Потенциал действия и механизм его происхождения. Общая физиология возбудимых тканей

Восстанавливается за счёт диффузии из клетки положительно заряженных ионов калия, концентрация которых в окружающей среде также значительно ниже внутриклеточной.

Энциклопедичный YouTube

    1 / 5

    Электротонические потенциалы и потенциалы действия

    Потенциал действия кардиомиоцитов

    Потенциал действия рабочего миокарда

    Потенциал действия в клетках-пейсмейкерах

    Мембранные потенциалы - Часть 1

    Субтитры

    В предыдущем видеоролике речь шла о том, как клетка использует натрий-калиевый насос и АТФ для поддержания разницы потенциалов между внутренним пространством клетки и внешней средой. В целом, внешняя среда более положительно заряжена, чем внутренняя. У нас имеется разница потенциалов -70 милливольт между внутренней и внешней средой. Это значение со знаком минус, поскольку внешняя среда более положительно заряжена. Если из менее положительного значения вычесть более положительное значение, то у вас получится отрицательное значение порядка -70. Это утверждение является основой для понимания того, каким образом нейроны передают сигналы в организме. И чтобы лучше объяснить это, я хочу дать вам еще одно понятие дополнительно. После этого вы поймете, в чем состоит принцип передачи сигнала нейроном в реальной жизни. И более того, вам станет понятно, для чего им необходимы эти миелиновые оболочки и перехваты Ранвье, и для чего нужны все эти дендриты. Я надеюсь, у вас сложится целостная картина. Итак, есть два пути, которыми может перемещаться потенциал. Два пути передачи сигнала. Назовем это так.. Я не знаю какое слово подходит больше. Итак, первый путь - электротонический. Звучит очень сложно, но вы убедитесь, что в основе лежит очень простая идея. Сначала запишу сам термин. Электротонический... электротонический потенциал. И второе, на чем я собираюсь остановиться, это потенциал действия. У обоих из них имеются положительные и отрицательные стороны в контексте способности передачи сигнала. Мы будем говорить о них в рамках представлений о клетке и клеточной мембране. Давайте теперь со всем этим подробно разберемся. Итак, я изображу мембрану клетки. Условимся, что это нервная клетка, или нейрон, ведь мы обсуждаем именно нервные клетки. Мы знаем, что более положительный заряд находится на внешней стороне.. Мы также знаем, что на внешней стороне имеется большое количество натрия, и Его количество на внешней стороне больше, чем на внутренней стороне. Здесь его может быть совсем немного. И мы знаем, что внутри содержание калия намного больше, чем снаружи, однако мы также знаем, что внешняя сторона имеет больший положительный заряд, чем внутренняя, поскольку наш натрий-калиевый насос будет выкачивать три иона натрия на каждые два иона калия, которые он закачивает внутрь. И в последнем видеоролике я говорил вам, что существуют структуры, которые называются натриевыми воротами. Ворота для ионов натрия. Вот это все ионы. Они обладают зарядом. И теперь допустим, что имеются некоторые обстоятельства, некоторые стимулы - давайте я отмечу их. Опущусь немного ниже. Вот здесь расположены наши ворота для ионов натрия. Они находятся в закрытом положении, однако давайте скажем, что нечто вызывает их открытие. Мы поговорим, возможно, в этом видеоролике, или в этом и следующем видеороликах о различных вещах, которые могут вызывать их открытие. Определенный тип стимула вызывает их открытие. На самом деле, существует целый ряд различных стимулов. В общем, допустим, они открылись. Что же происходит вслед за их открытием? Мы открыли их, точнее это сделал определенный стимул - что же произойдет дальше? У нас имеется более положительный заряд на внешней стороне, чем на внутренней стороне, поэтому положительно заряженные объекты захотят проникнуть внутрь. А это натриевые ворота, поэтому только натрий может проникать через них. Это, своего рода, изогнутая белковая структура, через которую могут проникать только ионы натрия. И кроме всего прочего, у нас намного больше натрия снаружи, чем внутри. Поэтому градиент диффузии будет способствовать тому, что натрий будет проходить по нему. А в результате того, что ионы натрия заряжены положительно, и внешняя среда также более положительно заряжена, они будут стремиться покинуть эту положительно заряженную среду. Итак, если вы откроете эти ворота, то у вас будет большое количество ионов натрия, готовых к проникновению. Нарисую тут их побольше. И теперь, что должно произойти, если мы будем двигаться дальше по мембране? Давайте увеличим изображение. Итак, давайте представим, что наша мембрана. А это наши открытые ворота, они по какой-то причине открылись, и большое количество ионов натрия проникает внутрь. И все это становится более положительно заряженным. Давайте представим, что здесь у нас есть вольтметр. Мы измеряем разницу потенциалов между внутренней поверхностью мембраны и внешней поверхностью. Давайте я изображу небольшую схему. Я нарисую схему вот здесь на моем вольтметре. И это будет разница потенциалов - или мы можем назвать ее мембранным вольтажем или разницей вольтажа между двумя поверхностями мембраны - и давайте обозначим эту ось как время. Представим, что мы еще не открывали эти ворота. То есть это состояние покоя. Наши натрий-калиевые насосы продолжают работать. Частицы просачиваются назад и вперед, однако соотношение удерживается на значении минус 70 милливольт. Итак, вот здесь у нас минус 70 милливольт. И теперь, как только эти ворота, которые располагаются в некоторых других отделах клетки, открываются, что же происходит? Допустим, при этом, что открываются только эти ворота. Итак, здесь внезапно образуется более положительный заряд. Итак, положительные заряды, здесь уже есть - поэтому другие положительные заряды, обусловленные ионами натрия или калия, будут стремиться быть как можно дальше от этой точки, потому что в этой зоне отсутствует поток положительных ионов. То есть, она менее положительно заряжена, по сравнению с вот этим участком. У нас тут имеется некоторое количество ионов калия, и возможно, некоторое количество ионов натрия. Все они будут стремиться быть как можно дальше от того места, где открылись ворота. Заряд будет стремиться распространиться как можно дальше. И как только это происходит, как только мы открываем эти ворота, у нас происходит смещение положительного заряда в этом направлении. Это происходило при минус 70 милливольтах. Итак, некоторое количество положительного заряда уходит. Все это происходит очень быстро. Практически немедленно после этого, заряд становится менее отрицательным, или более положительным. Разница потенциалов между этим и этим участками становится меньше. Это соответствует данной точке на графике. И теперь, если мы берем эту точку, если мы проделаем то же самое - если мы измерим вольтаж в этой точке вот здесь, то возможно, он будет минус 70 милливольт, а некоторое время спустя, положительный заряд начнет оказывать свое влияние и заряд здесь станет более положительным, при этом эффект будет уменьшаться. Поскольку эти положительные заряды будут распространяться во всех направлениях. В результате эффект как бы разрежается. То есть он становится менее выраженным. И заряд здесь станет менее положительным. Итак, электротонический потенциал происходит в одной точке клетки, когда ворота открываются и заряд начинает распространяться внутрь, и начинает воздействовать на потенциал в других отделах клетки. Однако положительным моментом является то, что он очень быстрый. По мере того, как это происходит... По мере поступления в клетку, он становится все более и более положительным, однако чем дальше он проникает, тем эффект все больше рассеивается... все больше рассеивается по мере увеличения расстояния. И если вам важна скорость, то вам потребуется именно этот электротонический потенциал. Как только это происходит, его воздействию подвергаются все остальные отделы клетки, однако если вы хотите, чтобы это изменение потенциала распространялось на более длинные расстояния - к примеру, давайте решим, что если мы прошли весь путь до этой точки нейрона и хотим теперь измерить его, то он не будет оказывать какого-либо влияния. Возможно, несколько позднее, однако этот потенциал не будет иметь никакого влияния, поскольку заряд рассеивается по мере того как увеличивается заряд во всей клетке целиком. Итак, это влияние вдали от первоначальной локализации, где произошло открытие ворот. Оно будет существенно меньше. Расстояние на самом деле не идет на пользу действию. И теперь давайте постараемся решить, что будет происходить с потенциалом действия. Из названия ясно, что в этом случае будет больше действия. Итак, давайте начнем с той же ситуации. У нас имеются натриевые ворота, которые открываются под действием определенных стимулов. И сейчас я изображу две мембраны. Вот здесь внешняя сторона. И, соответственно, это - внутренняя сторона. Давайте я изображу - возможно, мы уже сталкивались с этим - но сейчас мы разберем это более подробно. Допустим, это - аксон, и давайте я нарисую здесь еще одни натриевые ворота. Они находятся совсем рядом. И они должны быть трансформирующимися. Итак, они трансформируются, а здесь у меня располагаются еще одни натриевые ворота. Нарисую и их. Но не думаю, что нужно рисовать их в большом количестве. Нужно изобразить одно скопление, чтобы вы понимали, что происходит. Давайте я нарисую еще одни калиевые ворота. Хорошо. Все ворота нарисованы. Давайте договоримся, что они все изначально закрыты. Итак, они все находятся в закрытом положении. И теперь на эти натриевые ворота воздействует стимул. И они открываются. Да, допустим, вот эти ворота открываются. Они стимулируются чем-то и в результате раскрываются. Давайте решим, что конкретно