивается цифрой 0, то это число делится без остатка на 10. Если запись натурального числа оканчивается другой цифрой, то оно не делится без остатка на 10.

    Например, числа 4 0 , 17 0 , 1409 0 делятся без остатка на 10, а числа 1 7 , 9 3 , 1430 7 - не делятся.

    Правило нахождения наибольшего общего делителя (НОД).

    Чтобы найти наибольший общий делитель нескольких натуральных чисел, надо:

    2) из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел;

    3) найти произведение оставшихся множителей.

    Пример. Найдем НОД (48;36). Воспользуемся правилом.

    1. Разложим числа 48 и 36 на простые множители.

    48 = 2 · 2 · 2 · 2 · 3

    36 = 2 · 2 · 3 · 3

    2. Из множителей, входящих в разложение числа 48 вычеркнем те, которые не входят в разложение числа 36.

    48 = 2 · 2 · 2 · 2 · 3

    Остаются множители 2, 2 и 3.

    3. Перемножим оставшиеся множители и получим 12. Это число и является наибольшим общим делителем чисел 48 и 36.

    НОД (48;36) = 2 · 2 · 3 = 12.

    Правило нахождения наименьшего общего кратного (НОК).

    Чтобы найти наименьшее общее кратное нескольких натуральных чисел, надо:

    1) разложить их на простые множители;

    2) выписать множители, входящие в разложение одного из чисел;

    3) добавить к ним недостающие множители из разложений остальных чисел;

    4) найти произведение получившихся множителей.

    Пример. Найдем НОК (75;60). Воспользуемся правилом.

    1. Разложим числа 75 и 60 на простые множители.

    75 = 3 · 5 · 5

    60 = 2 · 2 · 3 · 3

    2. Выпишем множители, входящие в разложение числа 75: 3, 5, 5.

    НОК (75;60) = 3 · 5 · 5 · …

    3. Добавим к ним недостающие множители из разложения числа 60, т.е. 2, 2.

    НОК (75;60) = 3 · 5 · 5 · 2 · 2

    4. Найдем произведение получившихся множителей

    НОК (75;60) = 3 · 5 · 5 · 2 · 2 = 300.