Теории дисковой аккреции вещества на черные дыры. Дисковая аккреция

Академик Яков Зельдович, 1964 год. Фото: Евгений Кассин / фотохроника ТАСС

Был человек, который определил наше развитие с Рашидом Сюняевым. Это Яков Борисович Зельдович - академик, трижды Герой Социалистического Tруда.

В середине 60-х годов Яков Борисович получил возможность работать в Московском университете. По-моему, это был 1966 год, когда в нашем расписании появилась фамилия Зельдович. «Строение и эволюция звезд» - так назывался его курс. Я пошел на его первую лекцию. Кто хотел писать у него курсовые работы, остались после лекции. Дошла очередь до меня - такие вещи забыть невозможно, и он спросил, был ли я на его семинаре днем ранее. А у него два раза в неделю был Объединенный астрофизический семинар (ОАС) тут, в ГАИШе. Там докладывались самые интересные открытия.

На одном семинаре был рассказ про рентгеновские источники - их природа тогда была неизвестна. Я был на том семинаре. И Зельдович дает мне задачу: вот есть нейтронная звезда с радиусом 10 км, на ее поверхность падает вещество, вблизи поверхности возникает мощная ударная волна с очень высокими температурами. Эта волна должна излучать в рентгене. «Рассчитайте структуру и спектр излучения от этой ударной волны…» И я начал это считать.

Только спустя пару недель я узнал, что это задача по аккреции газа нейтронной звезды. Я тогда впервые услышал слово «аккреция». Я думал, меня разыгрывают, потому что вначале академик Зельдович этот термин не употреблял. Я нашел в словаре латинских слов accretio - увеличение чего-либо, приращение чего-либо. Задачу я потом решил.

- То есть ваше знакомство с академиком Зельдовичем и началось с аккреции?

Да, получается, что так. Два человека сыграли очень большую роль в начале нашей деятельности по аккреции. Это Зельдович Яков Борисович и Мартынов Дмитрий Яковлевич , директор нашего института ГАИШ, - он читал лекции по курсу общей астрофизики. И рассказывал про тесные двойные звезды, где есть перетекание вещества с одной на другую. Я тогда подумал: «А что если нам вместо второй звезды поставить черную дыру?» Газа, который истекает со второй компоненты, полно. Из-за движения этой двойной звездной системы формируется кольцо вокруг черной дыры, оно расплывается в диск.

За работу с академиком Рашидом Сюняевым вы получили Госпремию по науке. Расскажите, пожалуйста, о ней подробнее.

Наша работа с Рашидом Сюняевым была выполнена 40 с небольшим лет назад. Конец 60-х - начало 70-х годов - это было замечательное время для астрономии: были открыты такие объекты, как нейтронные звезды, черные дыры в двойных звездных системах.

Рентгеновские лучи не проходят сквозь земную атмосферу, поэтому наблюдения в рентгеновском спектре можно проводить только вне атмосферы Земли. В середине 60-х годов группа американских ученых, возглавляемая Риккардо Джаккони , поставила на ракету рентгеновские счетчики и запустила ее выше земной атмосферы. Они надеялись открыть рентгеновское излучение от Луны, но открыли какие-то загадочные источники, которые находились далеко от Солнечной системы. В те времена наш научный руководитель академик Зельдович и предложил нам заняться изучением природы этих рентгеновских источников.

В начале 70-х годов группой профессора Джаккони был запущен специальный рентгеновский спутник, чтобы изучать эти объекты. Было обнаружено, что эти рентгеновские источники входят в состав двойных звездных систем, где помимо рентгеновского источника есть обычная оптическая звезда. Она теряет вещество, вещество падает на компактный объект, вокруг него образуется то, что мы сейчас называем аккреционным диском. И начинается процесс дисковой аккреции, в результате которого вещество в диске, быстро вращаясь, как спутник вокруг тяготеющего центра, по мере потери момента медленно оседает на этот источник. Образуется диск, диск излучает энергию. Большая часть этой энергии излучается в рентгеновском диапазоне спектра внутренними частями диска, близкими к компактному объекту. Это были результаты наших расчетов. Наша была опубликована в 1973 году.

Так получилось, что работа оказалась очень фундаментальной и цитируется уже много лет. На эту работу мы сейчас насчитываем более восьми тысяч ссылок в научной литературе.

Насколько я понимаю, эта область в то время интересовала многих астрофизиков. А ваша работа дала самое простое и красивое объяснение.

