Сфера из двух треугольников. Что такое геодезический купол

Сферический треугольник и основные формулы сферической тригонометрии

Многие задачи астрономии, связанные с видимыми положениями и движениями небесных тел, сводятся к решению сферических треугольников.

Сферическим треугольником называется фигура АВС на поверхности сферы, образованная дугами трех больших кругов (рис. 15).

Углами сферического треугольника называются двугранные углы между плоскостями больших кругов, образующих стороны сферического треугольника. Эти углы измеряются плоскими углами при вершинах треугольника между касательными к его сторонам.

Обычно рассматриваются треугольники, углы и стороны которых меньше 180°. Для таких сферических треугольников сумма углов всегда больше 180°, но меньше 540°, а сумма сторон всегда меньше 360°. Разность между суммой трех углов сферического треугольника и 180° называется сферическим избытком σ , т.е.

σ = DA +DB +DC - 180°.

Площадь сферического треугольника s равна

Где R - радиус сферы, на поверхности которой образован треугольник.

Сферический треугольник, таким образом, отличается по своим свойствам от плоского, и применять к нему формулы тригонометрии на плоскости нельзя.

Возьмем сферический треугольник АВС (рис. 15), образованный на сфере радиуса R и с центром в точке О.

Из вершины А проведем касательные AD и АЕ к сторонам b и с до пересечения их с продолжениями радиусов ОС и 0В, лежащих в одной плоскости с соответствующей касательной. Соединив прямой точки пересечения D и Е, получим два плоских косоугольных треугольника ADE и ODE с общей стороной DE. Применяя к этим треугольникам теоремы элементарной геометрии, напишем:

DE 2 = OD 2 + ОЕ 2 - 2OD× ОЕ × cos a,

DE 2 = AD 2 + АЕ 2 - 2AD× АЕ× cos A.

Вычитанием второго равенства из первого получим:

2OD × ОЕ× cos a = OD 2 - AD 2 + ОЕ 2 - АЕ 2 + 2AD × АЕ × cos A. (1.31)

Из прямоугольных плоских треугольников ОАЕ и ОАD следует:

OD 2 -AD 2 =R 2 ;OE 2 -AE 2 =R 2 ;

AD = R tg b ; АЕ = R tg с;

Подставив эти соотношения в формулу (1.31) и произведя соответствующие сокращения и переносы, получим

cos а = cos b cos с + sin b sin с cos A , (1.32)

т.е. косинус стороны сферического треугольника равен произведению косинусов двух других его сторон плюс произведение синусов тех же сторон на косинус угла между ними.

Формулу (1.32) можно написать для любой стороны треугольника. Напишем ее, например, для стороны b:

cos b = cos с cos a + sin с sin a cos B

и, подставив в нее cos aиз формулы (1.32), получим

cos b = cos с (cos b cos с + sin b sin с cos A) + sin с sin a cos B.

Раскрыв скобки и перенеся первый член правой части в левую, будем иметь:

cos b (1 - cos 2 с) = sin b sin с cos с cos A + sin c sin a cos B.

Заменив (1 - cos 2 с) на sin 2 с и сократив все на sin c, окончательно получим

sin a cos В = sinc cos b - cos c sin b cos A, (1.33)

т.е. произведение синуса стороны на косинус прилежащего угла равняется произведению синуса другой стороны, ограничивающей прилежащий угол, на косинус третьей стороны минус произведение косинуса стороны, ограничивающей прилежащий угол, на синус третьей стороны и на косинус угла, противолежащего первой стороне.

Формула (1.33) называется формулой пяти элементов. Ее можно написать по аналогии и для произведений sin a cos С, sin b cos A, sin b cos С, sin с cos A и sin с cos В.