вот эти натриевые ворота открываются под действием определенного стимула, который имеет определенный вольтаж. Пусть ворота открываются когда они достигают значения минус 55 милливольт. Запишу это. И когда они находятся в состоянии покоя, разница потенциалов между внутренним пространством клетки и ее внешним пространством составляет минус 70 милливольт, и они поэтому не открываются. Они остаются закрытыми, однако, если в определенных обстоятельствах этот заряд становится достаточно положительным, чтобы обеспечить значение минус 55 милливольт, эти ворота открываются. Давайте запишем несколько правил, которые определяют то, что происходит с этими воротами. Они закрываются - и все это просто приблизительные числа, главная цель заключается в том, чтобы вы уловили основную идею. Пусть они закрываются при при плюс 35 милливольтах. А наши калиевые ворота открываются при плюс 40 милливольтах, просто чтобы вы уловили основную идею. А закрываются калиевые ворота, при минус 80 милливольтах. Пусть будет так. И что же происходит в результате? Давайте решим, что, по какой-то причине, вольтаж здесь становится минус 55 милливольт. Я сейчас изображу схему, по аналогии с тем, как я это делал раньше. Итак, мне нужно немного пространства, чтобы нарисовать свою схему. Итак, схема та же. Вот это вольтаж мембраны. Хорошо. А вот это время. И давайте представим, что мы измеряем вольтаж - давайте решим, что это мембранный вольтаж вблизи натриевых ворот, расположенных вот здесь. Итак, мы измеряем вольтаж с обеих сторон мембраны. И если отсутствует стимуляция, то мы получаем значение порядка минус 70 милливольт - и вдруг какой-то стимул, по какой-то причине, делает этот участок более положительно заряженным. Возможно, это определенный тип электротонического эффекта, который делает этот участок более положительно заряженным. Возможно, здесь имеются определенные положительные заряды. И, в итоге, этот участок становится более положительно заряженным. Затем натрий-калиевые насосы выкачивают ионы наружу, в результате чего не достигается пороговое значение минус 55 милливольт, в результате ничего не происходит, согласны? Однако когда имеется другой электротонический стимул, или, может быть, несколько, здесь концентрируется большое количество положительных зарядов, в результате чего достигается значение минус 55 милливольт. Запомните, что как только появляется положительный заряд, все становится менее отрицательно заряженным. И разница потенциалов становится меньше. И когда мы достигаем значения минус 55 милливольт - ворота открываются. Вот они были закрыты прежде. Они были закрыты при значении минус 70 милливольт. Итак, давайте я запишу вот здесь. В данной точке, наши натриевые ворота открываются. И теперь что же происходит, когда наши натриевые ворота открываются? Когда они открываются - мы уже наблюдали это раньше - все положительно заряженные ионы натрия направляются вот сюда, как в направлении электрического градиента, так и градиента диффузии, и проникают внутрь клетки. Здесь снаружи имеется такое большое количество натрия, здесь настолько положительный заряд, что они просто стремятся проникнуть внутрь. И как только они достигают этого порога, даже несмотря на то, что это может произойти только при минус 55 или, возможно, при минус 50 милливольтах, в результате ворота открываются и весь наш положительный заряд поступает внутрь клетки. И разница потенциалов становится намного более положительной. Хорошо, теперь дальше. Они продолжают поступать внутрь, и заряд становится все более и более положительным, и по мере того как он становится более положительным, ворота закрываются при значении плюс 35 милливольт. Сейчас освобожу побольше места, чтобы продолжить. Итак, давайте представим, что мы находимся вот здесь - давайте решим, что вот здесь у нас плюс 35 милливольт. Ворота закрываются, и в то же время, все это, что я только что удалил - я установил на значении плюс 40 милливольт, хотя нет, плюс 35, просто чтобы поддержать свою идею. Итак, давайте представим, что при плюс 35 милливольтах наши натриевые ворота открываются. Что же происходит в результате? Внезапно мы оказываемся при плюс 35, или, возможно, при плюс 40 милливольтах вот так - давайте решим, что плюс 40, я полагаю, вы уловили идею так или иначе, поэтому, давайте решим, что плюс 40 . Итак, при плюс 40, эти ворота закрываются. Больше никакие положительно заряженные ионы не поступают внутрь, однако теперь у нас внутри заряд более положительный, по меньшей мере, локально в данной точке на мембране, чем снаружи. И эти ворота открываются. Итак, в результате наши калиевые ворота открываются. K-плюс ионные ворота открываются. И что же происходит теперь, когда они открываются? У нас имеются здесь все эти ионы натрия. Мы уже видели на примере натрий- калиевого насоса, что калий - все эти ионы калия у нас расположены вот здесь. Мы видели на примере натрий-калиевого насоса, что он увеличивает концентрацию натрия на внешней стороне, а концентрация калия при этом выше внутри клетки. И теперь, в дополнении к этому положительному заряду в плюс 40 милливольт, у нас также имеется более положительный заряд на внутренней поверхности мембраны. Итак, они открываются. И эти частицы хотят уйти, поскольку здесь снаружи меньше ионов калия. И они хотят идти по своему градиенту концентрации. На этой стороне также имеется большой положительный заряд. Примерно плюс 40 милливольт. Ионы хотят высвободиться. Они начинают выходить из клетки. Итак, положительные заряды начинают покидать клетку изнутри наружу. И мы снова становимся менее положительно заряженными. Давайте я запишу, что же здесь происходит. Итак, в данной точке наши натриевые ворота закрываются, а открываются калиевые ворота. Одни закрылись, другие открылись. После этого положительные заряды начинают выходить из клетки повторно, и возможно, я несколько сгустил краски, потому что они закроются, вероятно, когда мы уже получим минус 80 милливольт. Допустим, калиевые ворота закроются при -80. И затем наш натрий-калиевый насос может вернуть нас обратно к нашему значению минус 70 милливольт. Итак, вот что происходит на данном участке клетки, в непосредственной близости от первых натриевых ворот. Однако что же происходит, в целом? По мере того как здесь формируется очень пложительный заряд - мы приблизились к значению 40 милливольт вот здесь. Мы достигли 40 милливольт на данном участке клетки. Как вы уже практически проследили это на коротком расстоянии электротонического потенциала, этот участок становится более положительно заряженным. Он становится более положительно заряженным. Эти положительные заряды начинают распространяться туда, где заряд менее положительный. То есть он становится более положительным. Он был при минус 70 милливольт, однако он становится более положительным. Постепенно он увеличивается до минус 65, минус 60, минус 55 и затем «Бам!». Опять происходит стимуляция. И эти ворота снова открываются. Эти ворота опять открываются. Натрий опять поступает внутрь. И если вы хотите проследить за этими воротами, за разницей потенциалов того, что проходит через них, все это происходит как только натрий начинает поступать через эти первые ворота, через вторые ворота - он потенцируется здесь, потому что вторые ворота расположены чуть позже по времени - потому что весь этот поток проходит чуть левее от него, его потенциал увеличивается. Он потенцируется, и с ним происходит снова то же самое. Когда натрий поступает сюда, среда становится положительно заряженной, и это приводит к тому, что клетка, вольтаж вокруг, заряд становятся несколько более положительными, и это запускает открытие следующих натриевых ворот и затем происходит все то же самое, повторяется тот же цикл. Затем калиевые ворота открываются, чтобы отрицательный заряд вернулся, однако к тому времени, как это происходит, среда становится уже достаточно положительно заряженной, чтобы запустить еще одни натриевые ворота. Итак, одни за другими, эти натриевые ворота открываются и закрываются, таким образом передается информация, происходит передача этого изменения потенциала. Итак, что же происходит здесь? Итак, это происходит медленнее и с привлечением энергии. Это происходило - электротонический потенциал - очень быстро. А этот процесс медленный. Потенциал действия более медленный. Я не имею в виду, что он совсем медленный. Он медленнее, потому что он должен задействовать все эти открывания и закрывания ворот, и он также требует энергии. Запишу это. И вы также должны постоянно обеспечивать энергией потенциал в нашей клетке, и использовать ваши натрий-калиевые насосы, которые находятся в активном состоянии. Но это хорошо. Положительной стороной является то, что с его помощью хорошо охватывается расстояние. Это тоже запишем. Мы наблюдали на примере электротонического потенциала, что по мере того, как мы продвигаемся все дальше и дальше от того места, где произошла стимуляция, изменение потенциала становится все более рассеянным. Оно экспоненциально угасает. Оно становится все более рассеянным по мере того, как мы продвигаемся все дальше, что не очень хорошо для больших расстояний. Это же может продолжаться бесконечно, потому что каждый раз когда стимулируются новые ворота, и эти ворота продолжают обеспечивать поток ионов, входящих ионов, а также тех, которые делают так, что среда становится несколько более отрицательно заряженной. Вслед за этим происходит открытие следующих ворот. И это позволяет очень эффективно проходить длинные расстояния. И теперь у нас действительно есть основа для понимания того, что происходит в нейроне, и я продолжу эту тему в следующем видеоролике, где покажу вам, как электротонические потенциалы и потенциалы действия могут объединяться для обеспечения прохождения сигнала по нейрону.