Да, самое простое и элегантное. В 60-х годах были открыты рентгеновские источники, изучение неба в рентгеновском диапазоне до спутника «Ухуру » (Uhuru) шло так: на ракеты ставили приборы, они взлетали выше земной атмосферы, в течение десятка минут что-то измерялась.

Время шло, и в 1967 году были открыты радиопульсары. Это открытие сделала группа ученых под руководством Энтони Хьюиша в Англии, решающую роль сыграла Джоселин Белл . И большая часть людей, которая занимается астрофизикой черных дыр и нейтронных звезд, переключились на исследование пульсаров - это нейтронные звезды, которые излучают радиоизлучение в узком конусе, звезда вращается, и получается радиопульсар. На некоторое время радиопульсары затмили все. Но мы продолжили заниматься аккреционными нейтронными звездами, черными дырами в двойных системах.

Первое время радиопульсары были одиночными. Гораздо позже, в 1975 году, Тейлор и Халс обнаружат радиопульсар в двойной системе. Однако несколько раньше, в начале 70-годов, пришло время спутника «Ухуру», который открыл аккрецирующие нейтронные звезды в рентгеновском диапазоне. Есть радиопульсары, они медленно замедляются со временем, источником наблюдаемой активности у них является энергия вращения. А есть другой тип нейтронных звезд - это аккреционные рентгеновские пульсары в двойных звездных системах. Именно их и открыл «Ухуру». Там есть диск, есть нейтронная звезда с сильным магнитным полем. Где-то на ста радиусах нейтронной звезды магнитное поле разрушает диск, вещество с диска начинает падать по магнитным силовым линиям на нейтронную звезду в область полюсов. На нейтронной звезде горячие полюсы, она вращается, и мы опять получаем пульсар, но уже в рентгеновском диапазоне спектра. Эти нейтронные звезды светят за счет выделения гравитационной энергии .

А если там черная дыра, то диск, который мы рассчитали, существует до радиуса последней устойчивой орбиты: гравитационное поле черной дыры настолько сильное, что начиная с некоего расстояния частицы начинают падать по радиусу на черную дыру.

- Ваша работа до сих пор находит применение в других областях астрофизики. Почему?

Есть аккреционные диски вокруг черных дыр, нейтронных звезд, есть аккреционные диски вокруг белых карликов в двойных звездных системах, или вокруг обычных звезд в двойных звездных системах. И те расчеты, которые мы проделали, годятся для самых разных ситуаций. В последнее время открыто огромное множество протопланетных дисков , к которым тоже применима наша теория.

В ядрах активных галактик и квазарах существуют самые интригующие объекты - сверхмассивные с массой в десятки сотни миллионов и даже до миллиарда масс Солнца. И там тоже имеет место дисковая аккреция.

Некоторое время назад в центре нашей Галактики была открыта черная дыра. Она оказалась миллион с небольшим масс Солнца. Там тоже имеют место процессы аккреции. Но там, возможно, не такой сплошной диск, а на черную дыру падают газовые облака.

- Вы сейчас работаете над этим?

Мы с молодежью работаем над самой важной проблемой, которая решается в последние годы, - как в этом аккреционном диске вещество отдает свой момент количества движения и постепенно падает на этот аккрецирующий центр. В этом диске должна существовать некая вязкость, в результате чего и происходит аккреция. Если там обычная, ионная, атомная вязкость, то она очень маленькая. Мы ввели турбулентную вязкость и вязкость, связанную с магнитными полями. Сейчас мы и изучаем вопрос о природе турбулентной вязкости в аккреционных дисках.

Есть стандартные диски Шакуры - Сюняева, которые еще называют альфа-дисками. В этой теории существует безразмерный альфа-параметр, который характеризует как турбулентность в диске, так и хаотические магнитные поля. Альфа-параметр представляет собой отношение вязких сил трения к силам давления. Этот параметр альфа не больше 1, но больше 0. Когда он порядка 1, то турбулентные скорости, которые возникают в этом диске, становятся околозвуковыми, появляются ударные волны. Мои молодые коллеги - кандидат физико-математических наук Липунова Галина и совсем молодой аспирант Маланчев Константин, который вот-вот будет защищать кандидатскую диссертацию, - создали программы, которые рассчитывают нестационарные аккреционные диски.

Помимо стационарных рентгеновских источников, сейчас известны рентгеновские новые звезды . Это источники, которые появляются на небе, светят ярко пару недель, а потом их блеск спадает. По характеристикам спадания блеска можно определить, чему равен параметр альфа в этих аккреционных дисках. И он оказывается 0,3−0,5, он не такой маленький. Там турбулентность близка к околозвуковой.

