Пузырек гольджи. Из каких компонентов состоит комплекс Гольджи

Строение

Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям, и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько соединённых трубками стопок.

В Комплексе Гольджи выделяют 3 отдела цистерн, окружённых мембранными пузырьками:

  1. Цис-отдел (ближний к ядру);
  2. Медиальный отдел;
  3. Транс-отдел (самый отдалённый от ядра).

Эти отделы различаются между собой набором ферментов. В цис-отделе первую цистерну называют "цистерной спасения", так как с её помощью рецепторы, поступающие из промежуточной эндоплазматической сети, возвращаются обратно. Фермент цис-отдела: фосфогликозидаза (присоединяет фосфат к углеводу - манназе). В медиальном отделе находится 2 фермента: манназидаза (отщепляет манназу) и N-ацетилглюкозаминтрансфераза (присоединяет определенные углеводы - гликозамины). В транс-отделе ферменты: пептидаза (осуществляет протеолиз) и трансфераза (осуществляет переброс химических групп).

Функции

  1. Сегрегация белков на 3 потока:
    • лизосомальный - гликозилированные белки (с маннозой) поступают в цис-отдел комплекса Гольджи, некоторые из них фосфорилируются, образуется маркёр лизосомальных ферментов - манноза-6-фосфат. В дальнейшем эти фосфорилированные белки не будут подвергаться модификации, а попадут в лизосомы.
    • конститутивный экзоцитоз (конститутивная секреция). В этот поток включаются белки и липиды, которые становятся компонентами поверхностного аппарата клетки, в том числе гликокаликса, или же они могут входить в состав внеклеточного матрикса.
    • Индуцируемая секреция - сюда попадают белки, которые функционируют за пределами клетки, поверхностного аппарата клетки, во внутренней среде организма. Характерен для секреторных клеток.
  2. Формирование слизистых секретов - гликозамингликанов (мукополисахаридов)
  3. Формирование углеводных компонентов гликокаликса - в основном, гликолипидов.
  4. Сульфатирование углеводных и белковых компонентов гликопротеидов и гликолипидов
  5. Частичный протеолиз белков - иногда за счет этого неактивный белок переходит в активный (проинсулин превращается в инсулин).

Транспорт веществ из эндоплазматической сети

Аппарат Гольджи асимметричен - цистерны, располагающиеся ближе к ядру клетки (цис -Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки - везикулы , отпочковывающиеся от гранулярного эндоплазматического ретикулума (ЭПР), на мембранах которого и происходит синтез белков рибосомами . Перемещение белков из эндоплазматической сети (ЭПС) в аппарат Гольджи происходит неизбирательно, однако не полностью или неправильно свернутые белки остаются при этом в ЭПС. Возвращение белков из аппарата Гольджи в ЭПС требует наличия специфической сигнальной последовательности (лизин -аспарагин -глутамин -лейцин) и происходит благодаря связыванию этих белков с мембранными рецепторами в цис-Гольджи.

Модификация белков в аппарате Гольджи

В цистернах аппарата Гольджи созревают белки предназначенные для секреции , трансмембранные белки плазматической мембраны , белки лизосом и т. д. Созревающие белки последовательно перемещаются по цистернам в органеллы, в которых происходят их модификации - гликозилирование и фосфорилирование . При О-гликозилировании к белкам присоединяются сложные сахара через атом кислорода . При фосфорилировании происходит присоединение к белкам остатка ортофосфорной кислоты.

Разные цистерны аппарата Гольджи содержат разные резидентные каталитические ферменты и, следовательно, с созревающими белками в них последовательно происходят разные процессы. Понятно, что такой ступенчатый процесс должен как-то контролироваться. Действительно, созревающие белки «маркируются» специальными полисахаридными остатками (преимущественно маннозными), по-видимому, играющими роль своеобразного «знака качества».

Не до конца понятно, каким образом созревающие белки перемещаются по цистернам аппарата Гольджи, в то время как резидентные белки остаются в большей или меньшей степени ассоциированы с одной цистерной. Существуют две взаимонеисключающие гипотезы, объясняющие этот механизм:

  • согласно первой, транспорт белков осуществляется при помощи таких же механизмов везикулярного транспорта, как и путь транспорта из ЭПР, причём резидентные белки не включаются в отпочковывающуюся везикулу;
  • согласно второй, происходит непрерывное передвижение (созревание) самих цистерн, их сборка из пузырьков с одного конца и разборка с другого конца органеллы, а резидентные белки перемещаются ретроградно (в обратном направлении) при помощи везикулярного транспорта.