Фазы потенциала действия

  1. Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).
  2. Пиковый потенциал, или спайк , состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).
  3. Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).
  4. Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).

Общие положения

Поляризация мембраны живой клетки обусловлена отличием ионного состава с её внутренней и наружной стороны. Когда клетка находится в спокойном (невозбуждённом) состоянии, ионы по разные стороны мембраны создают относительно стабильную разность потенциалов, называемую потенциалом покоя . Если ввести внутрь живой клетки электрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка −70 - −90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся и катионы , и анионы . Снаружи - на порядок больше ионов натрия , кальция и хлора , внутри - ионов калия и отрицательно заряженных белковых молекул, аминокислот, органических кислот, фосфатов , сульфатов . Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Потенциал мембраны может изменяться под действием различных стимулов. Искусственным стимулом может служить электрический ток , подаваемый на внешнюю или внутреннюю сторону мембраны через электрод. В естественных условиях стимулом часто служит химический сигнал от соседних клеток, поступающий через синапс или путём диффузной передачи через межклеточную среду. Смещение мембранного потенциала может происходить в отрицательную (гиперполяризация ) или положительную (деполяризация ) сторону.

В нервной ткани потенциал действия, как правило, возникает при деполяризации - если деполяризация мембраны нейрона достигает некоторого порогового уровня или превышает его, клетка возбуждается, и от её тела к аксонам и дендритам распространяется волна электрического сигнала. (В реальных условиях на теле нейрона обычно возникают постсинаптические потенциалы, которые сильно отличаются от потенциала действия по своей природе - например, они не подчиняются принципу «всё или ничего». Эти потенциалы преобразуются в потенциал действия на особом участке мембраны - аксонном холмике, так что потенциал действия не распространяется на дендриты).

Это обусловлено тем, что на мембране клетки находятся ионные каналы - белковые молекулы, образующие в мембране поры, через которые ионы могут проходить с внутренней стороны мембраны на наружную и наоборот. Большинство каналов ионо-специфичны - натриевый канал пропускает практически только ионы натрия и не пропускает другие (это явление называют селективностью). Мембрана клеток возбудимых тканей (нервной и мышечной) содержит большое количество потенциал-зависимых ионных каналов, способных быстро реагировать на смещение мембранного потенциала. Деполяризация мембраны в первую очередь вызывает открытие потенциал-зависимых натриевых каналов. Когда одновременно открывается достаточно много натриевых каналов, положительно заряженные ионы натрия устремляются через них на внутреннюю сторону мембраны. Движущая сила в данном случае обеспечивается градиентом концентрации (с внешней стороны мембраны находится намного больше положительно заряженных ионов натрия, чем внутри клетки) и отрицательным зарядом внутренней стороны мембраны (см. Рис. 2). Поток ионов натрия вызывает ещё бо́льшее и очень быстрое изменение мембранного потенциала, которое и называют потенциалом действия (в специальной литературе обозначается ПД).

Согласно закону «всё-или-ничего» мембрана клетки возбудимой ткани либо не отвечает на стимул совсем, либо отвечает с максимально возможной для неё на данный момент силой. То есть, если стимул слишком слаб и порог не достигнут, потенциал действия не возникает совсем; в то же время, пороговый стимул вызовет потенциал действия такой же амплитуды , как и стимул, превышающий пороговый. Это отнюдь не означает, что амплитуда потенциала действия всегда одинакова - один и тот же участок мембраны, находясь в разных состояниях, может генерировать потенциалы действия разной амплитуды.

После возбуждения нейрон на некоторое время оказывается в состоянии абсолютной рефрактерности , когда никакие сигналы не могут его возбудить снова, затем входит в фазу относительной рефрактерности , когда его могут возбудить исключительно сильные сигналы (при этом амплитуда ПД будет ниже, чем обычно). Рефрактерный период возникает из-за инактивации быстрого натриевого тока, то есть инактивации натриевых каналов (см. ниже).

Распространение потенциала действия

По немиелинизированным волокнам

По ходу ПД каналы переходят из состояния в состояние: у Na + каналов основных состояний три - закрытое, открытое и инактивированное (в реальности дело сложнее, но этих трёх достаточно для описания), у K + каналов два - закрытое и открытое.

Поведение каналов, участвующих в формировании ПД, описывается через проводимость и высчиляется через коэффициенты переноса (трансфера).

Коэффициенты переноса были выведены Ходжкином и Хаксли.

Проводимость для калия G K на единицу площади

G K = G K m a x n 4 {\displaystyle G_{K}=G_{Kmax}n^{4}}
d n / d t = α n (1 − n) − β n n {\displaystyle dn/dt=\alpha _{n}(1-n)-\beta _{n}n} ,
где:
α n {\displaystyle \alpha _{n}} - коэффициент трансфера из закрытого в открытое состояние для K+ каналов ;
β n {\displaystyle \beta _{n}} - коэффициент трансфера из открытого в закрытое состояние для K+ каналов ;
n {\displaystyle n} - фракция К+ каналов в открытом состоянии;
(1 − n) {\displaystyle (1-n)} - фракция К+ каналов в закрытом состоянии
Проводимость для натрия G Na на единицу площади

рассчитывается сложнее, поскольку, как уже было сказано, у потенциал-зависимых Na+ каналов, помимо закрытого/открытого состояний, переход между которыми описывается параметром m {\displaystyle m} , есть ещё инактивированное/не-инактивированное состояния, переход между которыми описывается через параметр h {\displaystyle h}

G N a = G N a (m a x) m 3 h {\displaystyle G_{Na}=G_{Na(max)}m^{3}h}
d m / d t = α m (1 − m) − β m m {\displaystyle dm/dt=\alpha _{m}(1-m)-\beta _{m}m} , d h / d t = α h (1 − h) − β h h {\displaystyle dh/dt=\alpha _{h}(1-h)-\beta _{h}h} ,
где: где:
α m {\displaystyle \alpha _{m}} - коэффициент трансфера из закрытого в открытое состояние для Na+ каналов ; α h {\displaystyle \alpha _{h}} - коэффициент трансфера из инактивированного в не-инактивированное состояние для Na+ каналов ;
β m {\displaystyle \beta _{m}} - коэффициент трансфера из открытого в закрытое состояние для Na+ каналов ; β h {\displaystyle \beta _{h}} - коэффициент трансфера из не-инактивированного в инактивированное состояние для Na+ каналов ;
m {\displaystyle m} - фракция Na+ каналов в открытом состоянии; h {\displaystyle h} - фракция Na+ каналов в не-инактивированном состоянии;
(1 − m) {\displaystyle (1-m)} - фракция Na+ каналов в закрытом состоянии (1 − h) {\displaystyle (1-h)} - фракция Na+ каналов в инактивированном состоянии.

    Понятие и виды биопотенциалов. Природа биопотенциалов.

    Причина возникновения потенциала покоя. Стационарный потенциал Гольдмана.

    Условия возникновения и фазы потенциала действия.

    Механизм генерации потенциала действия.

    Методы регистрации и экспериментального исследования биопотенциалов.

Понятия и виды биопотенциалов. Природа биопотенциалов.

Биопотенциалы – любые разности потенциалов в живых системах: разность потенциалов между клеткой и окружающей средой; между возбуждённым и невозбуждённым участками клетки; между участками одного организма, находящимися в разных физиологических состояниях.

Разность потенциалов - электрический градиент – характерная черта всего живого.

Виды биопотенциалов:

    Потенциал покоя (ПП) – постоянно существующая в живых системах разность потенциалов, характерная для стационарного состояния системы. Он поддерживается постоянно протекающими звеньями обмена веществ.

    Потенциал действия (ПД) – быстро возникающая и вновь исчезающая разность потенциалов, характерная для переходных процессов.