- А какими еще областями в астрономии, кроме аккреции, вы занимаетесь?

Астрономия очень интересная и богатая наука. Там есть самые разные объекты, самые разные звезды. Например, у меня была такая работа. Меркурий по орбите движется чуть-чуть не так, как это предсказывает классическая теория тяготения Ньютона. Там есть движение линии апсид , орбита эксцентричная, и большая ось эллипса испытывает некоторое дополнительное движение, которое невозможно было объяснить, оставаясь в рамках классической ньютоновской теории тяготения. Но теория относительности Эйнштейна сумела объяснить эти дополнительные 40 секунд в столетие.

Есть двойные звезды на эксцентричных орбитах, которые тоже испытывают апсидальное движение, то есть движение большой оси эллипса. Многие наблюдатели проверяют эффекты теории относительности в таких системах. Оказалось, что существует такая двойная система DI Геркулеса, где апсидальное движение не объясняется. Часть этого движения связана с тем, что центральные звезды - это не точки, масса в этих звездах распределена. Закон тяготения отличается от чисто ньютоновского, потому что каждая из звезд деформирована как собственным вращением, так и взаимными приливами. Дополнительный вклад в апсидальное движение дают эффекты общей теории относительности. Обычно при расчетах эффектов апсидального движения предполагают, что векторы моментов вращения каждого из компонентов параллельны орбитальному вектору вращения. И это так у большинства систем. Однако после некоторых размышлений вектор вращения одной из этих звезд DI Геркулеса я уложил в орбитальную плоскость. При такой конфигурации классическая теория дает уже другие цифры, и в этом случае все можно объяснить, оставаясь в рамках общей теории относительности. Вот такая была работа .

В результате прецизионных спектральных наблюдений DI Геркулеса, которые были проведены позже, такая конфигурация подтвердилась.

- Вы сказали, что 60-е годы были прекрасным временем. А сейчас?

Да, для нас 60-70-е годы XX века - это золотой век астрофизики. Тогда ведь тоже были прекрасные люди, которые совершили открытия до нас. Когда мы начинали работать, нам казалось, что наша работа - самая важная. А теперь открытия, которые останутся на века, будет делать молодежь.

- А кого из молодых российских астрономов можете выделить?

Очень много наших молодых людей работают за границей: в США, Германии, Англии. Но они не теряют с нами связь. Мой соавтор, академик Рашид Алиевич - заведующий лабораторией в Институте космических исследований РАН, и одновременно он работает одним из трех директоров института астрофизики Макса Планка в Германии. Там много наших молодых людей. Они некоторое время работают там, некоторое время - тут.

- Какая область астрофизики сейчас интересует вас больше всего?

О, можно только завидовать ученым сейчас. Это открытие гравитационных волн, которое сделали американские ученые из LIGO. Первые случаи были открыты в сентябре 2015 года, к концу 2015 года было обнаружено уже три случая слияния черных дыр. В январе этого года была открыта еще одна пара сливающихся черных дыр. Слияние происходит очень быстро, от него идет поток гравитационных волн, который и измеряется высокоточными интерферометрами. Черные дыры, открытые в процессе слияния, оказались несколько массивнее тех черных дыр, которые изучают по их рентгеновскому излучению от аккреционных дисков в двойных звездных системах. Массы последних примерно 5-15 масс Солнца. По-моему, уже 22 такие черные дыры в двойных звездных системах открыли.

А по характеристикам гравитационно-волнового импульса можно оценить и массы, и собственно вращение этих черных дыр. И масса каждой из них оказалась от 20 до 30 масс Солнца. Интересно, как же они образовались в далеком прошлом, почему они оказались более массивными. Один из вариантов звездной эволюции с образованием таких массивных черных дыр содержится в работе российских ученых, профессора Константина Постнова и кандидата физико-математических наук Александра Куранова, которая вышла буквально несколько дней назад.

Ожидается, что будет открыто слияние двух нейтронных звезд. Возможно, слияние нейтронной звезды и черной дыры, но это в будущем.

А вторая интересная область - это наша Вселенная в целом, космология. Там открыта темная материя, которая как-то распределена в скоплениях галактик, а есть еще темная энергия. И плотность этой темной энергии больше всего: если суммарную плотность вещества во Вселенной взять за 1, то на темную энергию приходится 0,7. Это тоже интересно.

Еще интересное открытие - ускоренное расширение Вселенной. Раньше считалось, что из-за гравитации темп расширения со временем замедляется. А сейчас оказалось, что расширение нашей Вселенной не замедляется, а ускоряется. Это явление называется инфляцией. Она была характерна для ранних стадий Вселенной, и вот теперь опять мы выходим на режим ускоренного расширения Вселенной. Природа этого режима успешно исследуется в трудах российского академика Алексея Старобинского.