Транспорт белков из аппарата Гольджи

В конце концов от транс -Гольджи отпочковываются пузырьки, содержащие полностью зрелые белки. Главная функция аппарата Гольджи - сортировка проходящих через него белков. В аппарате Гольджи происходит формирование «трехнаправленного белкового потока»:

  • созревание и транспорт белков плазматической мембраны;
  • созревание и транспорт секретов ;
  • созревание и транспорт ферментов лизосом.

С помощью везикулярного транспорта прошедшие через аппарат Гольджи белки доставляются «по адресу» в зависимости от полученных ими в аппарате Гольджи «меток». Механизмы этого процесса также не до конца понятны. Известно, что транспорт белков из аппарата Гольджи требует участия специфических мембранных рецепторов, которые опознают «груз» и обеспечивают избирательную стыковку пузырька с той или иной органеллой.

Образование лизосом

Все гидролитические ферменты лизосом проходят через аппарат Гольджи, где они получают «метку» в виде специфического сахара - маннозо-6-фосфата (М6Ф)- в составе своего олигосахарида . Присоединение этой метки происходит при участии двух ферментов. Фермент N-ацетилглюкозаминфосфотрансфераза специфически опознает лизосомальные гидролазы по деталям их третичной структуры и присоединяет N-ацетилглюкозаминфосфат к шестому атому нескольких маннозных остатков олигосахарида гидролазы. Второй фермент - фосфогликозидаза - отщепляет N-ацетилглюкозамин, создавая М6Ф-метку. Затем эта метка опознается белком-рецептором М6Ф, с его помощью гидролазы упаковываются в везикулы и доставляются в лизосомы. Там, в кислой среде, фосфат отщепляется от зрелой гидролазы. При нарушении работы N-ацетилглюкозаминфосфотрансферазы из-за мутаций или при генетических дефектах рецептора М6Ф все ферменты лизосом «по умолчанию» доставляются к наружной мембране и секретируются во внеклеточную среду. Выяснилось, что в норме некоторое количество рецепторов М6Ф также попадают на наружную мембрану. Они возвращают случайно попавшие во внешнюю среду ферменты лизосом внутрь клетки в процессе эндоцитоза.

Транспорт белков на наружную мембрану

Как правило, ещё в ходе синтеза белки наружной мембраны встраиваются своими гидрофобными участками в мембрану эндоплазматической сети. Затем в составе мембраны везикул они доставляются в аппарат Гольджи, а оттуда - к поверхности клетки. При слиянии везикулы с плазмалеммой такие белки остаются в ее составе, а не выделяются во внешнюю среду, как те белки, что находились в полости везикулы.

Секреция

Практически все секретируемые клеткой вещества (как белковой, так и небелковой природы) проходят через аппарат Гольджи и там упаковываются в секреторные пузырьки. Так, у растений при участии диктиосом секретируется материал

Комплекс Гольджи состоит из набора расширенных по краям уплощенных цистерн, сложенных в стопку и отпочковывающихся от цистерн пузырьков. Каждое такое скопление цистерн называется диктиосомой. Строение комплекса Гольджи зависит от типа и функционального состояния клеток. Количество цистерн в разных клетках варьирует, чаще всего в пределах 5-12-ти. Например, в секреторных клетках поджелудочной железы комплекс Гольджи имеет множество цистерн. Количество диктиосом в клетках также различно. Комплекс Гольджи располагается обычно между эндоплазматической сетью и плазматической мембраной. Часть комплекса Гольджи, обращенная к эндоплазматической сети, называется цис-полюсом, а удаленная от ЭС – транс-полюсом. В соответствии с полярностью комплекса Гольджи каждая сторона его цистерн имеет цис- и транс-поверхности.