Биопотенциалы тесно связаны с метаболическими процессами, следовательно, являются показателями физиологического состояния системы.

Величина и характер биопотенциалов являются показателями изменений в клетке в норме и патологии.

Существует большая группа электрофизиологических методов диагностики , основанных на регистрации биопотенциалов (ЭКГ, ЭМГ и т.д.).

В основе возникновения биопотенциалов лежит несимметричное относительно мембраны распределение ионов, т.е. различные концентрации ионов по разные стороны мембраны. Непосредственная причина – различная скорость диффузии ионов по их градиентам, определяющаяся селективностью мембраны.

Биопотенциалы – ионные потенциалы, преимущественно мембранной природы – это основное положение Мембранной теории биопотенциалов (Бернштейн, Ходжкин, Катц).

Причина возникновения потенциала покоя. Стационарный потенциал Гольдмана.

Натриевый насос – создаёт и поддерживает градиент концентрации иона натрия, иона калия, регулируя их поступление в клетку и выведение из неё.

В состоянии покоя клетка проницаема главным образом для ионов калия. Они диффундируют по градиенту концентрации через клеточную мембрану из клетки в окружающую жидкость. Крупные органические анионы, содержащиеся в клетке не могут преодолеть мембрану. Таким образом внешняя поверхность мембраны заряжается положительно, а внутренняя – отрицательно.

Изменение зарядов и разности потенциалов на мембране продолжается пока силы, обуславливающие градиент концентрации калия не уравновесятся силами возникающего электрического поля, следовательно, не будет достигнуто стационарное состояние системы.

Разность потенциалов через мембрану в этом случае и есть – потенциал покоя.

Вторая причина возникновения потенциала покоя – электрогенность калий-натриевого насоса.

Теоретическое определение потенциала покоя:

При учёте лишь калиевой проницаемости мембраны в состоянии покоя потенциал покоя можно вычислить по уравнению Нернста:

R – универсальная газовая постоянная

T – абсолютная температура

F – число Фарадея

С iK – концентрация калия внутри клетки

C eK – концентрация калия снаружи клетки

На самом деле, помимо ионов калия, клеточная мембрана проницаема также и для ионов натрия и хлора, однако в меньшей степени. Если градиент натрия поступает внутрь клетки, то мембранный потенциал уменьшается. Если градиент хлора поступает внутрь клетки, то мембранный потенциал увеличивается.

, где

P – проницаемость мембраны для данного иона.

Условия возникновения и фазы потенциала действия.

Раздражители – внешние или внутренние факторы, действующие на клетку.

При действии раздражителей на клетку меняется электрическое состояние клеточной мембраны.

Потенциал действия возникает лишь при действии раздражителя достаточной силы и длительности.

Пороговая сила – минимальная сила раздражителя, необходимая для инициации потенциала действия. Раздражители большей силы – надпороговые ; меньшей силы – подпороговые . Пороговая сила раздражителя находится в обратной зависимости от его длительности в определённых пределах.

Если у раздражителя надпороговой или пороговой силы на участке раздражения возникает электрический импульс характерной формы, распространяющийся вдоль всей мембраны, то возникнет потенциал действия .

Фазы потенциала действия:

    Восходящая – деполяризация

    Нисходящая – реполяризация

    Гиперполяризация (возможна, но не обязательна)

- потенциал цитоплазмы

- действие раздражителя ((над)пороговой силы)

д – деполяризация

р – реполяризация

г – гиперполяризация

Фаза деполяризации – быстрая перезарядка мембраны: внутри положительный заряд, снаружи – отрицательный.

Фаза реполяризации – возвращение заряда и потенциала мембраны к исходному уровню.

Фаза гиперполяризации – временное превышение уровня покоя, предшествующее восстановлению потенциала покоя.

Амплитуда потенциала действия заметно превышает амплитуду потенциала покоя – «овершут » (перелёт).

Механизм генерации потенциала действия.

Потенциал действия – результат изменения ионной проницаемости мембраны.

Проницаемость мембраны для ионов натрия – непосредственная функция мембранного потенциала. Если мембранный потенциал понижается, то натриевая проницаемость возрастает.

Действие порогового раздражителя : уменьшение мембранного потенциала до критической величины (критическая деполяризация мембраны) → резкое повышение натриевой проницаемости → усиленный приток натрия в клетку по градиенту → дальнейшая деполяризация мембраны → процесс зацикливается → включается механизм положительной обратной связи. Усиленный приток натрия в клетку вызывает перезарядку мембраны и окончание фазы деполяризации. Положительный заряд на внутренней поверхности мембраны становится достаточным для уравновешивания градиента концентрации ионов натрия. Усиленное поступление натрия в клетку заканчивается, следовательно, заканчивается фаза деполяризации.

P K: P Na: P Cl в состоянии покоя 1: 0,54: 0,045,

на высоте фазы деполяризации: 1: 20: 0,045.

В процессе фазы деполяризации проницаемость мембраны для ионов калия и хлора не меняется, а для ионов натрия – возрастает в 500 раз.

Фаза реполяризации : увеличивается проницаемость мембраны для ионов калия → усиленный выход ионов калия из клетки по градиенту концентрации → Уменьшение положительного заряда на внутренней поверхности мембраны, обратное изменение мембранного потенциала → уменьшение натриевой проницаемости → обратная перезарядка мембраны → уменьшение калиевой проницаемости, замедление оттока калия из клетки.

К концу фазы реполяризации происходит восстановление потенциала покоя. Мембранный потенциал и проницаемость мембраны для ионов калия и натрия возвращается к уровню покоя.

Фаза гиперполяризации : возникает, если проницаемость мембраны для ионов калия ещё повышена, а для ионов натрия уже вернулась к уровню покоя.

Резюме:

Потенциал действия формируется двумя потоками ионов через мембрану. Поток ионов натрия внутрь клетки → перезарядка мембраны. Поток ионов калия наружу → восстановление потенциала покоя. Потоки почти одинаковы по величине, но сдвинуты по времени.

Диффузия ионов через клеточную мембрану в процессе генерации потенциала действия осуществляется по каналам, которые являются высокоселективными, т.е. они обладают большей проницаемостью для данного иона (открытие для него дополнительных каналов).

При генерации потенциала действия клетка приобретает определённое количество натрия и теряет определённое количество калия. Выравнивание концентраций этих ионов между клеткой и средой не происходит благодаря калий-натриевому насосу.

Методы регистрации и экспериментального исследования биопотенциалов .

Потенциал действия (ПД) - это электрофизиологичес-кий процесс, выражающийся в быстром колебании мембранно-го потенциала вследствие перемещения ионов в клетку и из клетки и способный распространяться без декремента (без затухания). ПД обеспечивает передачу сигналов между нервны-ми клетками, нервными центрами и рабочими органами; в мышцах ПД обеспечивает процесс электромеханического сопряжения.

А. Характеристика потенциала действия (ПД). Схема-тично ПД представлен на рис. 1.3. Величина ПД колеблется в пре-делах 80-130 мВ, длительность пика ПД нервного волокна 0,5-1 мс, волокна скелетной мышцы - до 10 мс с учетом замедления деполяризации в конце ее. Длительность ПД сердечной мышцы , 300-400 мс. Амплитуда ПД не зависит от силы раздражения - она всегда максимальна для данной клетки в конкретных условиях: ПД подчиняется закону «все или ничего», но не подчиняется закону силовых отношений - закону силы. ПД либо совсем не возникает при раздражении клетки, если оно мало, либо возникает и достига-ет максимальной величины, если раздражение является пороговым или сверхпороговым.

Следует отметить, что слабое (подпороговое) раздражение может вызвать локальный потенциал. Он подчи-няется закону силы - с увеличением силы стимула величина его возрастает.

В составе ПД различают четыре фазы:

1 — деполяриза-ция , т. е. исчезновение заряда клетки - уменьшение мембранного потенциала до нуля;

2 — инверсия , т. е. изменение заряда клетки на противоположный, когда внутренняя сторона мембраны клетки заряжается положительно, а внешняя - отрицательно (лат. шуегзю - переворачивание);

3 — реполяризация, т. е. восстанов-ление исходного заряда клетки, когда внутренняя поверхность клеточной мембраны снова заряжается отрицательно, а наружная -положительно;

4 - следовая гиперполяризация.

Б. Механизм возникновения ПД. Если действие раздражи-теля на клеточную мембрану приводит к началу развития ПД, да-лее сам процесс развития ПД вызывает фазовые изменения прони-цаемости клеточной мембраны, что обеспечивает быстрое движение № + в клетку, а К + - из клетки. Это наиболее часто встре-чаемый вариант возникновения ПД. Величина мембранного потен-циала при этом сначала уменьшается, а затем снова восстанавли-вается до исходного уровня.