Планеты - тоже интересно, потому что открыто несколько планет с массой порядка массы Земли. И они существуют в зоне, где возможна жизнь, как на нашей Земле.

Почти 50 лет назад открытия были колоссальные: нейтронные звезды, черные дыры, реликтовое излучение. Тогда его открыли, а сейчас изучают распределение его флуктуаций по небу. Само реликтовое излучение имеет температуру 2,7 градуса Кельвина, а флуктуации - 10 и даже меньше микрокельвинов. И по этим флуктуациям люди изучают историю нашей Вселенной, ее расширения. В те далекие 70-е годы Рашидом Сюняевым и академиком Яковом Зельдовичем был предсказан эффект, названный их именем (эффект Сюняева - Зельдовича). Суть эффекта состоит в том, что спектр реликтового излучения слегка деформируется в результате рассеяния фотонов реликта на электронах очень горячего газа, который содержится в большом количестве в скоплениях галактик. Нынче этот эффект открыт и успешно наблюдается радиотелескопами всего мира. Величина эффекта дает важную информацию о параметрах нашей расширяющейся Вселенной.

Николай Иванович, вы всю жизнь посвятили изучению космоса. А побывать там никогда не хотели? Не завидовали космонавтам?

Я был в 9-м классе, когда Гагарин полетел. И, конечно, были мечты, что я, скорее всего, свяжу свою жизнь с космосом. В 1963 году я закончил 11-й класс - я учился в Белоруссии - и поехал поступать в Московский университет. Когда зашел в приемную комиссию, увидел объявление, что есть такое астрономическое отделение и на него прием и конкурс отдельный - где-то 20-25 человек. Я думал, что это связано прямо с космосом. Но это оказалась астрономия, такой прямой связи с космосом, как у космонавтов, у нас нет. Но я доволен тем, как все сложилось.

Лауреатами Государственной премии России 2016 года стали астрофизики Рашид Сюняев и Николай Шакура.

Н.И. Шакура и Р.А. Сюняев в конференц-зале ГАИШ, 1979 год. (Фото из архива фотолаборатории ГАИШ МГУ)

Николай Иванович Шакура (фото О. С. Бартунова, ГАИШ)

Рашид Алиевич Сюняев (Фото: Artem Korzhimanov, ru.wikipedia.org)

Почетный знак лауреата Государственной премии Российской Федерации.

Награду они получили за созданную еще в начале 1970-х годов теорию дисковой аккреции вещества на черные дыры, которая стала общепринятой и легла в основу современной теории двойных систем, представляющих собой мощные источники рентгеновского излучения.

Их основополагающая статья «Стандартная теория дисковой аккреции на черные дыры и нейтронные звезды», вышедшая в 1973 году в журнале «Astronomy and Astrophysics», считается самой цитируемой статьей в мировой теоретической астрофизике.

Падение вещества на небесное тело благодаря его гравитационному притяжению получило название аккреция (от латинского «приращение»). Вещество, падающее на компактный объект с очень сильной гравитацией, чёрную дыру или нейтронную звезду, не может сразу на него упасть и образует вокруг него быстро вращающийся диск. Это явление называется дисковой аккрецией.

При этом вещество разгоняется гравитацией до скоростей, близких к скорости света. Столкновение и взаимное трение столь высокоскоростных потоков газа разогревает их до температур в десятки и сотни миллионов градусов. Это приводит к огромному излучению энергии главным образом в рентгеновском диапазоне, на которое расходуется до 0,3 от энергии покоя падающего вещества.

Светимость такого источника достигает 10 36 -10 39 эрг/с, что в тысячи и миллионы раз больше светимости Солнца. Этот механизм объясняет возникновение самых мощных источников излучения во Вселенной. Он применим для двойных систем, где один из компонентов представляет собой нейтронную звезду или черную дыру, а так же при аккреции на сверхмассивные черные дыры, что позволяет объяснить излучение квазаров и галактик.

Стоит отметить, что идею о мощном энерговыделении при несферической аккреции вещества на черную дыру еще в 1964 году высказал академик Я.Б. Зельдович, учениками которого являются оба лауреата. Зельдович указал на принципиальную возможность наблюдения черных дыр в рентгеновском диапазоне спектра.