Решим теперь равенство (1.32) относительно cos A:

Возведя обе части последнего равенства в квадрат и вычтя их из 1, получим:

Раскрыв скобки и разделив обе части этого выражения на sin 2 а, получим

Полученное выражение совершенно симметрично относительно a, b и с, и заменяя A на В, а на b или A на С и а на с, напишем

т.е. синусы сторон сферического треугольника пропорциональны синусам противолежащих им углов; или отношение синуса стороны сферического треугольника к синусу противолежащего угла есть величина постоянная.

Три выведенных соотношения (1.32), (1.33), (1.34) между сторонами и углами сферического треугольника являются основными; из них можно получить много других формул сферической тригонометрии. Мы ограничимся выводом одной только формулы для прямоугольного сферического треугольника. Положим А = 90°; тогда sin А = 1, cos A = 0, и из формулы (1.33) получим

sin a cos В = sin с cos b.

Разделив обе части этого равенства на sin b и заменивна, согласно (1.34), будем иметь:

ctg B = sin c ctg b

т.е. отношение тангенса одного катета прямоугольного сферического треугольника к тангенсу противолежащего угла равно синусу другого катета.

Для представления в компьютере информации об образе на гауссовой сфере имеет смысл разбить ее поверхность на ячейки.

При этом с каждой ячейкой связывается площадь той части исходной поверхности, которая ориентирована внутри конуса направлений, определяемых ячейкой разбиения. Такая дискретная аппроксимация расширенного сферического образа называется гистограммой ориентации. В идеале ячейки должны удовлетворять следующим требованиям:

Иметь одну и ту же площадь;

Быть одинаковой формы;

Быть регулярно расположенными;

Обладать округлой формой;

Разбиение должно обеспечивать достаточно хорошее угловое разрешение;

Должны существовать повороты, которые переводят разбиение само в себя.

Вытянутые ячейки необходимо исключить, поскольку им будет соответствовать информация об участках поверхности, ориентация на которых изменяется сильнее, чем в случае более округлых ячеек той же площади. В то же время если ячейки будут располагаться регулярно, то их расположение по отношению к соседям будет одинаковым для всех ячеек, и такие конфигурации весьма желательны. К сожалению, удовлетворить всем перечисленным требованиям одновременно невозможно.

Одно из возможных разбиений образуется широтными поясами, каждый из которых затем подразделяется меридиональными полосами (рис. 16.13). Получающиеся в результате ячейки можно сделать почти равными по площади, если число таких полос на больших широтах будет уменьшаться. Одно из преимуществ такой схемы - простота нахождения ячейки, к которой необходимо приписать определенную нормаль к поверхности. Все же подобный способ слишком далек от того, чтобы удовлетворять перечисленным выше требованиям. Например, не существует поворотов, с помощью которых построенное разбиение сферы переводится само в себя (кроме вращений относительно оси, соединяющей полюса).

Более подходящие разбиения можно получить путем проекции на единичную сферу правильных многогранников, центры которых совпадают с центром сферы. Грани правильного многогранника являются правильными многоугольниками (причем все они одинаковы). Следовательно, разбиение, полученное проекцией правильного многогранника, обладает тем свойством, что все ячейки обладают одной и той же формой и площадью. Кроме того, геометрическое расположение всех ячеек по отношению к соседям одинаково. К сожалению,

Рис. 16.13. Разбиение сферы на элементы меридианами и параллелями. К сожалению, такое разбиение обладает лишь немногими свойствами, требуемыми для хранения гистограммы ориентации.

Рис. 16.14. (см. скан) Проектирование додекаэдра и икосаэдра на единичную сферу для получения разбиения на и ячеек.

известно лишь пять правильных тел, из которых и приходится выбирать (тетраэдр, гексаэдр, октаэдр, додекаэдр и икосаэдр). Для додекаэдра ячейки достаточно округлы (рис. 16.14, а). Додекаэдр, однако, обладает всего двенадцатью гранями. Даже икосаэдр дает весьма грубое представление ориентации (рис. 16.14, б). К тому же двадцать его ячеек не слишком округлы.