На экране осциллографа отмеченные изменения мембранного потенциала предстают в виде пикового по-тенциала - ПД. Он возникает вследствие накопленных и поддер-живаемых ионными насосами градиентов концентраций ионов внут-ри и вне клетки, т.е. за счет потенциальной энергии в виде электрохимических градиентов ионов. Если заблокировать процесс выработки энергии, потенциалы действия некоторый период вре-мени будут возникать. Но после исчезновения градиентов концен-траций ионов (устранения потенциальной энергии) клетка генери-ровать ПД не будет. Рассмотрим фазы ПД.


1. Фаза деполяризации (см. рис. 1.3 - 1). При действии депо-ляризующего раздражителя на клетку (медиатор, электрический ток) начальная частичная деполяризация клеточной мембраны про-исходит без изменения ее проницаемости для ионов. Когда деполя-ризация достигает примерно 50% пороговой величины (50% поро-гового потенциала), начинает повышаться проницаемость мембраны клетки для Ыа + , причем в первый момент сравнительно медленно.

Естественно, что скорость входа Ыа + в клетку при этом невелика. В этот период, как и во время всей первой фазы (деполя-ризации), движущей силой, обеспечивающей вход Гч!а + в клетку, являются концентрационный и электрический градиенты. Напом-ним, что клетка внутри заряжена отрицательно (разноименные за-ряды притягиваются друг к другу), а концентрация № + вне клетки в 10-12 раз больше, чем внутри клетки.

Условием, обеспечиваю-щим вход № + в клетку, является увеличение проницаемости кле-точной мембраны, которая определяется состоянием воротного ме-ханизма Ыа-каналов (в некоторых клетках, например, в кардиомиоцитах, в волокнах гладкой мышцы, важную роль в воз-никновении ПД играют и управляемые каналы для Са 2+).

Когда деполяризация клетки достигает критической величины (Е, критический уровень деполяризации - КУД), которая обычно составляет 50 мВ (возможны и другие величины), проницаемость мембраны для Ыа* резко возрастает - открывается большое число потенциалзависимых ворот Ыа-каналов - и Ыа + лавиной устремля-ется в клетку.

В результате интенсивного тока Ыа + внутрь клетки процесс деполяризации проходит очень быстро. Развивающаяся деполяризация клеточной мембраны вызывает дополнительное увеличение ее проницаемости и, естественно, проводимости Ыа + - открываются все новые и новые ворота №-каналов, что придает току Ыа + в клетку характер регенеративного процесса. В итоге ПП исчезает, становится равным нулю. Фаза деполяризации на этом заканчивается.

2. Фаза инверсии. После исчезновения ПП вход Ыа + в клетку продолжается, поэтому число положительных ионов в клетке пре-восходит число отрицательных ионов, заряд внутри клетки стано-вится положительным, снаружи - отрицательным. Процесс пере-зарядки мембраны представляет собой вторую фазу потенциала действия - фазу инверсии (рис. 1.3 - 2).

Теперь электрический градиент препятствует входу Ыа + внутрь клетки (положительные заряды отталкиваются друг от друга), Ыа-проводимость снижает-ся. Тем не менее, некоторый период времени (доли миллисекунды) № + продолжает входить в клетку — об этом свидетельствует про-должающееся нарастание ПД. Это означает, что концентрацион-ный градиент, обеспечивающий движение № + в клетку, сильнее электрического, препятствующего входу Ыа + в клетку.

Во время деполяризации мембраны увеличивается проницаемость ее и для Са 2+ , он также идет в клетку, но в нервных волокнах, нейронах и в клетках скелетной мускулатуры роль Са 2+ в развитии ПД мал.а. В клетках гладкой мышцы и миокарда его роль существенна. Та-ким образом, вся восходящая часть пика ПД в большинстве случа-ев обеспечивается в основном входом № + в клетку.

Примерно через 0,5-1 мс и более после начала деполяризации (это время зависит от вида клетки) рост ПД прекращается вслед-ствие закрытия ворот натриевых каналов и открытия ворот К-каналов, т. е. увеличения проницаемости для К + и резкого возрастания выхода его из клетки (см. рис. 1.3 - 2). Препятствуют также росту пика ПД электрический градиент Ыа + (клетка внутри в этот момент заряжена положительно), а также выход К + из клетки по каналам утечки.

Поскольку К + находится преимущественно внутри клетки, он, согласно концентрационному градиенту, быстро выходит из клетки после открытия ворот К + -каналов, вследствие чего умень-шается число положительно заряженных ионов в клетке. Заряд клетки снова начинает уменьшаться. В фазу инверсии выходу К + из клетки способствует также и электрический градиент. К + вы-талкивается положительным зарядом из клетки и притягивается отрицательным зарядом снаружи клетки.

Так продолжается до пол-ного исчезновения положительного заряда внутри клетки (до кон-ца фазы инверсии - рис. 1.3-2, пунктирная линия), когда начина-ется следующая фаза ПД - фаза реполяризации. Калий выходит из клетки не только по управляемым каналам, ворота которых от-крыты, но и по неуправляемым - каналам утечки, что несколько замедляет ход восходящей части ПД и ускоряет ход нисходящей составляющей ПД.

Таким образом, изменение мембранного потенциала покоя ве-дет к последовательному открытию и закрытию электроуправляе-мых ворот ионных каналов и движению ионов согласно электрохи-мическому градиенту - возникновению ПД. Все фазы являются регенеративными - необходимо только достичь критического уров-ня деполяризации, далее ПД развивается за счет потенциальной энергии клетки в виде электрохимических градиентов, т. е. вторич-но активно.

Амплитуда ПД складывается из величины ПП (мембранно-го потенциала покоящейся клетки) и величины фазы инверсии, составляющей у разных клеток 10-50 мВ. Если мембранный потенциал покоящейся клетки мал, амплитуда ПД этой клетки не-большая.

3. Фаза реполяризации (рис. 1.3-3) связана с тем, что про-ницаемость клеточной мембраны для К + все еще высока (во-рота калиевых каналов открыты), К + продолжает быстро выходить из клетки, согласно концентрационному градиенту. Поскольку клетка теперь уже снова внутри имеет отрицательный заряд, а сна-ружи - положительный (см. рис. 1.3 - 3), электрический гради-ент препятствует выходу К + из клетки, что снижает его проводи-мость, хотя он продолжает выходить.

Это объясняется тем, что действие концентрационного градиента выражено значительно сильнее электрического градиента. Вся нисходящая часть пика ПД обусловлена выходом К + из клетки. Нередко в конце ПД наблюда-ется замедление реполяризации, что объясняется уменьшением проницаемости клеточной мембраны для К + и замедлением выхо-да его из клетки из-за частичного закрытия ворот К-каналов. Вто-рая причина замедления тока К + из клетки связана с возрастани-ем положительного потенциала наружной поверхности клетки и формированием противоположно направленного электрического градиента.

Таким образом, главную роль в возникновении ПД играет Ыа + , входящий в клетку при повышении проницаемости клеточ-ной мембраны и обеспечивающий всю восходящую часть пика ПД. При замене Ма + в среде на другой ион, например холин, ПД в нервной и мышечной клетках скелетной мускулатуры не возника-ет. Однако проницаемость мембраны для К + тоже играет важную роль. Если повышение проницаемости для К + предотвратить тетраэтиламмонием, мембрана после ее деполяризации реполяризуется гораздо медленнее, только за счет медленных неуправ-ляемых каналов (каналов утечки ионов), через которые К + будет выходить из клетки.

Роль Са 2+ в возникновении ПД в нервных и мышечных клет-ках скелетной мускулатуры незначительна. Однако Са 2+ играет важную роль в возникновении ПД сердечной и гладкой мышц, в передаче импульсов от одного нейрона к другому, от нервного во-локна к мышечному, в обеспечении мышечного сокращения.

4. Следовая гиперполяризация клеточной мембраны (рис. 1.3 -4) обычно является следствием еще сохраняющейся повышенной проницаемости клеточной мембраны для К + , она характерна для нейронов. Ворота К-каналов еще не полностью закрыты, поэтому К + продолжает выходить из клетки согласно концентрационному градиенту, что и ведет к гиперполяризации клеточной мембраны.

Постепенно проницаемость клеточной мембраны возвращается к исходной (натриевые и калиевые ворота возвращаются в исходное состояние), а мембранный потенциал становится таким же, каким он был до возбуждения клетки. Ыа/К-помпа непосредственно за фазы потенциала действия не отвечает, хотя она и про-должает работать во время развития ПД.