При помощи транспортных пузырьков комплекс Гольджи получает белки из эндоплазматической сети. Здесь они подвергаются биохимической обработке, большую часть которой составляет прикрепление углеводных комплексов к белкам и липидам. Кроме этого, комплекс Гольджи сортирует их, и согласно назначению, «упаковывает» их в пузырьки, которые доставляют содержимое в лизосомы, пероксисомы, плазматическую мембрану, секреторные пузырьки. Предназначенные для секреции белки комплекс Гольджи упаковывает в пузырьки, мигрирующие по направлению к плазматической мембране. Достигшие плазматической мембраны пузырьки сливаются с плазматической мембраной клетки и освобождают своё содержимое путем экзоцитоза. Некоторые белки, предназначенные для экзоцитоза, могут длительно сохраняться в цитоплазме, освобождаясь под воздействием специфического стимула. Так, пищеварительные ферменты в клетках поджелудочной железы могут долго сохраняться в секреторных гранулах, освобождаясь только при поступлении пищи в кишечник.

Наряду с участием в процессинге (созревании) и сортировке секретируемых клеткой белков, формировании лизосом и секреторных гранул в секреторных клетках, комплекс Гольджи участвует в гидроосмотическом ответе клетки. В случае больших водных потоков цитоплазма обводняется, и вода частично собирается в крупных вакуолях комплекса Гольджи.

Рис. Комплекс Гольджи. Белки и липиды поступают в комплекс Гольджи с цис-стороны. Транспортные пузырьки переносят эти молекулы последовательно из одной цистерны в другую, где происходит их сортировка. Готовый продукт выходит из комплекса на транс-стороне, находясь в различных пузырьках. Часть пузырьков, содержащих белок, подвергается экзоцитозу; другие пузырьки транспортируют белки для плазматической мемраны и лизосом.

Основные типы перемещения внутри клетки – это поток белков и поток пузырьков (везикул). Одна из важнейших задач клетки – доставка молекул к различным отделам внутри клетки и во внеклеточное пространство. Существуют строго определенные пути внутриклеточного и межклеточного перемещения материала. Хотя в высокоспециализированных могут встречаться некоторые вариации, внутриклеточные потоки в эукариотических клетках обычно похожи. Например, хотя между органеллами иногда встречаются двунаправленные потоки, белковый и везикулярный потоки преимущественно однонаправлены – мембранные белки перемещаются из эндоплазматического ретикулума к клеточной поверхности.

Доставку веществ из одного отдела клетки к другому выполняют также специальные белки. В качестве сигнальных меток выступают специфические полипептидные последовательности этих белков. Важным открытием медицины за последние два десятилетия стало понимание того, что нарушение любого из таких транспортных путей может привести к заболеванию. Дефект сигнального маркера или локуса, узнающего маркер, может значительно нарушить здоровье, состояние клетки и организма. Детальное изучение этих путей необходимо для понимания молекулярной основы многих заболеваний человека.

Лизосомы (от греч. lysis – разложение, распад и греч. soma – тело) – окруженные мембраной органеллы (диаметром 0,2-0,8 мкм), присутствующие в цитоплазме всех эукариотических клеток. В клетках печени их насчитывают несколько сотен. Лизосомы образно называют мешочками с «оружием массового поражения», так как внутри них находится целый набор гидролитических ферментов, способных разрушить любой компонент клетки. Клетку спасает от разрушения не только лизосомальная мембрана. Лизосомальные ферменты работают в кислой среде (рН 4,5), которая внутри лизосомы поддерживается АТФ-зависимым протонным насосом. Первичные лизосомы отпочковываются от аппарата Гольджи в виде пузырьков, начиненных ферментами. Объекты, подлежащие разрушению, исходно могут находиться как внутри, так и вне клетки. Это могут быть состарившиеся митохондрии, эритроциты, компоненты мембран, гликоген, липопротеины и др. Состарившиеся митохондрии распознаются и заключаются в пузырек, который образуется из мембраны эндоплазматического ретикулума. Такие пузырьки называют аутофагосомами. Мембранные пузырьки, содержащие захваченные извне частицы, называют эндосомами. Аутофагосомы, фагосомы и эндосомы сливаются с первичными лизосомами, где и происходит переваривание поглощенных частиц и веществ. Отсутствие одного или нескольких ферментов чревато тяжелыми заболеваниями.