Мы можем пойти дальше и рассмотреть полуправильные многогранники. Их грани также правильные многоугольники, но при этом необязательно одинаковые. Не равны и площади всех граней. В некоторых случаях удается построить новый многогранник, имеющий ту же топологию связей между гранями, что и исходный полуправильный многогранник, но площади граней которого равны между собой. При этом

Рис. 16.15. а - усеченный икосаэдр, представляющий собой полуправильный многогранник с 32 гранями; б - пента до декаэдр, состоящий из 60 треугольных граней. Более мелкие разбиеиия поверхности единичной сферы могут основываться на таких полуправильных многа-гранниках.

Рис. 16.16. Возможность построения геодезических сетей, основанных на любой из проекций правильных или полуправильных многогранников.

Каждая грань подразделяется на треугольные ячейки. Приведенная здесь сеть базируется на икосаэдре и имеет 12 вершин, к которым примыкают 5 ячеек. В остальных вершинах сходятся шесть ячеек.

форма некоторых граней уже перестает быть правильной. Пример разбиения, основанного на полуправильном многограннике, дает футбольный мяч (рис. 16.15, а). В качестве исходного здесь взят усеченный икосаэдр, т. е. тело, имеющее 12 пятиугольных и 20 шестиугольных граней. К сожалению, существует лишь 13 полуправильных многогранников (пять усеченных правильных многогранников, кубооктаэдр, икосододекаэдр, плосконосый куб, плосконосый икосододекаэдр, усеченный кубооктаэдр, ромбоокубоктаэдр, усеченный икосододекаэдр и ромбоикосододекаэдр). Они не приводят к достаточно мелким для наших целей разбиениям.

Если нам все же желательно получить более мелкое разбиение, то мы можем попытаться разложить уже имеющееся на треугольные элементы. Например, если разбить каждую из пятиугольных граней додекаэдра на пять равных треугольников, то получим пентадодекаэдр с 60 гранями (рис. 16.15, б). Ом является двойственным по отношению к усеченному икосаэдру.

Действуя в том же направлении, можно подразделить каждый из полученных треугольников на четыре меньших треугольника в полном соответствии с хорошо известными в геодезии куполообразными конструкциями (рис. 16.16). Смягчением некоторых из перечисленных выше требований можно достичь высокого разрешения. На самом деле, лучше использовать двойственные конструкции, так как их грани в подавляющем большинстве являются (неправильными) шестиугольниками с рассредоточенными между ними 12 пятиугольниками (рис. 16.15, б). Этим способом можно обеспечить сколь угодно мелкие разбиения.

Чтобы использовать этот подход, необходимо уметь эффективно определять тот элемент, которому соответствует заданная нормаль к поверхности. В случае разбиений, полученных на основе правильных многогранников, легко вычислить косинусы углов между заданным единичным вектором и векторами, соответствующими центрам ячеек. (Последние соответствуют вершинам двойственного

правильного многогранника.) Затем заданный вектор приписывается той ячейке, центр которой оказывается ближе всего. В случае разбиения, подобного геодезической сети, можно действовать иерархическим методом. В основе такого разбиения лежит некоторый правильный многогранник. Ячейка с ближайшим центром находится описанным выше способом. После этого определяем, в который из треугольников, ее подразделяющих, попадает единичный вектор нормали. Этот процесс продолжается для следующих четырех треугольников, подразделяющих найденный, и т. д. На практике можно использовать методы просмотра таблиц, которые, хотя и не являются точными, зато очень быстры.

Пусть телесный угол, заполненный одной ячейкой на сфере, равняется (в случае икосаэдра ). Ожидаемое число нормалей, которые попадут внутрь такой ячейки, для выпуклого объекта составляет

Ясно, что гистограмму ориентации, т. е. дискретную аппроксимацию расширенного сферического образа, можно вычислить локально. Мы просто подсчитываем количество нормалей, принадлежащих каждой ячейке. В то же время гауссова кривизна выражается через первые и вторые частные производные функции, задающей поверхность. Практически оценки этих производных из-за наличия помех оказываются ненадежными. Поэтому то обстоятельство, что расширенный сферический образ можно вычислить без вычисления производных, является весьма важным.