Следовая деполяризация также характерна для нейронов, она может быть зарегистрирована и в клетках скелетной мышцы. Ме-ханизм ее изучен недостаточно. Возможно, это связано с кратко-временным повышением проницаемости клеточной мембраны для Ыа + и входом его в клетку согласно концентрационному и электри-ческому градиентам.

В. Запас ионов в клетке, обеспечивающих возникновение возбуждения (ПД), огромен. Концентрационные градиенты ионов в результате одного цикла возбуждения практически не изменяют-ся. Клетка может возбуждаться до 510 5 раз без подзарядки, то есть без работы Ыа/К-насоса.

Число импульсов, которое гене-рирует и проводит нервное волокно, зависит от его толщины, что определяет запас ионов. Чем толще нервное волокно, тем больше запас ионов и больше импульсов оно может генерировать (от не-скольких сот до нескольких сотен тысяч) без участия №/К-насоса. Однако в тонких С-волокнах на возникновение одного ПД рас-ходуется около 1 % концентрационных градиентов № + и К + .

Таким образом, если заблокировать выработку энергии, то клетка будет еще многократно возбуждаться и в этом случае. В реальной же действительности Ыа/К-насос постоянно переносит Ыа + из клет-ки, а К + возвращает в клетку, в результате постоянно поддержи-вается концентрационный градиент № + и К + , что осуществляет-ся за счет непосредственного расхода энергии, источником которой является АТФ.

Потенциал действия - волна возбуждения, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляетэлектрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

Потенциал действия развивается на мембране в результате её возбуждения и сопровождается резким изменением мембранного потенциала.

В потенциале действия выделяют несколько фаз:

Фаза деполяризации;

Фаза быстрой реполяризации;

Фаза медленной реполяризации (отрицательный следовый потенциал);

Фаза гиперполяризации (положительный следовый потенциал).

Фаза деполяризации. Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. При деполяризации клеточной мембраны до критического уровня деполяризации (КУД) происходит лавинообразное открытие потенциал чувствительных Na+- каналов. Положительно заряженные ионы Na+ входят в клетку по градиенту концентрации (натриевый ток), в результате чего мембранный потенциал очень быстро уменьшается до 0, а затем приобретает положительное значение. Явление изменения знака мембранного потенциала называют реверсией заряда мембраны.

Фаза быстрой и медленной реполяризации. В результате деполяризации мембраны происходит открытие потенциалчувствительных К+- каналов. Положительно заряженные ионы К+ выходят из клетки по градиенту концентрации (калиевый ток), что приводит к восстановлению потенциала мембраны. В начале фазы интенсивность калиевого тока высока и реполяризация происходит быстро, к концу фазы интенсивность калиевого тока снижается и реполяризация замедляется. Усиливает реполяризацию поступление в клетку Ca2+ Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na+/K+ помпы. Поступление в клетку Cl– дополнительно гиперполяризует мембрану Изменение величины мембранного потенциала во время развития потенциала действия связано в первую очередь с изменением проницаемости мембраны для ионов натрия и калия.



Современные представления о механизме его генерации

Методом фиксации мембранного потенциала удалось измерить токи, текущие через плазмолемму аксона (аксолемму) кальмара и убедиться в том, что в покое ток катионов (К +) направлен из цитоплазмы в интерстиций, а при возбуждении доминирует ток катионов (Na +) в клетку. В состоянии «покоя» плазмолемма почти непроницаема для ионов, находящихся в межклеточном пространстве(Na + С1 - и НСОз - ,).

При возбуждении проницаемость для ионов натрия на время, равное нескольким миллисекундам, резко возрастает, а затем снова падает. В результате катионы (ионы Na +) и анионы (С1 - , НСОз) разобщаются на плазмолемме: Na + входит в цитоплазму, а анионы нет. Поток положительных зарядов в цитоплазму не только компенсирует потенциал покоя, но и превышает его. Возникает так называемый «овершут» (или инверсия мембранного потенциала). Входящий поток натрия - результат его пассивного движения по открывшимся мембранным каналам по концентрационному и электрическому градиентам. Выходящий поток этого катиона обеспечивается калий-натриевой помпой.

Виды электрических ответов (электротонический потенциал, локальный ответ, потенциал действия). Механизм их возникновения.

В пpоцессе pазвития возбуждения плазматической мембpаны (изменения ее ионной пpоницаемости и электpического состояния) в зависимости от силы pаздpажителя возникает тpи вида электpических ответов:

Электpотонический потенциал

Локальный ответ

Потенциал действия

Электpотонический потенциал

Электротонический потенциал - это пассивный сдвиг величины мембранного потенциала (МП) при действии подпорогового стимула электрического тока.

1. Возникает в ответ на действие катода постоянного тока по силе воздействия меньше 0,5 поpоговой величины



2. Сопpовождается пассивной, слабо выpаженной электpотонической деполяpизацией за счет "-" заpяда катода (ионная пpоницаемость мембpаны пpактически не изменяется), котоpая наблюдается только во вpемя действия pаздpажителя

3. Развитие и исчезновение потенциала пpоисходит по экспоненциальной кpивой и опpеделяется паpаметpами

4. pаздpажающего тока, а также сопpотивлением и емкостью мембpаны

5. Такой вид возбуждения имеет местный хаpактеp и не может pапpспpостpаняться

6. Увеличивает возбудимость ткани

Механизм возникновения

Простейшая модель раздражимости при прохождении тока представляет собой процесс, при котором положительные заряды тока кратковременно разряжают, т.е. деполяризуют мембрану, что вызывает нарушение равновесия ионных потоков.

Во время деполяризации больше ионов калия (+К) покидает клетку и тем самым уравновешивается поток ионного и электрического тока, что, в свою очередь, приводит к стабилизации заряда мембранной емкости. Сдвиг потенциала, вызываемый импульсом тока, называетсяэлектротоническим потенциалом, илиэлектротоном .

Скорость нарастания электротонического потенциала определяется в основном емкостью мембраны. Однако большинство нервных клеток имеют вытянутую форму. Нервное волокно иногда достигает длины 1 м при диаметре 1 мкм. Следовательно, выходя из такой клетки, пропускаемый через нее ток будет распределяться очень неравномерно. Установлено, что по мере увеличения расстояния от источника возбуждения (тока) временной ход электротонического потенциала (электротона) постепенно замедляется. Происходит это потому, что электротон преодолевает сопротивление не только мембраны, но продольное сопротивление внутренней среды самой нервной клетки. Для малых сдвигов потенциала электротонические потенциалы в нерве можно зарегистрировать на расстоянии не более нескольких сантиметров от места их возникновения, т.е. локально.

Деполяризующий электротонический потенциал, который превышает пороговый уровень, вызывает возбуждение. Возбуждение возможно тогда, когда импульс тока имеет адекватную длительность и амплитуду. Соответственно определенный уровень длительности и амплитуды импульса тока существенно влияет на передачу информации в форме потенциала действия. В этой связи локальный характер деполяризации дендиритов, тел нервных клеток и аксонов различается.

Деполяризация дендритов и соответственно тел нервных клеток наблюдается едва достигается пороговый уровень. Происходит это потому, что деполяризация идет за счет повышения натриевой (+Nа) проницаемости мембраны, которая в дальнейшем продолжает деполяризацию автоматически.

Локальный ответ

Локальный потенциал (ЛП) - это местное нераспространяющееся подпороговое возбуждение, существующее в пределах от потенциала покоя (-70 мВ в среднем) до критического уровня деполяризации (-50 мВ в среднем). Его длительность может быть от нескольких миллисекунд до десятков минут.

1. Возникает в ответ на действие pаздpажителя силой от 0,5 до 0,9 поpога

2. Активная фоpма деполяpизации, поскольку ионная пpоницаемость повышается в зависимости от силы подпоpогового pаздpажителя

3. Гpадуален по амплитуде (амплитуда находится в пpямой зависимости от силы и частоты pаздpажений)

4. Развитие деполяpизации пpоисходит до кpитического уpовня, пpичем не пpямолинейно, а по S-обpазной кpивой. Пpи этом деполяpизация пpодолжает наpастать после пpекpащения pаздpажения, а затем сpавнительно медленно исчезает

5. Способен к суммации (пpостpанственной и вpеменной)

6. Локализуется в пункте действия pаздpажителя и пpактически не способен к pаспpостpанению, т.к. хаpактеpизуется большой степенью затухания

7. Повышает возбудимость стpуктуpы

Виды Локальных ответов(потенциалов):

1. Рецепторный. Возникает на рецепторных клетках (сенсорных рецепторах) или рецепторных окончаниях нейронов под действием стимула (раздражителя). Механизм возникновения такого рецепторного локального потенциала детально рассмотрен на примере восприятия звука слуховыми рецепторами - Молекулярные механизмы рецепции (трансдукции) звука по пунктам Этот процесс называется "трансдукция", то есть преобразование раздражения в нервное возбуждение. Сенсорные рецепторы вторичного типа не умеют порождять нервный импульс, поэтому их возбуждение остаётся локальным и от его амплитуды зависит то, сколько рецепторная клетка выбросит медиатора.