Известно около 40 лизосомных болезней (болезней накопления). Все они связаны с отсутствием в лизосомах того или иного гидролитического фермента. В результате внутри лизосом накапливается значительное количество субстрата недостающего фермента либо в форме интактных молекул, либо в виде частично расщепленных остатков. В зависимости от того, какой фермент отсутствует, может происходить накопление гликопротеинов, гликогена, липидов, гликолипидов, гликозаминогликанов (мукополисахаридов). Чрезмерно наполненные тем или иным веществом лизосомы препятствуют нормальному осуществлению клеточных функций и вследствие этого вызывают проявление заболеваний. Молекулярные механизмы лизосомных болезней обусловлены мутациями структурных генов, контролирующих процесс внутрилизосомного гидролиза макромолекул. Мутация может поражать синтез, процессинг (созревание) или транспорт самих лизосомных ферментов.

Пероксисомы – это везикулы (пузырьки) размером 0,1-1,5мкм, получившие свое название за способность образовывать перекись водорода. Эти мембранные пузырьки присутствуют в клетках млекопитающих. Они особенно многочисленны в клетках печени и почки. Пероксисомы выполняют как анаболические, так и катаболические функции. Они содержат в матриксе более 40 ферментов, катализирующих анаболические реакции биосинтеза желчных кислот из холестерина. Содержат также ферменты класса оксидаз. Оксидазы используют кислород для окисления различных субстратов, причем продуктом восстановления кислорода при этом является не вода, а перекись водорода. Перекись водорода, в свою очередь, сама окисляет другие субстраты (в том числе часть алкоголя в эпителиальных клетках печени и почек). В пероксисомах окисляются некоторые фенолы, d-аминокислоты, а также жирные кислоты с очень длинными (более 22 углеродных атомов) цепями, которые не могут быть до укорачивания окислены в митохондриях. Такие жирные кислоты содержатся в рапсовом масле. Продолжительность жизни пероксисом 5-6 суток. Новые пероксисомы возникают из предшествующих пероксисом путем их деления.

В настоящее время известно около 20-ти заболеваний человека, связанных с дисфункцией пероксисом. Все они имеют неврологическую симптоматику и проявляются в раннем детском возрасте. Тип наследования большинства пероксисомных болезней – аутосомно-рецессивный. Пероксисомные болезни могут быть обусловлены нарушением синтеза желчных кислот и холестерина, нарушением синтеза жирных кислот с длинной и разветвленной цепью, полиненасыщенных жирных кислот, дикарбоновых кислот и др. Известно редкое смертельное генетическое заболевание, вызываемое накоплением C 24 и C 26 - жирных кислот, а также предшественников желчных кислот.

Протеасомы – специальные клеточные «фабрики» по разрушению белков. Само название протеасома – (protos – главный, первичный и soma – тело) показывает, что это органоид, способный к протеолизу – лизису белков. Протеасомы содержат бочковидное ядро из 28 субъединиц и имеют коэффициент седиментации (осаждения) 20S. (S – единица Сведберга). 20S – протеасома имеет форму полого цилиндра 15-17 нм и диаметром 11-12 нм. Она состоит из 4 лежащих друг на друге колец двух типов. Каждое кольцо содержит 7 белковых субъединиц и включает 12-15 полипептидов. На внутренней стороне цилиндра находятся 3 протеолитические камеры. Протеолиз (разрушение белков) происходит в центральной камере и осуществляется с помощью ферментов-протеаз. В этой камере расщепляются белки, содержащие ошибки транскрипции, токсичные или ставшие ненужными клетке регуляторные белки. Например, белки-циклины, участвующие в регуляторных процессах при делении клетки.

Маркировкой ненужных белков занимается специфическая система ферментов – система убиквитирования. Система присоединяет белок убиквитин (ubique – вездесущий) к молекуле белка, который должен быть уничтожен. Сигналами для убиквитирования и последующей деградации могут служить нарушения в структуре белковых молекул. Имеются данные о связи некоторых наследственных заболеваний человека (фиброкистоз, синдром Ангельмана) с нарушениями в ферментных реакциях убиквитирования. Предполагается, что нарушения в работе протеасомной системы деградации белка являются причиной некоторых нейродегенеративных болезней.