Сферические треугольники.

На поверхности шара кратчайшее расстояние между двумя точками измеряется вдоль окружности большого круга, т. е. окружности, плоскость которой проходит через центр шара. Вершины сферического треугольника являются точками пересечения трех лучей, выходящих из центра шара, и сферической поверхности. Сторонами а, b, с сферического треугольника называют те углы между лучами, которые меньше 180°. Каждой стороне треугольникасоответствует дуга большого круга на поверхности шара (рис. 1). Углы A, В, С сферического треугольника, противолежащие сторонам а, b, с соответственно, представляют собой, по определению, меньшие, чем 180°, углы между дугами больших кругов, соответствующими сторонам треугольника, или углы между плоскостями, определяемыми данными лу-чами.

Свойства сферических треу-гольников.

Каждая сторона и угол сфери-ческого треугольника по определению мень-ше 180°. Геометрия на поверхности шара являет-ся неевклидовой; в каждом сферическом треугольнике сумма сторон заключена между 0 и 360°, сумма углов заключена между 180° и 540°. В каждом сферическом треуголь-нике против большей стороны лежит больший угол. Сумма любых двух сторон больше третьей стороны, сумма любых двух углов меньше, чем 180° плюс третий угол.

Сферический треугольник единственным образом определяется (с точностью до преобразования симметрии):

  • тремя сторонами,
  • тремя углами,
  • двумя сторонами и заключенным между ними углом,
  • стороной и двумя прилежащими к ней углами.

Решение сферических треугольников (Таблица)

(смотрите формулы ниже и рис. 1 выше)

Формулы для вычисления

Условия существования решения

1

Три стороны

а, Ь, с

А, В, С

Сумма двух сторон должна быть больше третьей

2

А, В, С

а, Ь, с из (8) и циклической перестановки

Сумма двух углов должна быть меньше 180° плюс третий угол

3

Две стороны и заключенный между ними угол

b, с, А

из (6), затем В и С ; а из (7), (8) или (4)

4

Два угла и заключенная между ними сторона

В, С, а

из (6), затем b и с; А из (7), (8) или (5)

5

Две стороны и противолежащий одной из них угол

Ь, с, В

С из (3); А и а из (6)

sin с sin В ≤ sin b .

Сохраняются те из величин с , для которых А - В и а - b имеют одинаковый знак;

A + B - 180°

и а + b - 180°

6

Два угла и противолежащая одному из них сторона

В, С, b

с из (3); А и а из (6)

Задача имеет одно или два решения, если

sin b sin С ≤ sin В .

Сохраняются те из величин с , для которых A - В и а - b имеют одинаковый знак;

A + В - 180°

и а + Ь - 180°

также должны быть одного знака

Формулы для решения сферических треугольников

В следующих ниже соотношениях А, В, С являются углами, противолежащими соответственно сторонам а, b, с сферического треугольника. «Радиусы» описанного и вписанного конусов обозначены соответственно через г и р. Формулы, не включенные в перечень, могут быть получены одновременной циклической перестановкой А, В, С и а, Ь, с . Таблица выше позволяет вы-числять стороны и углы любого сферического треугольника потрем подходящим образом заданным сторонам и/или углам. Неравенства, отмеченные в начале п. 2, должны быть приняты во внимание, для того чтобы исключить посторонние результаты при решении треугольников.