Выход работы Р. Сюняева и Н. Шакуры совпал по времени с началом систематических наблюдений неба американской орбитальной рентгеновской обсерваторией UHURU (NASA), открывшей в 1972-1975 годах рентгеновские пульсары, рентгеновское излучение скоплений галактик и получившей карту неба в рентгеновском диапазоне с сотнями источников рентгеновского излучения.

Теория дисковой аккреции позволила понять природу большинства этих объектов как аккрецирующих нейтронных звезд и черных дыр в тесных двойных системах, где вторым компонентом была нормальная оптическая звезда. К настоящему времени число известных рентгеновских двойных систем достигает сотни тысяч.

Отечественные астрофизики под руководством Р. Сюняева детально изучали свойства подобных источников с помощью рентгеновских обсерваторий КВАНТ-1 на станции МИР (1987-2001), спутниках ГРАНАТ (1989-1999) и ИНТЕГРАЛ (с 2002) и обнаружили большое количество новых объектов.

В теоретических статьях 1970-х годов, по словам Н. Шакуры, многое было предсказано: спектры, переменность, влияние магнитных полей. Современные инструменты, более совершенные, чем существовавшие на тот момент, а также новые наблюдения подтверждают полученные несколько десятилетий назад результаты.

Одним из предсказаний были джеты - направленные потоки вещества, выбрасываемые с огромной скоростью из-за взаимодействия аккреционного диска с магнитным полем такими астрономическими объектами, как галактики, квазары, нейтронные звезды и черные дыры. Впрочем, механизмы образования джетов до сих пор не нашли полного объяснения.

В настоящее время доктор физико-математических наук Николай Иванович Шакура – заведующий отделом релятивистской астрофизики Государственного астрономического института имени П.К.Штернберга МГУ, а академик РАН Рашид Алиевич Сюняев – заведующий лабораторией теоретической астрофизики и научного сопровождения проекта «Спектр-РГ» отдела астрофизики высоких энергий Института космических исследований РАН

По материалам пресс-службы МГУ

К 100-летию со дня рождения Я.Б. Зельдовича

Как создавалась теория дисковой аккреции

ШАКУРА Н.И.,

доктор физико-математических наук ГАИШ МГУ

Стояло лето 1963 г. После выпускных экзаменов в средней школе городского поселка Паричи, что на Гомель-щине, по каким-то делам я поехал в город Бобруйск, зашел в книжный магазин и увидел там книжку «Высшая математика для начинающих» Я.Б. Зельдовича. Естественно, имя автора мне ни о чем не говорило, но содержание книги меня заинтересовало по следующей причине.

В те, теперь уже далекие, времена среднее образование по математике заканчивалось взятием пределов. Им предшествовали элементарные функции, одна из них - парабола. Нужно было найти положение минимума (парабола «рогами» вверх) или максимума (парабола «рогами» вниз). Объясняя, как это делается согласно существующим тогда методикам с использованием формулы Виетта, школьный учитель математики (а также физики и астрономии) Альфред Викторович Барановский приговаривал следующее: «А вот методами высшей математики эти минимаксы вычисляются гораздо быстрее и красивее». Специальных занятий с передовиками школьного процесса Альфред не проводил. Свое индивидуальное развитие в математике я получал, знакомясь с содержимым задач, присылаемых по почте из МГУ.

После покупки книжки я зашел в небольшой уютный скверик на улице Ба-харева и начал ее листать. На первых страницах излагались школьные понятия: функции, графики, скорость, ускорение...

Больше я в книжку Я.Б. Зельдовича не заглядывал, нужно было ехать в Москву сдавать вступительные экзамены в МГУ. Астрономическое отделение я выбрал, уже находясь в комнате приемной комиссии: прошло всего два с небольшим года после полета Ю.А. Гагарина. Но все-таки решающую роль сыграла книжка с названием «Этюды о Вселенной», написанная профессором Б.А. Воронцовым-Вельяминовым. Уже будучи студентом, я слушал лекции Бориса Александровича и, естественно, сдавал ему экзамен. В школе мы учили астрономию по его стандартному учебнику для средней школы «Астрономия». Тогда мне даже в голову не приходило, что пройдет всего два-три года и он будет преподавать мне курс высшей астрономии.

Первые три года обучения прошли без Я.Б.Зельдовича. Более того, я забыл о той, купленной в Бобруйске книжке: в число стандартных университетских учебников она не входила. Она предназначалась для тех, кто постигал высшую математику путем са-

© Шакура Н.И.

Академик Я.Б. Зельдович выступает на семинаре. 1974 г.

мообразования. Академик адресовал ее начинающим инженерам и техникам. Более того, есть замечательное фото, где он дарит двухтомник своих избранных трудов Папе Римскому Павлу-Иоанну II.