Рис. Схематическое строение протеасомы и протеолитических камер.

Схема деградации белковых молекул в протеасомах

Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему трубочек и полостей, пронизывающих цитоплазму клетки. ЭПС образована мембраной, которая имеет такое же строение, как и плазматическая мембрана. Трубочки и полости ЭПС могут занимать до 50% объема клетки и нигде не обрываются и не открываются в цитоплазму. Различают гладкую и шероховатую (гранулярную) ЭПС. На шероховатой ЭПС расположено множество рибосом. Именно здесь синтезируется большинство белков. На поверхности гладкой ЭПС идет синтез углеводов и липидов.

Функции гранулярной эндоплазматической сети:

  • · синтез белков, предназначенных для выведения из клетки ("на экспорт");
  • · отделение (сегрегация) синтезированного продукта от гиалоплазмы;
  • · конденсация и модификация синтезированного белка;
  • · транспорт синтезированных продуктов в цистерны пластинчатого комплекса или непосредственно из клетки;
  • · синтез билипидных мембран.

Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы.

Функции гладкой эндоплазматической сети:

  • · участие в синтезе гликогена;
  • · синтез липидов;
  • · дезинтоксикационная функция - нейтрализация токсических веществ, посредством соединения их с другими веществами.

Комплекс (аппарат) Гольджи.

Система внутриклеточных цистерн, в которых накапливаются вещества, синтезированные клеткой, носит название комплекса (аппарата) Гольджи. Здесь же эти вещества претерпевают дальнейшие биохимические превращения, упаковываются в мембранные пузырьки и переносятся в те места цитоплазмы, где они необходимы, или же транспортируются к клеточной мембране и выходят за пределы клетки (рис. 32). Комплекс Гольджи построен из мембран и расположен рядом с ЭПС, но не сообщается с ее каналами. Поэтому все вещества, синтезированные на мембранах ЭПС, переносятся в комплекс Гольджи внутри мембранных пузырьков, отпочковывающихся от ЭПС и сливающихся затем с комплексом Гольджи. Еще одна важная функция комплекса Гольджи -- это сборка мембран клетки. Вещества, из которых состоят мембраны (белки, липиды), поступают в комплекс Гольджи из ЭПС, в полостях комплекса Гольджи собираются участки мембран, из которых изготовляются особые мембранные пузырьки. Они передвигаются по цитоплазме в те места клетки, где требуется достроить мембрану.

Функции аппарата Гольджи:

  • · сортировку, накопление и выведение секреторных продуктов;
  • · накопление молекул липидов и образование липопротеидов;
  • · образование лизосом;
  • · синтез полисахаридов для образования гликопротеидов, восков, камеди, слизей, веществ матрикса клеточных стенок растений;
  • · формирование клеточной пластинки после деления ядра в растительных клетках;
  • · формирование сократимых вакуолей простейших.

Структура аппарата Гольджи

Описание структуры аппарата Гольджи тесно связано с описанием его основных биохимических функций, поскольку подразделение этогоклеточного компартмента на отделы производится преимущественно на основе локализации ферментов, расположенных в том или ином отделе.

Чаще всего в аппарате Гольджи выделяют четыре основных отдела: цис-Гольджи, медиал-Гольджи, транс-Гольджи и транс-Гольджи сеть (TGN)

Кроме того к аппарату Гольджи иногда относят так называемый промежуточный компартмент, представляющий собой скопление мембранных пузырьков между эндоплазматическим ретикулумом и цис-Гольджи. Аппарат Гольджи является очень полиморфной органеллой; в клетках разных типов и даже на разных стадиях развития одной и той же клетки он может выглядеть по-разному. Основные его характеристики таковы:

1) наличие стопки из нескольких (обычно 3-8) уплощенных цистерн, более или менее плотно прилегающих друг к другу. Такая стопка всегда бывает окружена некоторым (иногда очень значительным) количеством мембранных пузырьков. В животных клетках чаще можно встретить одну стопку, в то время как в растительных клетках их обычно бывает несколько; каждую из них в таком случае называют диктиосомой. Отдельные диктиосомы могут быть связаны между собой системой вакуолей, образуя трехмерную сеть;