теорема синусов

теорема косинусов для сторон

теорема косинусов для углов

аналогии Непера

аналогии Деламбра и Гаусса

Таким образом, если имеются в наличии таблицы функции hav, то для решения сфе-рических треугольников можно использовать эти формулы:

Другие аналогичные соотношения можно получить циклической перестановкой

История этой демки такова: однажды один мой друг сделал для своей игры генератор карт планет и захотел, чтобы созданные таким образом карты показывались в виде вращающейся сферы. Однако, при этом он не хотел использовать 3D-графику, а вместо этого сгенерировал множество кадров с этой самой сферой, повёрнутой на разные углы. Количество используемой памяти было… скажем так, избыточным, ну а скорость генерации кадров (как и качество их исполнения) сильно страдала. Чуть подумав, мне удалось помочь ему оптимизировать этот процесс, но в целом меня не покидало справедливое ощущение того, что это задача для OpenGL, а вовсе не для 2D-графики.

И вот, однажды, когда меня мучила бессонница, я решил попробовать совместить эти два подхода: нарисовать вращающуюся сферу (с натянутой на неё картой планеты) через OpenGL, но при этом оставив её плоской.

И должен сказать, что у меня это получилось. Но обо всём по порядку.

Математика процесса

Для начала определимся с собственно задачей. Для каждой точки на экране у нас имеются две экранные координаты в декартовой системе координат, и нам необходимо найти для неё сферические координаты (фактически, широту и долготу), которые по сути и являются текстурными координатами для карты планеты.

Итак. Переход от декартовой системы координат к сферической задаётся системой уравнений (взято с Википедии):

а обратный переход - такими уравнениями:

Координату Z мы легко можем получить из X и Y , зная радиус, а сам радиус мы можем принять равным единице.
В дальнейшем договоримся о том, что приведённые выше уравнения мы слегка изменим, поменяв местами понятия Y (у нас это будет экранная вертикаль) и Z (это будет глубина сцены).

Техническая часть

Реализация идеи потребует от нас применения квада (я уже писал о том, как его использовать, поэтому повторяться не буду, тем более что ниже приведена ссылка на полный исходный код проекта), а также двух текстур: собственно карты планеты (я использовал текстуру Земли размера 2048x1024) и карты текстурных координат. Код генерации второй текстуры аккуратно повторяет математику преобразования из декартовых координат в сферические:

Int texSize = 1024; double r = texSize * 0.5; int pixels = new int; for (int row = 0, idx = 0; row < texSize; row++) { double y = (r - row) / r; double sin_theta = Math.sqrt(1 - y*y); double theta = Math.acos(y); long v = Math.round(255 * theta / Math.PI); for (int col = 0; col < texSize; col++) { double x = (r - col) / r; long u = 0, a = 0; if (x >= -sin_theta && x <= sin_theta) { double z = Math.sqrt(1 - y*y - x*x); double phi = Math.atan2(z, x); u = Math.round(255 * phi / (2 * Math.PI)); a = Math.round(255 * z); } pixels = (int) ((a << 24) + (v << 8) + u); } } GLES20.glGenTextures(1, genbuf, 0); offsetTex = genbuf; if (offsetTex != 0) { GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, offsetTex); GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_NEAREST); GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_NEAREST); GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_S, GLES20.GL_NONE); GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_T, GLES20.GL_NONE); GLES20.glTexImage2D(GLES20.GL_TEXTURE_2D, 0, GLES20.GL_RGBA, texSize, texSize, 0, GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, IntBuffer.wrap(pixels)); }

Отметим, что координаты X и Y переводятся из диапазона в диапазон [-1..1], а текстурные координаты U и V переводятся из радианов в диапазон , после чего записываются соответственно в красную и зелёную компоненты 32-битной текстуры. Альфа-канал используется для сохранения «глубины» (координаты Z ), а синий пока остаётся незадействованным. Отключение билинейной фильтрации также не случайно: на данном этапе она не даёт какого-либо эффекта (соседние точки в любом случае имеют одни и те же значения, с довольно резкими скачками), а в том, что я собираюсь показать дальше, она и вовсе будет вредна. Но об этом ниже.