Моя научная деятельность началась на третьем курсе в солнечном отделе ГАИШ МГУ. Под руководством Ольги Николаевны Митропольской (жены профессора Соломона Борисовича Пи-кельнера) и Анны Ивановны Кирюхи-ной я изучал механизмы уширения линий поглощения в спектре Солнца.

Когда я учился на третьем курсе, мне посчастливилось увидеть Якова Борисовича. Деканат физического факультета организовал в Большой Физической аудитории встречу студентов факультета с редколлегией журнала

«Успехи физических наук». Сильное впечатление произвел главный редактор, блистательный Эдуард Владимирович Шпольский. Я.Б. Зельдович присутствовал, но не выступал.

Впервые я встретился с академиком лично через год, когда он начал читать лекции для студентов четвертого курса. Осенью 1966 г. мы, студенты астрономического отделения Физического факультета МГУ, обнаружили в расписании занятий новый спецкурс -«Строение и эволюция звезд», который подготовил Я.Б. Зельдович. Лекции читались по пятницам, а по четвергам под руководством ЯБ (так звали его коллеги-ученые) в ГАИШ МГУ проводился Объединенный астрофизический семинар (ОАС). В нем участвовали не только уже сложившиеся ученые, но и

молодежь, недавно получившая высшее образование. Студенты забегали на этот семинар по мере возможности, так как в расписании учебных занятий он не значился. После своей первой лекции Яков Борисович попросил желающих получить у него тему для курсовой работы задержаться. Несколько студентов, в том числе и я, остались в аудитории. Когда очередь дошла до меня, он спросил, присутствовал ли я вчера на заседании ОАС. Я ответил утвердительно. На второй вопрос: прослушал ли я доклад о (таинственных тогда) источниках космического рентгеновского излучения, - ответ тоже был утвердительным. Тогда Я.Б. Зельдович сказал: «Попытайтесь рассчитать структуру и спектр излучения мощной ударной волны, которая возникает в результате падения газа на нейтронную звезду вблизи ее поверхности».

Первые источники космического рентгеновского излучения открыла группа американских ученых, возглавленная профессором Рикардо Джакко-ни, во время запуска 18 июня 1962 г. геофизической ракеты «Аэроби». К началу 1960-х гг. уже был известен один внеземной источник рентгеновского излучения - корона нашего Солнца. Оказалось, что корональный газ какими-то механизмами разогрет до температуры несколько миллионов градусов и светимость солнечной короны в этом диапазоне составляет примерно одну миллионную от оптической светимости Солнца (4х1033 эрг/с). Естественно было предположить, что и вокруг других звезд существуют горячие короны. Однако простой расчет показал, что детекторы тех времен даже короны ближайших звезд с расстояния в несколько парсек зафиксировать не могли. Ученые надеялись на открытие рентгеновского излучения от Луны! Конечно же, Луна не обладает атмосферой. Однако возможный механизм заключался во флюоресцентном свечении лунного грунта, облу-

чаемого рентгеновскими лучами, идущими от солнечной короны. Ракета «Аэроби» достигла высоты 225 км, полет продолжался 350 с. Из трех счетчиков Гейгера с большой площадью и хорошей чувствительностью в диапазоне энергий 1,5-6 кэВ два постоянно функционировали. В этом диапазоне земная атмосфера полностью непрозрачна. Вместо рентгеновского излучения от Луны обнаружили яркий неизвестный ранее источник, находящийся далеко за пределами Солнечной системы в направлении созвездия Скорпиона, получивший название Sco Х-1. В дальнейшем в результате ракетных пусков начали открывать новые рентгеновские источники. Постепенно создавалась карта рентгеновского неба с источниками разной природы, они получали название в соответствии с тем, в направлении какого созвездия находились (например, Cyg Х-1, Cyg Х-2, Her Х-1, Сеп Х-3). Как выяснилось позже, их рентгеновская светимость в тысячи, а то и в десятки тысяч раз превышала оптическую светимость Солнца. Так началась эпоха рентгеновской астрономии, эпоха необычайных открытий во Вселенной.

Осенью 1966 г. спустя несколько недель после начала занятий ко мне подошла ученый секретарь кафедры астрофизики, научный сотрудник ГАИШ Валентина Яковлевна Алдусева, чтобы уточнить тему моей курсовой работы. «Коля, перед вами академик Зельдович поставил задачу разработать модель аккреции», - сказала она. Именно тогда я впервые услышал загадочно прозвучавшее слово «аккреция» и крайне удивился. Ведь академик просил меня рассчитать структуру ударной волны и на первых порах не употреблял в своих беседах со мной этот термин, а в стандартных астрономических курсах тех времен понятие процессов аккреции отсутствовало.