2) композиционная гетерогенность, выражающаяся в том, что постоянные (resident) ферменты неоднородно распределены по органелле;

3) полярность, то есть наличие цис-стороны, обращенной к эндоплазматическому ретикулуму и ядру, и транс-стороны,обращенной к поверхности клетки (это особенно характерно для секретирующих клеток);

4) ассоциация с микротрубочками и областью центриоли. Разрушение микротрубочек деполимеризующими агентами приводит к фрагментации аппарата Гольджи, однако его функции при этом существенно не затрагиваются. Аналогичная фрагментация наблюдается и в естественных условиях, во время митоза. После восстановления системы микротрубочек разбросанные по клетке элементы аппарата Гольджи собираются (по микротру-бочкам) в область центриоли,и реконструируется нормальный комплекс Гольджи.

Аппарат Гольджи (комплекс Гольджи) - мембранная структура эукариотической клетки, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме. Комплекс Гольджи был назван так в честь итальянского ученого Камилло Гольджи, впервые обнаружившего его в 1898 году.

Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько соединенных трубками стопок.

В цистернах Аппарата Гольджи созревают белки предназначенные для секреции, трансмембранные белки плазматической мембраны, белки лизосом и т.д. Созревающие белки последовательно перемещаются по цистернам органеллы, в которых происходит их окончательное сворачивание, а также модификации - гликозилирование и фосфорилирование.

Аппарат Гольджи ассиметричен - цистерны располагающиеся ближе к ядру клетки (цис-Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки - везикулы, отпочковывающиеся от гранулярного эндоплазматического ретикулума (ЭР), на мембранах которого и происходит синтез белков рибосомами.

Разные цистерны Аппарата Гольджи содержат разные резидентные каталитические ферменты и, следовательно, с созревающими белками в них последовательно происходят разные процессы. Понятно, что такой ступенчатый процесс должен как-то контролироваться. Действительно, созревающие белки «маркируются» специальными полисахаридными остатками (преимущественно маннозными), по-видимому, играющими роль своебразного «знака качества».

Не до конца понятно, каким образом созревающие белки перемещаются по цистернам Аппарата Гольджи, в то время как резидентные белки остаются в большей или меньшей степени ассоциированы с одной цистерной. Существуют две взаимонеисключающие гипотезы, объясняющие этот механизм. Согласно первой, транспорт белков осуществляется при помощи таких же механизмов везикулярного транспорта, как и путь транспорта из ЭР, причем резидентные белки не включаются в отпочковывающуюся везикулу. Согласно второй, происходит непрерывное передвижение (созревание) самих цистерн, их сборка из пузырьков с одного конца и разборка с другого конца органеллы, а резидентные белки перемещаются ретроградно (в обратном направлении) при помощи везикулярного транспорта.

В конце концов от противоположного конца органеллы (транс-Гольджи) отпочковываются пузырьки, содержащие полностью зрелые белки.

В комплексе Гольджи происходит

1. О-гликозилирование, к белкам присоединяются сложные сахара через атом кислорода.

2. Фосфорилирование (присоединение к белкам остатка ортофосфорной кислоты).

3. Образование лизосом.

4. Образование клеточной стенки (у растений).

5. Участие в везикулярном транспорте (формирование трехбелкового потока):

6. созревание и транспорт белков плазматической мембраны;

7. созревание и транспорт секретов;

8. созревание и транспорт ферментов лизосом.

Аппарат Гольджи. Аппарат Гольджи (комплекс Гольджи) – это специализированная часть эндоплазматического ретикулума, состоящая из собранных в стопки плоских мембранных мешочков. Он участвует в секреции клеткой белков (в нем происходит упаковка секретируемых белков в гранулы) и поэтому особенно развит в клетках, выполняющих секреторную функцию. К важным функциям аппарата Гольджи относится также присоединение углеводных групп к белкам и использование этих белков для построения клеточной мембраны и мембраны лизосом. У некоторых водорослей в аппарате Гольджи осуществляется синтез волокон целлюлозы.