2. Генераторный . Возникает на сенсорных афферентных нейронах (на их дендритных окончаниях, перехватах Ранвье и/или аксонных холмиках) под действием медиаторов, которые выделили сенсорные клеточные рецепторы вторичного типа. Генераторный потенциал превращается в потенциал действия и нервный импульс при достижении им критического уровня деполяризации, т.е. он генерирует (порождает) нервный импульс. Потому он и назван генераторным.

3. Возбуждающий постсинаптический потенциал (ВПСП) . Возникает на постсинаптической мембране синапса, т.е. он отражает передачу возбуждения от одного нейрона к другому. Обычно он составляет +4 мВ. Важно отметить, что возбуждение передаётся от одного нейрона другому именно в виде ВПСП, а не готового нервного импульса. ВПСП вызывает деполяризацию мембраны, но подпороговую, не достигающую КУД и не способную породить нервный импульс. Поэтому обычно требуется целая серия ВПСП для того, чтобы родился нервный импульс, т.к. величина единичного ВПСП совершенно недостаточна для того, чтобы достичь критического уровня деполяризации. Вы можете сами подсчитать, сколько требуется одновременно действующих ВПСП, чтобы родился нервный импульс. (Ответ: 5-6.)

4. Тормозный постсинаптический потенциал (ТПСП) . Возникает на постсинаптической мембране синапса, но только не возбуждает её, а, наоборот, тормозит. Соотвтетственно, эта постсинаптическая мембрана входит в состав тормозного синапса , а не возбуждающего. ТПСП вызывает гиперполяризацию мембраны, т.е. сдвигает потенциал покоя вниз, подальше от нуля. Обычно он составляет -0,2 мВ. Используются два механизма создания ТПСП: 1) "хлорный" - происходит открытие ионных каналов для хлора (Cl-), через них в клетку входят ионы хлора и увеличивают её электроотрицательность, 2)"калиевый" - происходит открытие ионных каналов для калия (К+), через них выходят ионы калия, уносят из клетки положительные заряды, что увеличивает электроотрицательность в клетке.

5. Пейсмекерные потенциалы - это эндогенные близкие к синусоидальным периодические колебания мембранного потенциала с частотой 0,1-10 Гц и амплитудой 5-10 мВ. Их генерируют у себя специальные нейроны-пейсмекеры (водителями ритма) самостоятельно, без внешнего воздействия. Пейсмекерные локальные потенциалы обеспечивают периодическое достижение нейроном-пейсмекером критического уровня деполяризации и спонтанную (т.е. самопроизвольную) генерацию им потенциалов действия и, соответственно, нервных импульсов.

Механизм возникновения

Важно понять то, что процесс рождения локального потенциала начинается с открытия ионных каналов . Открытие ионных каналов - это самое главное! Их нужно открыть для того, чтобы в клетку пошёл поток ионов и принёс в неё электрические заряды. Эти ионные электрические заряды как раз и вызывают смещение электрического потенциала мембраны вверх или вниз, т.е. локальный потенциал.

натрия (Na+) , то в клетку вместе с ионами натрия попадают положительные заряды, и её потенциал смещается вверх в сторону нуля. Это - деполяризация, и так рождается возбуждающий локальный потенциал . Можно сказать, что возбуждающие локальные потенциалы порождаются натриевыми ионными каналами, когда они открываются.

Образно можно сказать и так: "Каналы открываются - потенциал рождается".

Если открываются ионные каналы для хлора (Cl-) , то в клетку вместе с ионами хлора попадают отрицательные заряды, и её потенциал смещается вниз ниже потенциала покоя. Это гиперполяризация, и таким способом рождается тормозный локальный потенциал . Можно сказать, что тормозные локальные потенциалы порождаются хлорными ионными каналами .

Существует также ещё один механизм формирования тормозных локальных потенциалов - за счёт открытия дополнительных ионных каналов для калия (К+) . В этом случае из клетки через них начинают выходить "лишние" порции ионов калия, они выносят положительные заряды и увеличивают электроотрицательность клетки, т.е. вызывают её гиперполяризацию. Таким образом, можно сказать, что тормозные локальные потенциалы порождаются дополнительными калиевыми ионными каналами .

Как видите, всё очень просто, главное - открыть нужные ионные каналы . Стимул-управляемые ионные каналы открываются раздражителем (стимулом). Хемо-управляемые ионные каналы открываются медиатором (возбуждающим или тормозным). Точнее, в зависимости от того на какие каналы (натриевые, калиевые или хлорные) будет действовать медиатор, таков будет и локальный потенциал - возбуждающий или тормозный. А медиатор как для возбуждающих локальных потенциалов, так и для тормозных, может быть одним и тем же, тут важно, какие ионные каналы будут связываться с ним своими молекулярными рецепторами - натриевые, калиевые или хлорные.

Потенциал действия

Потенциал действия – это резкое скачкообразное изменение мембранного потенциала с отрицательного на положительный и обратно.

1. Возникает пpи действие pаздpажителей поpоговой и свеpхпоpоговой силы (может возникать пpи суммации подпоpоговых pаздpажителей вследствии достижения уpовня кpитической деполяpизации)

2. Активная деполяpизация пpотекает пpактически мгновенно и pазвивается пофазно (деполяpизация, pеполяpизация)

3. Hе имеет гpадуальной зависимости от силы pаздpажителя и подчиняется закону "все или ничего". Амплитуда зависит только от свойств возбудимой ткани

4. Hе способен к суммации

5. Снижает возбудимость ткани

6. Распpостpаняется от места возникновения по всей мембpане возбудимой клетки без изменения амплитуды

Механизм возникновения

Фаза деполяризации . Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. При деполяризации клеточной мембраны до критического уровня деполяризации (КУД) происходит лавинообразное открытие потенциалчувствительных Na+-каналов. Положительно заряженные ионы Na+ входят в клетку по градиенту концентрации (натриевый ток), в результате чего мембранный потенциал очень быстро уменьшается до 0, а затем приобретает положительное значение. Явление изменения знака мембранного потенциала называют реверсией заряда мембраны.

Фаза быстрой и медленной реполяризации . В результате деполяризации мембраны происходит открытие потенциалчувствительных К+ -каналов. Положительно заряженные ионы К+ выходят из клетки по градиенту концентрации (калиевый ток), что приводит к восстановлению потенциала мембраны. В начале фазы интенсивность калиевого тока высока и реполяризация происходит быстро, к концу фазы интенсивность калиевого тока снижается и реполяризация замедляется.

Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na+ / K+ помпы.

Овершут – период времени, в течение которого мембранный потенциал имеет положительное значение.

Пороговый потенциал – разность между мембранным потенциалом покоя и критическим уровнем деполяризации. Величина порогового потенциала определяет возбудимость клетки – чем больше пороговый потенциал, тем меньше возбудимость клетки.

6. Возбудимость. Изменение возбудимости в процессе возбуждения.

А. Возбудимость клетки во время ее возбуждения быстро и сильно изменяется. Различают несколько фаз изменения возбудимости, каждая из которых строго соответствует определенной фазе ПД и, так же как и фазы ПД, определяется состоянием проницаемости клеточной мембраны для ионов. Схематично эти изменения представлены на рис. 3.6.б.

1. Кратковременное повышение возбудимости в начале развития ПД, когда уже возникла частичная деполяризация клеточной мембраны. Если деполяризация не достигает критической величины, то регистрируется локальный потенциал. В случае, если деполяризация достигает Екр, то развивается ПД. При замедленном развитии начальной деполяризации она оценивается как препотенциал. Возбудимость повышена потому, что клетка частично деполяризована, мембранный потенциал приближается к критическому уровню, поскольку открывается часть потенциалчувствительных быстрых Na-каналов. При этом достаточно небольшого увеличения силы раздражителя, чтобы деполяризация достигла Е кр, при которой возникает ПД.

2. Абсолютная рефракторная фаза - это полная невозбудимость клетки (возбудимость равна нулю), она соответствует пику ПД и продолжается 1-2 мс; если ПД более продолжителен, то более продолжительна и абсолютная рефракторная фаза. Клетка в этот период при любой силе раздражения не отвечает. Невозбудимость клетки в фазу деполяризации и инверсии (в первую ее половину - восходящая часть пика ПД) объясняется тем, что потенциалзависимые т -ворота Na-каналов уже открыты и ионы Na + быстро поступают в клетку по всем каналам. Те ворота Na-каналов, которые еще не успели открыться, открываются под влиянием деполяризации - уменьшения мембранного потенциала. Поэтому дополнительное раздражение клетки относительно движения ионов Na + в клетку ничего изменить не может.