Private final String quadFS = "precision mediump float;n" + "uniform sampler2D uTexture0;n" + "uniform sampler2D uTexture1;n" + "uniform float uOffset;n" + "varying vec4 TexCoord0;n" + "void main() {n" + " vec4 vTex = texture2D(uTexture0, TexCoord0.xy);n" + " vec3 vOff = vTex.xyz * 255.0;n" + " float hiY = floor(vOff.y / 16.0);n" + " float loY = vOff.y - 16.0 * hiY;n" + " vec2 vCoord = vec2(n" + " (256.0 * loY + vOff.x) / 4095.0 + uOffset,n" + " (vOff.z * 16.0 + hiY) / 4095.0);n" + " vec3 vCol = texture2D(uTexture1, vCoord).rgb;n" + " gl_FragColor = vec4(vCol * vTex.w, (vTex.w > 0.0 ? 1.0: 0.0));n" + "}n";

Ну это же совсем другое дело! С небольшими изменениями (добавив масштабирование «щипком» и вращение пальцем) я эту программу показывал своим друзьям и колегам, и при этом спрашивал, сколько, по их мнению, в этой сцене треугольников. Результаты варьировались, да и сам вопрос вызывал подозрение в наличии подвоха (в этом случае респонденты шутили «один», что было недалеко от истины), но правильный ответ стабильно удивлял. И все, как один, спрашивали: а почему сферу можно крутить вокруг одной оси, но нельзя наклонять?.. Хм.

Наклон

А дело в том, что наклон в этой схеме реализовать существенно труднее. На самом деле, задача не является неразрешимой, и я с ней даже справился, но не обошлось без нюансов.

В сущности, задача сводится к тому, чтобы взять смещённую координату V , тогда как координата U не меняется: это происходит потому, что мы добавляем вращение вокруг оси X . План такой: преобразуем текстурные координаты в экранные (в диапазоне [-1..1]), применяем к ним матрицу поворота вокруг горизонтальной оси (для этого заранее запишем в новую константу uTilt синус и косинус угла наклона), а дальше воспользуемся новой координатой Y для выборки в нашей шаблонной текстуре. «Повёрнутая» координата Z нам тоже пригодится, с её помощью мы отзеркалим долготу для обратной стороны шарика). Экранную координату Z придётся посчитать явно, чтобы не делать две текстурных выборки из одной текстуры, заодно это повысит её точность.

Private final String quadFS = "precision mediump float;n" + "uniform sampler2D uTexture0;n" + "uniform sampler2D uTexture1;n" + "uniform float uOffset;n" + "uniform vec2 uTilt;n" + "varying vec4 TexCoord0;n" + "void main() {n" + " float sx = 2.0 * TexCoord0.x - 1.0;n" + " float sy = 2.0 * TexCoord0.y - 1.0;n" + " float z2 = 1.0 - sx * sx - sy * sy;n" + " if (z2 > 0.0) {;n" + " float sz = sqrt(z2);n" + " float y = (sy * uTilt.y - sz * uTilt.x + 1.0) * 0.5;n" + " float z = (sy * uTilt.x + sz * uTilt.y);n" + " vec4 vTex = texture2D(uTexture0, vec2(TexCoord0.x, y));n" + " vec3 vOff = vTex.xyz * 255.0;n" + " float hiY = floor(vOff.y / 16.0);n" + " float loY = vOff.y - 16.0 * hiY;n" + " vec2 vCoord = vec2(n" + " (256.0 * loY + vOff.x) / 4095.0,n" + " (vOff.z * 16.0 + hiY) / 4095.0);n" + " if (z < 0.0) { vCoord.x = 1.0 - vCoord.x; }n" + " vCoord.x += uOffset;n" + " vec3 vCol = texture2D(uTexture1, vCoord).rgb;n" + " gl_FragColor = vec4(vCol * sz, 1.0);n" + " } else {n" + " gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);n" + " }n" + "}n";

Ура, наклон удался! Вот только странный шум на границе полушарий немного смущает. Увы, с этим мне пока не удалось справиться. Очевидно, проблема кроется в недостаточной точности адресации в граничных точках (точки на самой окружности соответствуют слишком большому диапазону координат, один тексель расползается на интервал довольно заметной длины), и с этим вряд ли что-то можно поделать. Что ж, зато можно приближать и скроллить шарик почти так же, как в Google Earth. С тем отличием, что здесь - всего-навсего два треугольника.