Функции аппарата Гольджи

Функцией аппарата Гольджи является транспорт и химическая модификация поступающих в него веществ. Исходным субстратом для ферментов являются белки, поступающие в аппарат Гольджи из эндоплазматического ретикулума. После модификации и концентрирования, ферменты в пузырьках Гольджи переносятся к «месту назначения», например к месту образования новой почки. Наиболее активно этот перенос осуществляется с участием цитоплазматических микротрубочек.

Функции аппарата Гольджи очень многообразны. К ним можно отнести:

1) сортировку, накопление и выведение секреторных продуктов;

2) завершение посттрансляционной модификации белков (гликозилирование, сульфатирование и т.д.);

3) накопление молекул липидов и образование липопротеидов;

4) образование лизосом;

5) синтез полисахаридов для образования гликопротеидов, восков, камеди, слизей, веществ матрикса клеточных стенок растений

(гемицеллюлоза, пектины) и т.п.

6) формирование клеточной пластинки после деления ядра в растительных клетках;

7) участие в формировании акросомы;

8) формирование сократимых вакуолей простейших.

Этот список, без сомнения, неполон, и дальнейшие исследования не только позволят лучше понять уже известные функции аппарата Гольджи, но и приведут к открытию новых. Пока самыми изученными с биохимической точки зрения остаются функции, связаные с транспортом и модификацией новосинтезированных белков.



Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям, и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько, соединённых трубками, стопок.

1. Накапливает и выводит органические вещества, синтезируемые в эндоплазматической сети

2. Образует лизосомы

3. Формирование углеводных компонентов гликокаликса - в основном, гликолипидов.

Лизосомы представляют собой неотъемлемую часть состава клетки. Они являются разновидностью везикул. Эти клеточные помощники, являясь частью вакуома, покрыты оболочкой из мембраны и наполнены гидролитическими ферментами. Важность существования лизосом внутри клетки обеспечена секреторной функцией, которая необходима в процессе фагоцитоза и аутофагоцитоза.

Выполняют пищеварительную функцию - переваривают пищевые частицы и удаляют отмершие органоиды.

Первичные лизосомы - это мелкие мембранные пузырьки, которые имеют деаметр около ста нм, заполненные гомогенным мелкодисперсным содержимым, являющим собой набор гидролитических ферментов. В лизосомах есть около сорока ферментов.

Вторичные лизосомы образуются при слиянии первичных лизосом с эндоцитозными либо с пиноцитозными вакуолями. Если сказать иначе, то вторичные лизосомы - это внутриклеточные пищеварительные вакуоли, ферменты которых поставляются первичными лизосомами, а материал для переваривания - эндоцитозной (пиноцитозной) вакуолью.

19. Эпс, ее разновидности, роль в процессах синтеза веществ.

Эндоплазматическая сеть в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка этих образований состоит из билипидной мембраны и включенных в нее некоторых белков и отграничивает внутреннюю среду эндоплазматической сети от гиалоплазмы.

Различают две разновидности эндоплазматической сети:

    зернистая (гранулярная или шероховатая);

    незернистая или гладкая.

На наружной поверхности мембран зернистой эндоплазматической сети содержатся прикрепленные рибосомы. В цитоплазме могут быть обе разновидности эндоплазматической сети, но обычно преобладает одна форма, что и обуславливает функциональную специфичность клетки. Следует помнить, что названные две разновидности являются не самостоятельными формами эндоплазматической сети, так как можно проследить переход зернистой эндоплазматической сети в гладкую и наоборот.

Функции зернистой эндоплазматической сети:

    синтез белков, предназначенных для выведения из клетки ("на экспорт");

    отделение (сегрегация) синтезированного продукта от гиалоплазмы;

    конденсация и модификация синтезированного белка;

    транспорт синтезированных продуктов в цистерны пластинчатого комплекса или непосредственно из клетки;

    синтез билипидных мембран.

Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы.

Функции гладкой эндоплазматической сети:

    участие в синтезе гликогена;

    синтез липидов;

    дезинтоксикационная функция - нейтрализация токсических веществ, посредством соединения их с другими веществами.

Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы - диктиосомы. Каждая диктиосома представляет собой стопку уплощенных цистерн, по периферии которых локализуются мелкие пузырьки. При этом, в каждой уплощенной цистерне периферическая часть несколько расширена, а центральная сужена.