Рис. 3.6. Фазовые изменения возбудимости клетки(б) во время ПД (а). 1,4 - возбудимость повышена; 2 - абсолютная рефрактерная фаза;

2. Относительная рефрактерная фаза - это период восста­новления возбудимости, когда сильное раздражение может вы­звать новое возбуждение (см. рис. 3.6,5, кривая 3). Относитель­ная рефрактерная фаза соответствует конечной части фазы ре­поляризации от уровня Е кр ± 10 мВ и следовой гиперполяри­зации клеточной мембраны, что является следствием все еще по­вышенной проницаемости для ионов К + и избыточного выхода ионов К + -каналов из клетки. Поэтому, чтобы вызвать возбужде­ние в этот период, необходимо приложить более сильное раз­дражение, так как часть Nа + -каналов в конце реполяризации на­ходится еще в состоянии инактивации, а выход ионов К + из клетки препятствует ее деполяризации. Кроме того, в период следовой гиперполяризации мембранный потенциал больше и, естественно, дальше отстоит от критического уровня деполяри­зации. Если реполяризация в конце пика ПД замедляется (см. рис. 3.6,а), то относительная рефрактерная фаза включает и пе­риод замедления реполяризации, и период гиперполяризации. Рис. 3.6.Фазовые изменениявозбудимости клетки (b) во времяПД (а).1,4-возбудимость повышена;2-абсолютная рефрактерная фаза;3-относительная рефрактерная фаза

4. Фаза экзальтации - это период повышенной возбудимости. Он соответствует следовой деполяризации. В нейронах ЦНС вслед за гиперполяризацией возможна частичная деполяризация клеточной мембраны. В эту фазу очередной ПД можно вызвать более слабым раздражением, поскольку мембранный потенциал несколько ниже обычного и оказывается ближе к критическому уровню деполяри­зации, что объясняют повышенной проницаемостью клеточной мембраны для ионов Nа + . Скорость протекания фазовых изменений возбудимости клетки определяет ее лабильность.

Б. Лабильность, или функциональная подвижность (Н.Е.Вве­денский)- это скорость протекания одного цикла возбуждения, т.е. ПД. Как видно из определения, лабильность ткани зависит от длительности ПД. Это означает, что лабильность, как и ПД, определяется скоростью перемещения ионов в клетку и из клет­ки, которая, в свою очередь, зависит от скорости изменения проницаемости клеточной мембраны. Особое значение при этом имеет длительность рефрактерной фазы: чем больше рефрактер­ная фаза, тем ниже лабильность ткани.

Потенциал действия

Физической основой возбуждения является потенциал действия. По сути своей потенциал действия представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки). В результате наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса.

Если ввести внутрь живой клетки электрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка?70 - ?90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся и катионы, и анионы. Снаружи - на порядок больше ионов натрия, кальция и хлора, внутри - ионов калия и отрицательно заряженных белковых молекул, аминокислот, органических кислот, фосфатов, сульфатов. Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Потенциал мембраны может изменяться под действием различных стимулов. Искусственным стимулом может служить электрический ток, подаваемый на внешнюю или внутреннюю сторону мембраны через электрод. В естественных условиях стимулом часто служит химический сигнал от соседних клеток, поступающий через синапс или путём диффузной передачи через межклеточную среду. Смещение мембранного потенциала может происходить в отрицательную (гиперполяризация) или положительную (деполяризация) сторону.

Для конкретики рассмотрим нервные клетки. В нервной ткани потенциал действия, как правило, возникает при деполяризации. По степени деполяризации раздражители могут быть подпороговыми, пороговыми и сверхпороговыми. При воздействии подпороговых раздражителей возникает так называемый локальный ответ - местная незначительная деполяризация мембраны, характеризуемая такими свойствами, как декрементность, суммация и градуальность.

Если деполяризация мембраны нейрона достигает некоторого порогового уровня или превышает его (пороговый и сверхпороговый раздражители), клетка возбуждается, и от её тела к аксонам и дендритам распространяется волна электрического сигнала - потенциал действия (рис. 3). Это обусловлено тем, что на мембране клетки находятся ионные каналы. Мембрана клеток возбудимых тканей (нервной, секреторной и мышечной) содержит большое количество потенциалзависимых ионных каналов, способных быстро реагировать на смещение мембранного потенциала. Деполяризация мембраны в первую очередь вызывает открытие потенциалзависимых натриевых каналов. Когда одновременно открывается достаточно много натриевых каналов, положительно заряженные ионы натрия устремляются через них на внутреннюю сторону мембраны.

Рис. 3.

Движущая сила в данном случае обеспечивается градиентом концентрации (с внешней стороны мембраны находится намного больше положительно заряженных ионов натрия, чем внутри клетки) и отрицательным зарядом внутренней стороны мембраны. Поток ионов натрия вызывает ещё большее и очень быстрое изменение мембранного потенциала, которое и называют потенциалом действия (в специальной литературе обозначается ПД).

По достижении значения мембранного потенциала 0 мВ деполяризация продолжается, переходя в стадию реверсии (перезарядки). В этот момент в формирование ПД включаются калиевые потенциал - зависимые каналы (медленные относительно натриевых), а натриевые каналы переходят в инактивированное состояние (закрываются). При достижении мембранного потенциала пикового значения - около 30 мВ - происходит нарастание восстановление его значения - реполяризация, обусловленная током ионов К в противоположную относительно Na сторону (из клетки по градиенту концентрации в межклеточную среду). При достижении исходного значения мембранного потенциала происходит непродолжительная гиперполяризация, обусловленная током ионов Cl в клетку (рис. 4).

Рис. 4.

Согласно закону «всё-или-ничего» мембрана клетки возбудимой ткани либо не отвечает на стимул совсем, либо отвечает с максимально возможной для неё на данный момент силой. То есть, если стимул слишком слаб и порог не достигнут, потенциал действия не возникает совсем; в то же время, пороговый стимул вызовет потенциал действия такой же амплитуды, как и стимул, превышающий пороговый. Это отнюдь не означает, что амплитуда потенциала действия всегда одинакова - один и тот же участок мембраны, находясь в разных состояниях, может генерировать потенциалы действия разной амплитуды.

При подробном рассмотрении ПД можно выделить 6 фаз его развития (рис. 5).

1. Медленная деполяризация - от МП до критического уровня деполяризации (КУД), по сути представляет собой локальный ответ на пороговый раздражитель.

2. Быстрая деполяризация - от КУД до 0 мВ, вызвана лавинообразным потоком ионов Naв клетку.

3. Реверсия (овершут, перехлест) - от 0 мВ до пика деполяризации, открываются K каналы, Naканалы инактивируются.

4. Быстрая реполяризация - от пика деполяризации до КУД, вызвана током ионов K из клетки.

5. Медленнаяреполяризация - от КУД до МП.

6. Гиперполяризация - перехлест через МП с восстановлением его значения, вызвана током ионов Clв клетку.


Рис. 5.

Рефрактерность и возбудимость

Инактивация натриевой системы в процессе генерации потенциала действия приводит к тому, что клетка в этот период не может быть повторно возбуждена, т. е. наблюдается состояние абсолютной рефрактерности. Постепенное восстановление потенциала покоя в процессе реполяризации дает возможность вызвать повторный потенциал действия, но для этого требуется сверхпороговый стимул, так как клетка находится в состоянии относительной рефрактерности.

Исследование возбудимости клетки во время локального ответа или во время отрицательного следового потенциала показало, что генерация потенциала действия возможна при действии стимула ниже порогового значения. Это состояние супернормальности (в фазу медленной реполяризации), или экзальтации (в фазу медленной деполяризации). И наконец, фаза гиперполяризации снижает возбудимость и проявляется в виде субнормального периода.

Продолжительность периода абсолютной рефрактерности ограничивает максимальную частоту генерации потенциалов действия данным типом клеток. Например, при продолжительности периода абсолютной рефрактерности 4 мс максимальная частота равна 250 Гц.

Рис. 6.

Н. Е. Введенский ввел понятие лабильности, или функциональной подвижности, возбудимых тканей. Мерой лабильности является количество потенциалов действия, которое способна генерировать возбудимая ткань в единицу времени. Очевидно, что лабильность возбудимой ткани в первую очередь определяется продолжительностью периода рефрактерности. Наиболее лабильными являются волокна слухового нерва, в которых частота генерации потенциалов действия достигает 1000 Гц.