Давно посещали меня мысли о строительстве собственного дома, но как-то в виде интересных идей, которые замечал у других в жизни или СМИ. Представил тут, как выглядел бы дом, воплощающий все эти идеи - лисья нора (землянка), переходящая в зеркальную сферу, висящую на дереве:D. В общем, идейный трансформер что снаружи что внутри.

Сейчас увлекся геодезическими куполами и технологиями применения этих принципов для строительства жилых домов и других полезных и производственных сооружений (например, навесов, бань, теплиц, сараев, цехов, мастерских, ангаров).

Этим летом (2011) довелось живьем наблюдать, и даже немного помог в строительстве жилого геодезического купола (фото слева).

А сейчас наткнулся на интересную информацию по ним, зарылся, и решил писать статью на будущее… своеобразную шпаргалку, чтобы быстро можно было вспомнить и найти. Так что по мере поступления информации буду статью дополнять. Уверен и читателям сайта будет полезно.

Вот такие они бывают:






Вкратце об истории и что значит "геодезический" .

Как обычно все новое - это хорошо забытое старое.

Гео - наш земной шар Земля

Остаток на Д … - делить (древние греки делили и измеряли ее… и не только они)

Так что, если не вдаваться в пространственную и дифферинциальную геометрию искривленных пространств))), то - это купол из части сферы, вернее сферического многогранника, так как измеряют землю по точкам, на ее поверхности, которые в нашем случае являются вершинами этого многогранника. Важной особенностью является оптимально-распределенное расположение вершин и граней стремящихся к идеальной сфере. Строится обычно на основе икосаэдра (20 треугольных граней) или додекаэдра (12 пятиугольных граней).


Продолжение на следующей странице.
1      


[комментарии/обсуждение]

Владимир (20:06 05.10.2016)
Андрей, благодарю за интересную идею и полезные советы! По образованию - геолог - геофизик, иногда рисую картины и режу по дереву. Вот такой домик-мастерская, освещенная со всех сторон, пожалуй и подойдет лучше всего! И кристалл напоминает. Вечерами, глядя на звезды, можно будет и помечтать о полетах на собственном "НЛО" в какой-нибудь следующей жизни. :-))
Вячеслав (18:10 14.11.2015)
Ищу работу!
Опыт работы в малоэтажном строительстве 10 лет. Проектирование и строительство необычных по форме сооружений (геодезические купола). По самостоятельным проектам было построено три дома, один из которых построил себе сам. Проектирование инженерных коммуникаций (электрика, водопровод, канализация, кровля, утепление). Очень интересуют альтернативные источники энергии, и автономность жилых домов. Быстро обучаем. Коммуникабельный. Пунктуальный. Мобилен. Имеется портфолио!
radius (02:20 28.11.2014)
для интересующихся - самый емкий русскоязычный ресурс по куполам forum.domesworld.ru
Andrew (19:46 03.12.2013)
to Михаил
Добрый день. Вижу три причины:
+ в основном геодезиками увлекаются люди, предпочитающие использовать по возможности натуральные материалы и продукты, при строительстве Эко-дома ППУ - нонсенс (ППУ считается вредным полимером и надо знать, как строить безопасно с его использованием), ;
+ некоторые технологические трудности и бОльшие финансовые затраты;
+ для такой парилки нужно использовать грамотную вентиляцию, по мнению большинства - принудительную
Михаил (12:47 03.12.2013)
Добрый день! Меня поражает тот факт, что просмотрев множество фото-отчетов о постройке купольных домов, я ни разу не обнаружил применение напыления ППУ. Напротив, все мучаются, запихивают эту не треугольную мин. вату в треугольники и пр. мучаются с топорщащейся на округлой поверхности пароизоляцией. Не могу понять почему так. В простом каркасном строительстве ППУ применяется повсеместно, а тут такое пренебрежение. Хотя коннекторы некоторые пенят баллонами и окна с дверями ставят на пену))) Мне кажется ППУ и купольное домостроение должны быть "не разлей вода" Или есть какие-то особенности и невозможность применения напвляемого ППУ?
Andrew (08:38 24.09.2013)
Треугольники собираются из досок на саморезы, а треугольники собираются между собой на болты.
Амир (10:09 23.09.2013)
... тот геодезический купол, в строительстве которого вы помогали, на самой первой фотографии в статье - объясните, или может сможете выслать на мой электронный адрес информацию по способам стыкования (крепления) каркасных элементов купола. Буду очень благодарен.
adam gagarin (13:14 30.10.2012)
Гравитониум ру мы не продлеваем уже давно, но вся информация о куполах доступна на www.valpak.ru & www.cupulageodesica.com/ru