Видя мое замешательство, Валентина Яковлевна предложила мне воспользоваться научной библиотекой

Рентгеновское излучение

Аккрецирующее

Ударная волна

Схема, поясняющая возникновение ударной волны вблизи поверхности аккрецирующей нейтронной звезды.

ГАИШ. Я выяснил, что слово «аккреция» имеет латинское происхождение (аоогеНо) и означает приращение, прибавление чего-либо. В астрономии под термином аккреция подразумевают процессы падения на тяготеющие центры различной природы окружающего их разреженного вещества. Да, тогда, более чем полвека назад, теоретическое изучение процессов аккреции вещества во Вселенной находилось в зачаточном состоянии. Более того, в 1950-х гг. были открыты звездные ветры,

не позволявшие межзвездному веществу падать на поверхность обычных звезд. Причины генерации звездных ветров у разных классов звезд (в том числе и у нашего Солнца) различные, но аккреция на обычные одиночные звезды отсутствует. Иное дело - конечные стадии эволюции звезд: белые карлики, нейтронные звезды и черные дыры.

Два типа формирования аккреционных дисков в тесных двойных системах с релятивистскими звездами.

гой - знаменитый американский физик Э. Солпитер. Они обратили внимание на энерговыделение в ударной волне, возникающей при сверхзвуковом движении черной дыры в обширном газовом облаке. Вблизи черной дыры газ после прохождения ударной волны разогревается столь сильно, что начинает излучать энергию в рентгеновском и гамма-диапазоне.

Осенью 1966 г. под руководством Якова Борисовича я начал рассчитывать структуру и спектр излучения сильной ударной волны, которая возникает вблизи поверхности аккрецирующей нейтронной звезды. Сложность задачи состояла в том, что длина пробега падающих частиц до их полной остановки в десятки раз превышает характерный масштаб взаимодействия излучения с веществом. При решении многих задач нет необходимости считать структуру ударной волны - достаточно лишь задать скачок плотности, давления, температуры и других физических величин в зависимости от скорости падения и показателя адиабаты вещества. В поставленной задаче и плотность, и температура, и другие величины менялись в зоне торможения с выделением энергии. Более того, в этой зоне не исключено возникновение коллективных плазменных процессов с выходом расчета на более сложный уровень физической кинетики вместо обычной

гидродинамики. В конце концов удалось показать, что спектры излучения ударных волн от аккрецирующих нейтронных звезд объясняли данные, полученные в результате ракетных запусков.

В 1960-е гг. появились первые отождествления космических рентгеновских источников в оптическом диапазоне, что позволило оценить расстояние до них и их светимость. Нам с ЯБ стало ясн

Для дальнейшего прочтения статьи необходимо приобрести полный текст . Статьи высылаются в формате PDF на указанную при оплате почту. Время доставки составляет менее 10 минут . Стоимость одной статьи — 150 рублей .

Пoхожие научные работыпо теме «Космические исследования»

  • СИМБИОТИЧЕСКИЕ РЕНТГЕНОВСКИЕ ДВОЙНЫЕ СИСТЕМЫ В ГАЛАКТИКЕ

    КУРАНОВ А.Г., ПОСТНОВ К.А. - 2015 г.

  • УКАЗАТЕЛЬ СТАТЕЙ И ЗАМЕТОК, ОПУБЛИКОВАННЫХ В ЖУРНАЛЕ “ЗЕМЛЯ И ВСЕЛЕННАЯ” В 2014 Г
  • ДИСКОВЫЙ ВЕТЕР В МОЛОДЫХ ДВОЙНЫХ СИСТЕМАХ И ПРИРОДА ЦИКЛИЧЕСКОЙ АКТИВНОСТИ МОЛОДЫХ ЗВЕЗД

    ГРИНИН В.П., СОТНИКОВА Н.Я., ТАМБОВЦЕВА Л.В. - 2004 г.

  • ТОЛЩИНА АККРЕЦИОННЫХ -ДИСКОВ: ТЕОРИЯ И НАБЛЮДЕНИЯ

    ЛИПУНОВА Г.В., СУЛЕЙМАНОВ В.Ф., ШАКУРА Н.И. - 2007 г.

Многие модели оптического и рентгеновского излучения квазаров основаны на квазисферической, или дисковой, аккреции на черные дыры (разд. 4). Важным параметром в этих моделях является отношение времени падения ко времени охлаждения Если это отношение значительно больше или значительно меньше единицы, то эффективность высвобождения энергии будет низкой и гравитационная энергия аккрецируемого вещества будет заглатываться дырой в виде кинетической или тепловой энергии. Если то величина может быть большой. Для квазисферической аккреции большая часть падающего газа могла бы иметь форму холодных облаков с низким угловым моментом. Если (в идеальном случае) эти облака сталкиваются очень близко к дыре, где их относительные скорости достигают с, то в облаках будут возникать ударные волны, производящие эффективную диссипацию . (Из наблюдений галактических остатков Сверхновых нам известно, что ударные волны со скоростями с достаточно эффективны для ускорения релятивистских электронов и что результирующие эффективности излучения являются вполне правдоподобными, если этот тип столкновения может произойти в действительности.) Как говорилось выше, при дисковой аккреции также может быть величиной

Неустойчивости, которые являются бедствием для моделей рентгеновских двойных, в полной мере присутствуют и в дисковых моделях квазаров. Самые внутренние области диска, окружающие черную дыру с массой аккрецирующую на эддингтоновском пределе, должны иметь температуры 10в К. Это значит, что отношение давления излучения к газовому давлению (см. разд. 4) велико и что охлаждение в линиях (см., например, ) освобождаемая гравитационная энергия запасается в «короне» над диском. Энергия может быть унесена в виде излучательным или тепловым механизмом управляемого ветра - сдвинутая по масштабу версия солнечного ветра, который уносит большую часть энергии, накопленной в солнечной короне. Были найдены решения подобия, в которых малая часть вещества, аккрецирующего в диске, «принимается» дырой и может генерировать светимость Остальное вещество уносится радиационным давлением. При этом оказывается возможным получать потоки, коллимированные параллельно и антипараллельно спиновой оси.

В альтернативной схеме (см. , а также статью Блэндорфа в книге и приведенные там ссылки) энергия и угловой момент аккрецирующего газа извлекаются электромагнитными скручивающими усилиями, действующими вблизи дыры. Это на самом деле может быть сделано с достаточно высокой эффективностью даже в осесимметричной геометрии. Рассмотрим магнитное поле, внедренное в диск. В первом приближении поле будет «вморожено» в материю, вращающуюся в диске (вследствие огромной электрической проводимости, что подразумевает «идеальное МГД-условие» Ротор этого уравнения подразумевает , что прямо интерпретируется как вмораживание магнитного поля в вещество). Магнитные силовые линии, выходящие из диска и «вмороженные» во вращающуюся в диске материю, будут генерировать электрическое поле, каким бы его видели локально невращающиеся (стационарные) наблюдатели. Это электрическое поле создает электрическую разность потенциалов поперек самых внутренних частей диска и фактически поперек дыры, точно так же, как в диске Фарадея. Эта разность потенциалов будет заставлять токи

течь вдоль магнитных силовых линий из диска, устанавливая магнитосферу вокруг дыры. В конце концов эти токи будут генерировать тороидальную компоненту магнитного поля, так что силовые линии будут сноситься назад движением вещества. Поэтому будет существовать сопротивляющийся момент вращения, действующий на любое вещество вблизи дыры, и это может приводить к переносу углового момента (и энергии) не наружу в плоскости диска (как в обычных моделях с вязкостью), а перпендикулярно диску в виде электромагнитного или гидромагнитного потока Пойнтинга.

Тот же механизм может вести к извлечению спиновой энергии из самой дыры. Из керровской черной дыры с удельным угловым моментом а в принципе можно извлечь долюэнергии (изменяющуюся от 0 до 29% при возрастании а от 0 до М). Однако чтобы это осуществилось на практике, требуются токи, свободно текущие поперек горизонта. Поскольку частицы должны двигаться внутрь на горизонте и могут, по-видимому, двигаться наружу на больших расстояниях, должен существовать какой-то источник зарядов, переносящих ток во внутренней магнитосфере. Он может обеспечиваться разрушением вакуума над горизонтом, как при ударе молнии. Это приводит к тому, что при ожидаемых внутри ядра квазара условиях существуют простые механизмы, способные произвести это разрушение. Это дает альтернативный способ высвобождения значительной части энергии покоя аккрецируемого вещества. На самом деле любой аккрецирующий замагниченный газ будет, по-видимому, нестабильным, так что большая часть энергии будет выделяться скорее во взрывных вспышках . Если бы дыра была достаточно массивна она могла бы притягивать достаточно плотные области скопления, так чтобы обеспечить топливом даже наиболее яркие квазары }