Мы пришли к использованию тонкой стальной термоотражающей фольги, наклеиваемой прямо на внутренние поверхности фанерных треугольников. Эффект термоса, вес как на МКС, и жар и холод отражаются 99%.

C радостью поделимся информацией по всем вопросам

С Уважением,
Адам Гагарин

Andrew (20:31 18.02.2012)
Вот что пишут в Timberline FAQs:
"The most common choices are fiberglass or rigid foam. Timberline"s 2" x 6" framing members allow for 5 1/2" of insulation, sufficient for most climatic conditions. Other options include spray-in expanding foam which is very effective."
"By using an expanding spray in foam insulation, it seals up the dome so well that no interior vapor barrier is needed."
http://www.domehome.com/faqs.html
Так что конкретно по пене не изучал вопрос.

Да, это тот геодом.

staging (08:53 18.02.2012)
Спасибо за ответ. Пеной очень не хотелось. Лучше минватой. Но если пеной то какой? И еще вот фото http://www.zidar.ru/2011/09/stroim-kryishu-chast-vtoraya/#more-203 и то что у вас где рейки прямые в вензазоре это с одного объекта?
Andrew (03:56 08.02.2012)
- обычно Timberline Geodesics использует стекловату и "строительную" пену;
- при использовании ребер 2*6 дюйма (примерно 50*150 мм) вентзазор не делают и заполняют все пустоты пеной, и говорят что при этом конденсат не образуется и пароизоляция не требуется;
- при использовании ребер бОльших сечений (50*200/300), в качестве опции, предлагают делать пропилы, похожие на Natural Spaces Domes;
- кровля состоит из треугольных граней, покрытых подкровельным ковром и сверху битумная/деревянная/металлическая черепица или используют специальное напыление.

Так что можете попробовать все задуть пеной или сделать по классической максимальной схеме с вентзазором:
- пароизоляция (не пропускает воздух и влагу... заклеивать стыки скотчем обязательно... в идеале чтобы "герметично" было... NSD, вроде, проверяют на малейшие отверстия специальным агрегатом... и все электрические коробки и входы/выходы в каркас герметизируют);
- утеплитель;
- ветрозащита (мембрана, пропускающая воздух и препятствующая "выдуванию" тепла из утеплителя);
- вентзазор;
- гидроизоляция (пропускает влажный воздух из утеплителя и не пропускает влагу со стороны крыши купола);
- вентзазор;
- кровля

staging (00:48 08.02.2012)
Интересует готовое решение вентиляция подкровельного пространства и утепление. Кровельный пирог. Каркас 3v 5/8 TIMBERLINE.